Amply (weakly) Goldie-Rad-supplemented modules

Figen Takıl Mutlu


Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supplemented if every submodule of \(M\) has ample (weak) Goldie-Rad-supplements in \(M\). In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if \(M\) is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then \(M\) is Artinian.


Supplement submodule, Goldie-Rad-Supplement submodule, amply Goldie-Rad-Supplemented module

Full Text:



I. Al-Khazzi and P.F. Smith, Modules with Chain Conditions on Super

uous Sub-

modules, Comm. Algebra, N.19, 1991, pp. 2331-2351.

G. F. Birkenmeier, F. Takl Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-

Supplemented Modules, Glasgow Math. J., N.52A, 2010, pp. 41-52.

S. H. Mohamed and B. J. Muller, Continuous and discrete modules, London Mathe-

matical Society Lecture Note Series, 147, Cambridge University Press, Cambridge,

Y. Talebi, A. R. M. Hamzekolaee and A. Tercan, Goldie-Rad-Supplemented Mod-

ules, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., N.22(3), 2014, pp. 205-218.

Y. Wang and N. Ding, Generalized Supplemented Modules, Taiwanese J. Math.,

N.10(6) , 2006, pp. 1589-1601.

R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach,

Philadelphia, 1991.


  • There are currently no refbacks.