On the structure of low-dimensional Leibniz algebras: some revision
Abstract
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([\,\cdot\,{,}\,\cdot\,]\). Then \(L\) is called a left Leibniz algebra if \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We describe the inner structure of left Leibniz algebras having dimension 3.
Keywords
Leibniz algebra, nilpotent Leibniz algebra, dimension
Full Text:
PDFDOI: http://dx.doi.org/10.12958/adm2036
Refbacks
- There are currently no refbacks.