Constructing R-sequencings and terraces for groups of even order

Matt Ollis

Abstract


The problem of finding R-sequencings for abelian groups of even orders has been reduced to that of finding R\(^*\)-sequencings for abelian groups of odd orders except in the case when the Sylow 2-subgroup is a non-cyclic non-elementary-abelian group of order~8.  We partially address this exception, including all instances when the group has order \(8t\) for \(t\) congruent to 1, 2, 3 or 4 \((\mod{7})\).  As much is known about which odd-order abelian groups are R\(^*\)-sequenceable, we have constructions of R-sequencings for many new families of abelian groups.  The construction is generalisable in several directions, leading to a wide array of new R-sequenceable and terraceable non-abelian groups of even order.


Keywords


2-sequencing; Bailey's Conjecture; R-sequencing; terrace

Full Text:

PDF

References


bibitem{AAAP}

A.~Ahmed, M.~I.~Azimli, I.~Anderson and D.~A.~Preece,

{em Rotational terraces from rectangular arrays}, Bulletin Inst.~Combinatorics Appl. {bf 63}, 2011, pp.~4--12.

bibitem{AandI92}

B.~A.~Anderson and E.~C.~Ihrig.

{em All groups of odd order have starter-translate 2-sequencings},

Australas. J. Combin. {bf 6}, 1992, pp.~135--146.

bibitem{AandI93}

B.~A.~Anderson and E.~C.~Ihrig, {em Symmetric sequencings of non-solvable groups}, Congr. Numer. {bf 93}, 1993, pp.~73--82.

bibitem{Bailey84}

R.~A.~Bailey,

{em Quasi-complete {L}atin squares: construction and randomization},

J.~Royal Statist. Soc. Ser. B {bf 46}, 1984, pp.~323--334.

bibitem{FGM}

R.~J.~Friedlander, B.~Gordon and M.~D.~Miller, {em On a group sequencing problem of Ringel}, Congr. Numer.~{bf 21}, 1978, pp.~307--321.

bibitem{gap}

{{G}{A}{P} group}.

newblock {G}{A}{P}---{G}roups, {A}lgorithms, and {P}rogramming, {V}ersion 4 (1999).

bibitem{Gordon61}

B.~Gordon, {em Sequences in groups with distinct partial products}, Pacific J.~Math. {bf 11}, 1961, pp.~1309--1313.

bibitem{Headley}

P.~Headley, {em R-sequenceability and R$^*$-sequenceability of abelian 2-groups}, Discrete Math. {bf 131}, 1994, pp.~345--350.

bibitem{Keedwell83} A.~D.~Keedwell, {em On the $R$-sequenceability and

$R_{h}$-sequenceability of groups}, Ann.~Discrete Math.

{bf 18}, 1983, pp.~535--548.

bibitem{MO}

G.~N.~Martin and M.~A.~Ollis, {em R-sequencings and strong half-cycles from narcissistic terraces}, Australas.~J.~Combin, to appear.

bibitem{survey}

M.~A.~Ollis, {em Sequenceable groups and related topics},

Electron. J. Combin. {bf DS10}, 2002 (updated 2013), 34pp.

bibitem{Ollis05}

M.~A.~Ollis, {em On terraces for abelian groups}, Discrete Math. {bf 305}, 2005, pp.~250--263.

bibitem{Ollis12}

M.~A.~Ollis, {em A note on terraces for abelian groups}, Australas.~J.~Combin. {bf 52}, 2012, pp.~ 229--234.

bibitem{OW1}

M.~A.~Ollis and D.~T.~Willmott, {em On twizzler, zigzag and graceful terraces}, Australas.~J.~Combin. {bf 51}, 2011, pp.~243--257.

bibitem{OW3}

M.~A.~Ollis and D.~T.~Willmott, {em An extension theorem for terraces}, Electron.~J.~Combin.~{bf 20}, 2013, 10pp.

bibitem{OW4}

M.~A.~Ollis and D.~T.~Willmott, {em Constructions for terraces and R-sequencings, including a proof that Bailey's Conjecture holds for abelian groups}, J.~Combin.~Des.~{bf 23}, 2015, pp.~1--17.

bibitem{paige}

L.~J.~Paige, {em Complete mappings of finite groups}, Pacific J.~Math. {bf 1}, 1951, pp.~111--116.

bibitem{Wang94} C.-D.~Wang and P. A. Leonard, {em On R$^*$-sequenceability and symmetric harmoniousness of groups}, J.~Combin.~Des. {bf 2}, 1994, pp.~71--78.

bibitem{Wang95} C.-D.~Wang and P. A. Leonard, {em On R$^*$-sequenceability and symmetric harmoniousness of groups II}, J.~Combin.~Des. {bf 3}, 1995, pp.~313--320.

bibitem{WL00} C.-D.~Wang and P. A. Leonard, {em More on sequences in groups},

Australas. J. Combin. {bf 21}, 2000, pp.~187--196.

bibitem{Williams49}

E.~J. Williams,

{em Experimental designs balanced for the estimation of residual effects

of treatments},

Aust. J. Scient. Res. A, {bf 2}, 1949, pp.~149--168.


Refbacks

  • There are currently no refbacks.