Factorization of elements in noncommutative rings, I

Alberto Facchini, Martino Fassina

Abstract


We extend the classical theory of factorization in noncommutative integral domains to the more general classes of right saturated rings and right cyclically complete rings. Our attention is focused, in particular, on the factorizations of right regular elements into left irreducible elements. We study the connections among such factorizations, right similar elements, cyclically presented modules of Euler characteristic $0$ and their series of submodules. Finally, we consider factorizations as a product of idempotents.

Keywords


Divisibility; Factorization; Right irreducible element

Full Text:

PDF

References


bibitem{AF} F. W. Anderson and K. R. Fuller, ``Rings and Categories of Modules'', Second Edition,

GTM {bf 13}, Springer-Verlag, New York, 1992.

bibitem{A} M. Auslander, {em Almost split sequences, I,} Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 1, 8 pp., Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

bibitem{AR} M. Auslander and I. Reiten, {em Almost split sequences, II,} Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 2, 13 pp., Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

bibitem{Bass 64} H. Bass, ``$K$-theory and stable algebra'', Publ. Math. I. H. E. S. {bf 22} (1964), 5--60.

bibitem{Cohn1963} P. M. Cohn, {em Noncommutative unique factorization domains,} Trans. Amer. Math. Soc. {bf 109} (1963), 313--331.

bibitem{CMonthly} P. M. Cohn, {em Unique factorization domains}, Amer. Math. Monthly {bf 80} (1973), 1--18.

bibitem{Cohn2} P. M. Cohn, ``Free rings and their relations'', Second Edition, London Math. Soc. Monographs {bf 19}, Academic Press, London-New York, 1985.

bibitem{Cohnfree} P. M. Cohn, ``Free ideal rings and localization in general rings'', New Mathematical Monographs {bf 3}, Cambridge Univ. Press, Cambridge, 2006.

bibitem{Erdos} J. A. Erdos, {em On products of idempotent matrices,} Glasg. Math. J. {bf 8} (1967), 118--122.

bibitem{Evans} E. G. Evans, Jr., {em Krull-Schmidt and cancellation over local rings,} Pacific J. Math. 46 (1973), 115--121.

bibitem{libro} A. Facchini, ``Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules'', Progress in Mathematics {bf 167}, Birk"auser Verlag, Basel, 1998. Reprinted in Modern Birkh"auser Classics, Birkh"auser Verlag, Basel, 2010.

bibitem{AlbeAnd2} A. Facchini and A. Leroy, {em Elementary matrices and products of idempotents,} Linear Multilinear Algebra, published online: 18 Jan 2016, DOI: 10.1080/03081087.2015.1127885.

bibitem{Fou} J. Fountain, {em Products of idempotent integer matrices,} Math. Cambridge Philos. Soc. {bf 110} (1991), 431--441.

bibitem{Good} K. Goodearl, ``Ring theory. Nonsingular rings and modules", Marcel Dekker, Inc., New York-Basel, 1976.

bibitem{Goodearl} K. R. Goodearl, ``von Neumann regular rings'', Second edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.

bibitem{Jacobson} N. Jacobson, ``The Theory of Rings'', Amer. Mat. Soc., New York, 1943.

bibitem{Laffey} T. J. Laffey, {em Products of idempotent matrices,} Linear and Multilinear Algebra {bf 14} (1983), 309--314.

bibitem{Lame} G. Lam'e, {em Demonstration generale du Theoreme de Fermat, sur l'impossibilite, en nombres entier, de l'equation $x^n+y^n=z^n$,} Compte rendue des S'eances de L'Acad'emie des Sciences, S'eance du lundi $1^{er}$ mars 1847.

bibitem{Ruit} W. Ruitenburg, {em Products of idempotent matrices over Hermite domains,} Semigroup Forum {bf 46} (1993), 371--378.

bibitem{SV} D. W. Sharpe and P. V'amos, ``Injective modules", Cambridge Univ. Press, Cambridge, 1972.

bibitem{Stenstrom} B. Stenstr"om, ``Rings of quotients'', Springer-Verlag, New York-Heidelberg, 1975.


Refbacks

  • There are currently no refbacks.