Dg algebras with enough idempotents, their dg modules and their derived categories
Abstract
Keywords
Full Text:
PDFReferences
begin{thebibliography}{88}
bibitem{AF}
Frank W. Anderson and Kent R. Fuller, {sc Rings and categories of modules}, 2nd edition, Grad. Texts Maths {bf 13}, Springer-Verlag (1992).
bibitem{B}
Thomas B"uhler, {em Exact categories}, Expo. Math. {bf 28}(1) (2010), 1-69
bibitem{D1}
Yuriy A. Drozd, {em Tame an wild matrix problems}, in Representations and quadratic forms, Kiev 1979; english translation: Amer. Math. Soc. Transl. {bf 128}(2) (1986), 31-55.
bibitem{D2}
Yuriy A. Drozd, {em Tame and wild matrix problems}, in Representation Theory II, Proc. Confer. Ottawa 1979; V. Dlab and P. Gabriel (edts.). Springer Lect. Notes Math. {bf 832} (1980), 242-258.
bibitem{G}
Pierre Gabriel, {em Des cat'egories ab'eliennes}, Bull. Soc. Math. France {bf 90} (1962), 323-448.
bibitem{GOR}
Natalia S. Golovaschuk, Serge Ovsienko and Andrei V. Rojter, {emph On the schurian DGC}, Matrix problems, IM AN USSR, Kiev (1977), 162-165.
bibitem{H}
Dieter Happel, {sc Triangulated Categories in the Representation Theory
of Finite Dimensional Algebras}, London Math. Soc. Lect. Note Ser. {bf 119}.
Cambridge University Press 1988.
bibitem{HS}
Peter Hilton, Urs Stammbach, {sc A Course in Homological Algebra}, 2nd edition.
Grad. Texts Math. {bf 4}, Springer-Verlag (1971).
bibitem{KS}
Masaki Kashiwara and Pierre Shapira, {sc Categories and sheaves}, Grundl. Math. Wiss {bf 332}, Springer-Verlag (2006)
bibitem{K1} Bernhard Keller, {em Deriving DG categories}, Ann.
Sci. 'Ecole Norm. Sup {bf 27} (1994), 63-102.
bibitem{K3} Bernhard Keller, {em Derived categories and their uses}, Handbook of Algebra, vol. I, North-Hollad (1996), 671-701.
bibitem{K2} Bernhard Keller, {em On differential graded categories}, In:
International Congress of Mathematics, vol. II. Eur. Math. Soc. Zurich (2006), 151-190.
bibitem{Kl-R}
Mark M. Kleiner and Andrei V. Rojter, {em Representations of differential graded categories}, in Proceed. 1st International Conference on Representations of Algebras, Ottawa 1974, Springer Lect. Notes Math. {bf 488} (1975), 316-339.
bibitem{M}
Barry Mitchell, {em Rings with several objects}, Adv. Math. {bf 8} (1972), 1-161
bibitem{NVO}
Constantin Nastasescu and Freddy Van Oystaeyen, {sc Graded Ring Theory}, North-Holland (1982).
bibitem{Neeman}
Amnon Neeman, {sc Triangulated Categories}, Princeton University Press 2001.
bibitem{NS-Japan}
Pedro Nicol'as and Manuel Saor'in, {em Classical derived functors as fully
faithful embeddings}. Proc. 46th Japan Symp. Ring Theory and Repres. Theory
(edited by I. Kikumasa). Yamaguchi University (2014), 137-187.
bibitem{NS-GTT}
Pedro Nicol'as and Manuel Saor'in, {em Generalized tilting theory}, Preprint available at https://arxiv.org/abs/1208.2803
bibitem{O}
Serge Ovsienko, {em Bimodule and matrix problems}, in 'Computational Methods for Representations of Groups and Algebras', Proceed. Euroconfer. Essen 1977, P. Dr"axler, C.M. Ringel and G.O. Michler (edts.), Birkh"auser Progress in Maths. {bf 173} (1999), 325-357.
bibitem{SZ2}
Manuel Saor'i n and Alexander Zimmermann, {em Symmetry of the definition of degeneration in triangulated categories}, Preprint
bibitem{Ta}
Goncalo Tabuada, {em Une structure de cat'egorie de mod`eles de Quillen sur la cat'egorie des dg-cat'egories}, Compt. Rend. Acad. Sci. Paris, s'er {bf I 340} (2005), 15-19.
bibitem{T}
Bertrand To"en, {em The homotopy theory of dg-categories and derived Morita theory}, Invent. Math. {bf 167} (2007), 615-667.
bibitem{Verdier}
Jean-Louis Verdier, {em Des cat'egories d'eriv'ees des cat'egories abeliennes}.
Ast'erisque {bf 239}, Soc. Math. France (1996).
bibitem{Wis}
Robert Wisbauer, {sc Foundations of Module and Ring Theory}, Gordon and Breach Science Publishers (1991).
bibitem{reptheobuch}
Alexander Zimmermann, {sc Representation Theory; A homological algebra point of view},
Springer Verlag (2014).
end{thebibliography}
Refbacks
- There are currently no refbacks.