Processing math: 94%

Global outer connected domination number of a graph

Morteza Alishahi, Doost Ali Mojdeh

Abstract


For a given graph G=(V,E), a dominating set DV(G) is said to be an outer connected dominating set if D=V(G) or GD is connected. The outer connected domination number of a graph G, denoted by ˜γc(G), is the cardinality of a minimum outer connected dominating set of G. A set SV(G) is said to be a global outer connected dominating set of a graph G if S is an outer connected dominating set of G and ¯G. The global outer connected domination number of a graph G, denoted by ˜γgc(G), is the cardinality of a minimum global outer connected dominating set of G. In this paper we obtain some bounds for outer connected domination numbers and global outer connected domination numbers of graphs. In particular, we show that for connected graph GK1max. Finally, under the conditions, we show the equality  of global outer connected domination numbers and outer connected domination numbers for family of trees.


Keywords


global domination, outer connected domination, global outer connected domination, trees

Full Text:

PDF

Refbacks

  • There are currently no refbacks.