Symmetric modules over their endomorphism rings
Abstract
\(R\)-module with \(S=End_R(M)\). In this paper, we study right
\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) and
for \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We prove
that some results of symmetric rings can be extended to symmetric
modules for this general setting.
Keywords
Full Text:
PDFReferences
N. Agayev, G. Güngöroğlu, A. Harmanci and S. Halicioglu, Abelian modules, Acta
Math. Univ. Comenianae 78(2)(2009), 235-244.
N. Agayev, S. Halicioglu and A. Harmanci, On symmetric modules, Riv. Mat.
Univ. Parma 8(2)(2009), 91-99.
N. Agayev, S. Halicioglu and A. Harmanci, On reduced modules, Commun. Fac.
Sci. Univ. Ank. Series A1 58(1)(2009), 9-16.
N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, Bull. Iran. Math.
Soc. 38(2)(2012), 433-445.
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products
commute, Comm. Algebra 27(6)(1999), 2847-2852.
A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Pitman, Boston,
M. W. Evans, On commutative p.p. rings, Pacific J. Math. 41(1972), 687-697.
A. Ghorbani and M. R. Vedadi, Epi-retractable modules and some applications,
Bull. Iran. Math. Soc. 35(1)(2009), 155-166.
K. R. Goodearl and A. K. Boyle, Dimension theory for nonsingular injective
modules, Memoirs Amer. Math. Soc. 7(177), 1976.
A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math.
J. 17(1960), 147-158.
C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J.
Pure Appl. Algebra 151(3)(2000), 215-226.
I. Kaplansky, Rings of operators, Math. Lecture Note Series, Benjamin, New York,
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3(4)(1996), 289-300.
T. Y. Lam, Exercises in classical ring theory, Springer-Verlag, New York, 1995.
J. Lambek, On the representation of modules by sheaves of factor modules, Canad.
Math. Bull. 14 (3)(1971), 359-368.
T. K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian
groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York,
(2004).
B. L. Osofsky, A counter-example to a lemma of Skornjakov, Pacific J. Math.
(1965), 985-987.
R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math.
Bull. 17(5)(1974/75), 709-712.
S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra
(2004), 103-123.
S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009),
-696.
J. E. Roos, Sur les categories spectrales localement distributives, C. R. Acad. Sci.
Paris 265(1967), 14-17.
B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci, On principally quasi-Baer
modules, Albanian J. Math. 5(3)(2011), 165-173.
J. M. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163(1972), 341-355.
Refbacks
- There are currently no refbacks.