Projectivity and flatness over the graded ring of normalizing elements

T. Guédénon

Abstract


Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\).

Keywords


projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element

Full Text:

PDF

References


T. Brzezinski and R. Wisbauer, “Comodules and corings", London Math. Soc. Lect. Note Series, 309, Cambridge Univ. Press, Cambridge 2003.

S. Caenepeel and T. Guédénon, Projectivity of a relative Hopf module over the subring of coinvariants, “ Hopf Algebras Chicago 2002", Lect. Notes in Pure and

Appl. Math. 237, Dekker, New York 2004, 97-108.

S. Caenepeel and T. Guédénon, Projectivity and flatness over the endomorphism ring of a finitely generated module, Int. J. Math. Math. Sci. 30, (2004), 1581-1588.

S. Caenepeel, S. Raianu and F. Van Oystaeyen, Induction and coinduction for Hopf algebras: Applications, J. Algebra 165, (1994), 204-222.

J. J. Garcia and A. Del Rio, On flatness and projectivity of a ring as a module over a fixed subring, Math. Scand. 76 n◦2, (1995), 179-193.

T. Guédénon, Projectivity and flatness over the endomorphism ring of a finitely generated comodule, Beitrage zur Algebra und Geometrie 49 n◦2, (2008), 399-408.

T. Guédénon, Projectivity and flatness over the colour endomorphism ring of a finitely generated graded comodule, Beitrage zur Algebra und Geometrie 49 n◦2,

(2008), 399-408.

T. Guédénon, Projectivity and flatness over the graded ring of semi-coinvariants, Algebra and Discrete Math. 10 n◦1, (2010), 42-56.

T. Guédénon, On the H-finite cohomology, Journ. of Algebra 273 n◦2, (2004), 455-488.

T. Guédénon, Picard groups of rings of coinvariants, Algebra and Represent. Theory 11 n◦1, (2008), 25-42.

C. Kassel, “Quantum groups’ Graduate Texts in

Mathematics 155, Springer-Verlag, 1995.

S. Montgomery, “Hopf algebra and their actions on rings”, Providence, AMS, 1993.

C. Nastasescu and F. Van Oystaeyen, “Methods of graded rings”, Lecture Notes Math., Springer, 2004.

M. Sweedler, “Hopf algebras”, Benjamin New York, 1969.


Refbacks

  • There are currently no refbacks.