Amply (weakly) Goldie-Rad-supplemented modules
Abstract
Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and \(M\) is called amply (weakly) Goldie-Rad-supplemented if every submodule of \(M\) has ample (weak) Goldie-Rad-supplements in \(M\). In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if \(M\) is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then \(M\) is Artinian.
Keywords
Full Text:
PDFReferences
I. Al-Khazzi and P.F. Smith, Modules with Chain Conditions on Super
uous Sub-
modules, Comm. Algebra, N.19, 1991, pp. 2331-2351.
G. F. Birkenmeier, F. Takl Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-
Supplemented Modules, Glasgow Math. J., N.52A, 2010, pp. 41-52.
S. H. Mohamed and B. J. Muller, Continuous and discrete modules, London Mathe-
matical Society Lecture Note Series, 147, Cambridge University Press, Cambridge,
Y. Talebi, A. R. M. Hamzekolaee and A. Tercan, Goldie-Rad-Supplemented Mod-
ules, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., N.22(3), 2014, pp. 205-218.
Y. Wang and N. Ding, Generalized Supplemented Modules, Taiwanese J. Math.,
N.10(6) , 2006, pp. 1589-1601.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach,
Philadelphia, 1991.
Refbacks
- There are currently no refbacks.