Characterization of Chebyshev Numbers

David Pokrass Jacobs, Mohamed O. Rayes, Vilmar Trevisan

Abstract


Let \(T_n(x)\) be the degree-\(n\) Chebyshev polynomial of the first kind. It is known [1,13] that \(T_p(x) \equiv x^p \bmod{p}\), when \(p\) is an odd prime, and therefore, \(T_p(a) \equiv a \bmod{p}\) for all \(a\). Our main result is the characterization of composite numbers \(n\) satisfying the condition \(T_n(a) \equiv a \bmod{n}\), for any integer \(a\). We call these pseudoprimes  Chebyshev numbers, and show that \(n\) is a Chebyshev number if and only if \(n\) is odd, squarefree, and for each of its prime divisors \(p\), \(n \equiv \pm 1 \bmod p-1\) and \(n \equiv \pm 1 \bmod p+1\). Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than \(10^{10}\), although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.


Keywords


Chebyshev polynomials, polynomial factorization, resultant, pseudoprimes, Carmichael numbers

Full Text:

PDF

Refbacks

  • There are currently no refbacks.