A horizontal mesh algorithm for posets with positive Tits form

Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki, Grzegorz Marczak

Abstract


Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructs
a~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of
$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of
  a~poset $I$ with positive
definite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$.
Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  
the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it
is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  
$\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set
${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$.

Keywords


poset; combinatorial algorithm; Dynkin diagram; mesh geometry of roots; quadratic form

Full Text:

PDF

References


begin{thebibliography}{999}

bibitem{ass} I. Assem, D. Simson and A. Skowro'{n}ski, emph{Elements of the Representation Theory of Associative

Algebras}, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts

, Cambridge Univ. Press, Cambridge-New York, 2006.

bibitem{ARS} M. Auslander, I. Reiten and S. Smalo, emph{Representation Theory of Artin Algebras}, Cambridge Studies in Advanced Mathematics 36,

Cambridge University Press, 1995.

bibitem{Barot} M. Barot, emph{A characterization of positive unit forms}, II, Bol. Soc. Mat. Mexicana (3) 7 (2001), 13--22.

bibitem{bkl} M. Barot, D. Kussin and H. Lenzing, emph{The Lie algebra associated to a~unit form}, J. Algebra 296 (2007), 1--17.

bibitem{BonSte1}

V. M. Bondarenko and M. V. Stepochkina, emph{On posets of width two with positive Tits form}, Algebra and Discrete Math. 2 (2005), 20--35.

bibitem{BonSte2}

V. M. Bondarenko and M. V. Stepochkina, emph{(Min, max)-equivalence of partially ordered sets and quadratic Tits form}

(in Russian, English Summary), Zb. Pr. Inst. Mat. NAN Ukr. 2, No. 3, 2005, 18--58 (Zbl. 1174.16310).

bibitem{bo84} K. Bongartz, emph{A criterion for finite representation type}, Math. Ann. 269 (1984), 1--12.

bibitem{bren} S. Brenner, emph{Unfoldings of algebras}, Proc. London Math. Soc. (3) 62 (1991), 242--274.

bibitem{Dr74}

J. A. Drozd, emph{Coxeter transformations and representations of

partially ordered sets}, {it Funct. Anal. Appl.} 8(1974), 219--225.

bibitem{GaRo} P. Gabriel and A. V. Roiter, emph{Representations of Finite Dimensional Algebras}, in: Algebra VIII, Encyclopaedia of Math. Sci., vol. 73, Springer-Verlag, 1992.

bibitem{GaSim1} M. G{c a}siorek and D. Simson, emph{One-peak posets with positive Tits quadratic form, their mesh quivers of roots, and programming in Maple and Python},

Linear Algebra Appl. 436 (2012), 2240--2272. %, doi: 10.1016/j.laa. 2011.10.045.

bibitem{GaSim2}

M. G{c a}siorek and D. Simson, emph{A computation of positive one-peak posets that are Tits sincere},

Colloq. Math. 127 (2012), 83--103.

bibitem{hum} J. E. Humphreys, emph{Introduction to Lie Algebras and Representation Theory}, Springer-Verlag, New

York-Heilderberg-Berlin, 1972.

bibitem{kakomama} M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak,

emph{A horizontal mesh algorithm for a~class of edge-bipartite graphs and their matrix morsifications},

Fund. Inform. 136 (2015), 345--379.

bibitem{kaspen}

S. Kasjan and J. A. de la Pe~{n}a, emph{Constructing the preprojective components of an algebra},

J. Algebra 179 (1996), 793--807.

bibitem{kassim}

S. Kasjan and D. Simson, emph{Mesh algorithms for Coxeter spectral classification of Cox-regular

edge-bipartite graphs with loops, I. Mesh root systems}, Fund. Inform. 2015, in press.

bibitem{Kos} J. Kosakowska, emph{A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations},

Colloq. Math. 87 (2001), 27--77.

bibitem{kos08a} J. Kosakowska, emph{A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra},

Acta Mathematica Sinica, English Series, 24 (2008), 1687--1702.

bibitem{kos08} J. Kosakowska, emph{Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras},

Algebra and Discrete Math. 4 (2008), 49--79.

bibitem{kos12FI}

J. Kosakowska, emph{Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms},

Fund. Inform. 119 (2012), 149--162.

bibitem{kosi}

J. Kosakowska and D. Simson, emph{On Tits form and prinjective representations of posets of finite prinjective type},

Comm. Algebra, 26 (1998), 1613--1623.

bibitem{NazRoi}

L. A. Nazarova and A.V. Roiter, emph{Representations of partially ordered sets}, {em in} Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.

(LOMI),

(1972), 5--31 (in Russian); English version: J. Soviet Math. 3 (no. 5) (1975), 585--606.

bibitem{penasimson}

J. A. de la Pe~{n}a and D. Simson, emph{Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences},

Trans. Amer. Math. Soc. 329 (1992), 733--753.

bibitem{ringel} C. M. Ringel, emph{Tame Algebras and Integral Quadratic Forms}, Lecture Notes in Math. 1099, Springer-Verlag, Berlin,

Heidelberg, New York, Tokyo, 1984.

bibitem{Sato} M. Sato, emph{Periodic Coxeter matrices and their associated quadratic forms},

Linear Algebra Appl. 406 (2005), 99--108. %; doi: 10.1016/j.laa. 2005.03.036.

bibitem{Si92} D. Simson, emph{Linear Representations of Partially Ordered Sets and Vector Space Categories},

Algebra Logic Appl. 4, Gordon & Breach, London (1992).

bibitem{s93}

D. Simson, emph{Posets of finite prinjective type and a~class of

orders}, J. Pure Appl. Algebra 90 (1993), 71-103.

bibitem{Si09} D. Simson, emph{Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories},

Colloq. Math. 115 (2009), 259--295.

bibitem{SiLAA} D. Simson, emph{Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets},

Linear Algebra Appl. 433 (2010), 699--717. %; doi: 10.1016/j.laa. 2010.03.04.

bibitem{simson1} D. Simson, emph{Mesh geometries of root orbits of integral quadratic forms},

J. Pure Appl. Algebra 215 (2011), 13--34.

bibitem{simson2} D. Simson, emph{Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots},

Fund. Inform. 109 (2011), 425--462.

bibitem{simson3} D. Simson, emph{A Coxeter-Gram classification of positive simply laced edge-bipartite graphs},

SIAM J. Discrete Math. 27 (2013), 827--854.

bibitem{SiFram} D. Simson, emph{A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits},

Fund. Inform. 124 (2013), 309-338. %doi: 10.3233/FI-2013-836.

bibitem{SimZaj} D. Simson and K. Zaj,{a}c, emph{A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots},

newblock Intern. J. Math. Mathematical Sciences, Volume 2013, Article ID 743734, 22 pages,

newblock {d}oi: 10.1155/2013/743734.

end{thebibliography}


Refbacks

  • There are currently no refbacks.