On nilpotent Chernikov 2-groups with elementary tops

Yuriy A. Drozd, Andriana I. Plakosh

Abstract


We give an explicit description of nilpotent Chernikov 2-groups with elementary top and basis of rank 2.

Keywords


Chernikov gorups, nilpotent groups, skew-symmetric matrices, alternative pairs, week equivalence

Full Text:

PDF

References


S.N.Chernikov,

Groups with given properties of a system of subgroups.

Nauka, Moscow, 1980.

Y.Drozd, A.Plakosh,

On nilpotent Chernikov $p$-groups with elementary tops.

Arch. Math. 103 (2014), 401-409.

F.R.Gantmacher,

The Theory of Matrices.

Fizmatlit, Moscow, 2004.

P.M.Gudivok, I.V.Shapochka,

On the Chernikov p-groups.

Ukr. Mat. Zh. 51(3) (1999), 291-304.

M.Hall,

The Theory of Groups.

The Macmillan Company, NewYork, 1959.

R.Hartshorne,

Algebraic Geometry.

Springer, 1977.

A.I.Kostrikin, Y.I.Manin.

Linear Alebra and Geometry, Nauka, Moscow, 1986.

A.G.Kurosh,

The Theory of Groups.

Nauka, Moscow, 1967.

V.V.Sergejchuk,

Classification problems for systems of forms and linear mappings.

Izv. Akad. Nauk SSSR, Ser. Mat. 51 (1987), 1170-1190.

I.V.Shapochka,

On classification of nilpotent Chernikov p-groups.

Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 10-11 (2005), 147-151.

W.C.Waterhouse,

Pairs of symmetric bilinear forms in characteristic $2$.

Pacific J. Math. 69 (1977), 275-283.


Refbacks

  • There are currently no refbacks.