A horizontal mesh algorithm for posets with positive Tits form
Abstract
a~$\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of
$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of
a~poset $I$ with positive
definite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$.
Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,
the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it
is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver
$\Gamma({\CR}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set
${\CR}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$.
Keywords
Full Text:
PDFReferences
begin{thebibliography}{999}
bibitem{ass} I. Assem, D. Simson and A. Skowro'{n}ski, emph{Elements of the Representation Theory of Associative
Algebras}, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts
, Cambridge Univ. Press, Cambridge-New York, 2006.
bibitem{ARS} M. Auslander, I. Reiten and S. Smalo, emph{Representation Theory of Artin Algebras}, Cambridge Studies in Advanced Mathematics 36,
Cambridge University Press, 1995.
bibitem{Barot} M. Barot, emph{A characterization of positive unit forms}, II, Bol. Soc. Mat. Mexicana (3) 7 (2001), 13--22.
bibitem{bkl} M. Barot, D. Kussin and H. Lenzing, emph{The Lie algebra associated to a~unit form}, J. Algebra 296 (2007), 1--17.
bibitem{BonSte1}
V. M. Bondarenko and M. V. Stepochkina, emph{On posets of width two with positive Tits form}, Algebra and Discrete Math. 2 (2005), 20--35.
bibitem{BonSte2}
V. M. Bondarenko and M. V. Stepochkina, emph{(Min, max)-equivalence of partially ordered sets and quadratic Tits form}
(in Russian, English Summary), Zb. Pr. Inst. Mat. NAN Ukr. 2, No. 3, 2005, 18--58 (Zbl. 1174.16310).
bibitem{bo84} K. Bongartz, emph{A criterion for finite representation type}, Math. Ann. 269 (1984), 1--12.
bibitem{bren} S. Brenner, emph{Unfoldings of algebras}, Proc. London Math. Soc. (3) 62 (1991), 242--274.
bibitem{Dr74}
J. A. Drozd, emph{Coxeter transformations and representations of
partially ordered sets}, {it Funct. Anal. Appl.} 8(1974), 219--225.
bibitem{GaRo} P. Gabriel and A. V. Roiter, emph{Representations of Finite Dimensional Algebras}, in: Algebra VIII, Encyclopaedia of Math. Sci., vol. 73, Springer-Verlag, 1992.
bibitem{GaSim1} M. G{c a}siorek and D. Simson, emph{One-peak posets with positive Tits quadratic form, their mesh quivers of roots, and programming in Maple and Python},
Linear Algebra Appl. 436 (2012), 2240--2272. %, doi: 10.1016/j.laa. 2011.10.045.
bibitem{GaSim2}
M. G{c a}siorek and D. Simson, emph{A computation of positive one-peak posets that are Tits sincere},
Colloq. Math. 127 (2012), 83--103.
bibitem{hum} J. E. Humphreys, emph{Introduction to Lie Algebras and Representation Theory}, Springer-Verlag, New
York-Heilderberg-Berlin, 1972.
bibitem{kakomama} M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak,
emph{A horizontal mesh algorithm for a~class of edge-bipartite graphs and their matrix morsifications},
Fund. Inform. 136 (2015), 345--379.
bibitem{kaspen}
S. Kasjan and J. A. de la Pe~{n}a, emph{Constructing the preprojective components of an algebra},
J. Algebra 179 (1996), 793--807.
bibitem{kassim}
S. Kasjan and D. Simson, emph{Mesh algorithms for Coxeter spectral classification of Cox-regular
edge-bipartite graphs with loops, I. Mesh root systems}, Fund. Inform. 2015, in press.
bibitem{Kos} J. Kosakowska, emph{A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations},
Colloq. Math. 87 (2001), 27--77.
bibitem{kos08a} J. Kosakowska, emph{A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra},
Acta Mathematica Sinica, English Series, 24 (2008), 1687--1702.
bibitem{kos08} J. Kosakowska, emph{Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras},
Algebra and Discrete Math. 4 (2008), 49--79.
bibitem{kos12FI}
J. Kosakowska, emph{Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms},
Fund. Inform. 119 (2012), 149--162.
bibitem{kosi}
J. Kosakowska and D. Simson, emph{On Tits form and prinjective representations of posets of finite prinjective type},
Comm. Algebra, 26 (1998), 1613--1623.
bibitem{NazRoi}
L. A. Nazarova and A.V. Roiter, emph{Representations of partially ordered sets}, {em in} Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI),
(1972), 5--31 (in Russian); English version: J. Soviet Math. 3 (no. 5) (1975), 585--606.
bibitem{penasimson}
J. A. de la Pe~{n}a and D. Simson, emph{Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences},
Trans. Amer. Math. Soc. 329 (1992), 733--753.
bibitem{ringel} C. M. Ringel, emph{Tame Algebras and Integral Quadratic Forms}, Lecture Notes in Math. 1099, Springer-Verlag, Berlin,
Heidelberg, New York, Tokyo, 1984.
bibitem{Sato} M. Sato, emph{Periodic Coxeter matrices and their associated quadratic forms},
Linear Algebra Appl. 406 (2005), 99--108. %; doi: 10.1016/j.laa. 2005.03.036.
bibitem{Si92} D. Simson, emph{Linear Representations of Partially Ordered Sets and Vector Space Categories},
Algebra Logic Appl. 4, Gordon & Breach, London (1992).
bibitem{s93}
D. Simson, emph{Posets of finite prinjective type and a~class of
orders}, J. Pure Appl. Algebra 90 (1993), 71-103.
bibitem{Si09} D. Simson, emph{Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories},
Colloq. Math. 115 (2009), 259--295.
bibitem{SiLAA} D. Simson, emph{Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets},
Linear Algebra Appl. 433 (2010), 699--717. %; doi: 10.1016/j.laa. 2010.03.04.
bibitem{simson1} D. Simson, emph{Mesh geometries of root orbits of integral quadratic forms},
J. Pure Appl. Algebra 215 (2011), 13--34.
bibitem{simson2} D. Simson, emph{Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots},
Fund. Inform. 109 (2011), 425--462.
bibitem{simson3} D. Simson, emph{A Coxeter-Gram classification of positive simply laced edge-bipartite graphs},
SIAM J. Discrete Math. 27 (2013), 827--854.
bibitem{SiFram} D. Simson, emph{A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits},
Fund. Inform. 124 (2013), 309-338. %doi: 10.3233/FI-2013-836.
bibitem{SimZaj} D. Simson and K. Zaj,{a}c, emph{A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots},
newblock Intern. J. Math. Mathematical Sciences, Volume 2013, Article ID 743734, 22 pages,
newblock {d}oi: 10.1155/2013/743734.
end{thebibliography}
Refbacks
- There are currently no refbacks.