Generalized norms of groups

Marina G. Drushlyak, Tetyana D. Lukashova, Fedir M. Lyman

Abstract


In this survey paper the authors specify all the known findings related to the norms of the group and their generalizations. Special attention is paid to the analysis of their own study of different generalized norms, particularly the norm of non-cyclic subgroups, the norm of Abelian non-cyclic subgroups, the norm of infinite subgroups, the norm of infinite Abelian subgroups and the norm of other systems of Abelian subgroups.


Keywords


norm of group, generalized norm, Wielandt subgroup, norm of non-cyclic subgroups, norm of Abelian non-cyclic subgroups, norm of infinite subgroups, norm of infinite Abelian subgroups, norm of decomposable subgroups

Full Text:

PDF

References


R. Dedekind, Űber Gruppen, deren sammtliche Teiler Normalteiler sind, Math.Ann, 48, 1897, pp.548-561.

R. Baer, Sitnation der Untergruppen und Structur der Gruppe, S.-B. Heidelberg.Akad, 2, 1933, pp. 12-17.

R. Baer, Der Kern, eine Charakteristische Untergruppe, Comp. Math, 1, 1934, pp. 254-283.

R. Baer, Gruppen mit hamiltonschen Kern, Compositio Math, 2, 1935, pp. 241-246.

R. Baer, Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Compositio Math, 2, 1935, pp. 247-249.

R. Baer, Gruppen mit vom Zentrum wesetlich verschiedenem Kern und abelische Factorgruppe nach dem kern, Compositio Math, 4, 1937, pp. 1-77.

R. Baer, Almost Hamiltonian groups, Compositio Math, 6, 1939, pp. 382-406.

R. Baer, Groups with abelian norm quotient group, Amer. J. Math, 61, 1939, pp. 700-708.

R. Baer, Nilpotent groups and their generalizations, Trans. Amer. Math. Soc, 47, 1940, pp. 393-434.

R. Baer, Norm and hypernorm, Publ. Math, 4, 1956, pp. 347-350.

L. Wos, On commutative prime power subgroups of the norm, Ill. J. Math, 2, 1958, pp. 271-284.

E. Schenkman,On Norm of a Group, Ill. J. Math, 4, 1960, pp. 150-152.

J. Evan, Permutable diagonal-type subgroups of , Glasgow Math. J., 45, 2003, pp. 73-77.

R. A. Bryce, J. Cossy, A note on Hamiltonian 2-groups, Rend. Sem. Mat. Univ. Padova, 86, 1991, pp. 175-182.

R. A. Bryce, The Subgroups of Baer and Hughes, Arch. Math, 61, 1993, pp. 305-312.

R. A. Bryce, L. J. Rylands, A note on groups with non-central norm, Glasgow Math. J., 36,1, 1994, pp. 37-43.

R. A. Bryce, J. Cossy, The Series of Norms in a Soluble p-Group, Bull. London Math. Soc., 29,2, 1997, pp. 165-172.

R. A. Bryce, J. Cossey, A Note on Groups with Hamiltonian Quationts, Rend. Sem. Mat. Univ. Padova, 100, 1998, pp. 1-11.

J. C. Beidleman, H. Heineken, M. Newell, Centre and norm, Bull. Austral. Math. Soc., 69, 2004, pp. 457-464.

X. Guo, X. H. Zhang, On the Norm and Wielandt Series in Finite Groups, Algebra Colloq., 19(3), 2012, pp. 411-426.

B. Brewster, A. Martinez-Pastor, M. D. Perez-Ramos, Embedding properties in direct products, Groups St Andrews, 1, 2005, pp. 246-256.

N. Gavioli, L. Legarreta, C. Sica, M. Tota, On the number of conjugacy classes of normalisers in a finite p-groups, Bull. Aust. Math. Soc., 73, 2005, pp. 219-230.

F. Russo, A note on the Quasicentre of a Group, International Journal of Algebra, 2(7), 2008, pp. 301-313.

I. V. Lemeshev, On norm and center of finite group, Classes of groups, algebras and their applications, International Algebraic Conference, Gomel 2007, pp. 99-100.

J. Wang, X. Guo, On the norm of finite groups, Algebra Colloquium, 14,4, 2007, pp. 605-612.

J. X. Wang, X. J. Guo, Finite groups with its power automorphism groups having small indices, Acta Mathematica Sinica, English Series, 25,7, 2009, pp. 1097-1108.

J. Smith, Groups in which every subgroup of the norm is normal, The XXIXth Ohio State-Denison Mathematics Conference, Columbus, Ohio 2008, pp. 35.

F. Russo, The generalized commutativity degree in finite group, Acta Universitatis Apulensis, 18, 2009, pp. 161-167.

R. Baer, Groups with preassigned central and central quotient group, Transactions of the American Mathematical Society, 44, 1938, pp. 387-412.

Ya. Berkovich, Alternate proof of the Reinold Baer theorem on 2-groups with nonabelian norm, Glasnik Matematicki, 47(1), 2012, pp. 149-152.

G. A. Miller, Subgroups transformed according to a group of prime order, Proceedings of the National Academy of Sciences of the United States of America, 29(10), 1943, pp. 311-314.

I. Ya. Subbotin, On groups with invariator condition, In: Subgroup characterization of groups, К.: Math. Inst. АS USSR, 1982, pp. 99-109.

I. Ya. Subbotin, N. F. Kuzennyi, Soluble groups with invariator condition for non-Abelian normal subgroups, Izvestiya VUZ. Matematika, 10, 1987, pp. 68-70.

W. R. Scott, Group theory, Englewood Gliffs, 1964.

M. De Falco, F. De Giovanni, C. Musella, Groups with decomposable set of quasinormal subgroups, Serdica Math. J., 27, 2001, pp. 137-142.

.V. V. Kirichenko, L. A. Kurdachenko, On some developments in investigation of groups with prescribed properties of generalized normal subgroups, Algebra and Discrete Mathematics, 9, 1, . 2010, pp. 41-71.

F. Giovanni, G. Vincenzi, Pronormality in infinite groups, Math. Proc. of the Royal Irish Academy, 100 A (2), 2000, pp. 189-203.

E. Romano, G. Vincenzi, Pronormality in generalized FC-groups, Bull. Aust. Math. Soc., 83, 2, 2011, pp. 220-230.

J. Smith, Groups with a chain of normalizers, The XXVIIth Ohio State-Denison Mathematics Conference, Columbus, Ohio 2004, pp. 45.

H. Bell, F. Guzman, L.-C. Kappe, Ring analogues of Baer`s norm and P.Hall`s margins, Arch. Math., 55, 1990, pp. 342-354.

M.R. Dixon, L.A. Kurdachenko, J. Otal, Linear groups with finite dimensional orbits, Proc. Ischia Group Theory, 2010, pp.131-145.

R.Baer, Group Elements of Prime Power Index, Trans. Amer. Math. Soc., 75(1), 1953, pp. 20-47.

B. Huppert, Zur Theorie der Formationen, Arch. Math., 19(6), 1968, pp. 561-674.

L. А. Shemetkov, А. N. Skiba, Formations of algebraic structures, М.: Nauka, 1989.

K. Doerk, T. Hawkes, Finite Soluble Groups, Berlin-New York: Walter de Gruyter, 1992.

V.I.Murashka, On one generalization of Baer’s theorems about hypercentre and nilpotent residual, Problems of Physics, Mathematics and Technics, 3(16), 2013, pp. 84-88.

W. Kappe, Die A-Norm einer Gruppe, Ill. J. Math., 5, 2, 1961, pp. 187 -197.

F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, Ill. J. Math., 6, 1942, pp. 87-97.

A. G. Kurosh, Theory of Groups, М.: Nauka, 1967.

W. Kappe, Gruppentheoretische Eigenschaften und charakreristische Untergruppen, Arch. Math., 13, 1, 1962, pp. 38–48.

W. Kappe, Properties of Groups Related to the Second Center, Math. Zeitschr., 101, 1967, pp. 356-368.

W. Kappe, E-Normen Endlicher Gruppe, Arch. Math., 19, 1968, pp. 256-264.

W. Gashütz, Über die -Untergruppe endlicher Gruppen, Mat. Z., 58,5, 1953, pp. 160-170.

H. Wielandt, Über der Normalisator der Subnormalen Untergruppen, Mat. Z., 69, 5, 1958, pp. 463-465.

D. J. S. Robinson, Course in the Theory of Groups, New York-Heidelberg-Berlin: Springer-Verlag, 1982.

D. J. S. Robinson, On the theory of subnormal subgroups, Math. Z., 89, 1965, pp. 30-51.

J. E. Roseblade, On certain subnormal coalition classes, J. Algebra, 1, 1964, pp. 132-138.

J. Cossy, The Wielandt subgroup of a polycyclic group, Glasgow Math. J., 33, 1991, pp. 231-234.

O. H. Kegel, Uber den Normalisator von subnormalen und erreichbaren Untergruppen, Math. Ann., 163, 1966, pp. 248-258.

R. Bryce, J. Cossy, The Wielandt subgroup of a finite soluble group, J. London. Math. Soc., 40, 2, 1989, pp. 244-256.

R. A. Bryce, J. Cossey, E. A. Ormerod, A note on p-Groups with power automorfisms, Glasgow Math. J., 34, 3, 1992, pp. 327-332.

R. A. Bryce, Subgroups like Wielandt’s in Finite Soluble Groups, Math. Proc. of the Cambridge Philosophical Society, 107, 2, 1990, pp. 239-259.

R. Brandl, S. Franciosi, F. Giovanni, On the Wielandt subgroup of a infinite soluble groups, Glasgow Math. J., 3, 2, 1990, pp. 121-125.

A. R. Camina, The Wielandt length of finite groups, J. Algebra., 15, 1970, pp. 142-148.

C. Casolo, Soluble groups with finite Wielandt length, Glasgow Math. J., 31, 1989, pp. 329-334.

C. Casolo, Wielandt series and defects of subnormal subgroups in finite soluble groups, Rend. Sem. Mat. Univ. Padova, 87, 1992, pp. 93-104.

E. A. Ormerod, The Wielandt Subgroup of Metacyclic p-groups, Bull. Australian Math. Soc., 42, 3, 1990, pp. 499-510.

C. J. T. Wethwrell, The Wielandt series of metabelian groups, Bull. Austral. Math. Soc., 67, 4, 2003, pp. 267-276.

C. J. T. Wethwrell, Soluble groups of small Wielandt length, Comm. Alg., 32, 4, 2004, pp.1472-1486.

X. Zhang, X. Guo, On the Wielandt subgroup in a p-group of maximal class, Chinese Annals of Mathematics, Series B, 33(1), 2012, pp. 83-90.

X. Guo, X. Zhang, On the Norm and Wielandt Series in Finite Groups, Algebra Colloq., 19(3), 2012, pp. 411-426.

D. L. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60, 1964, pp. 21-38.

J. C. Beidleman, M. R. Dixon, D. J. S. Robinson, The generalized Wielandt subgroup of a group, Canad. J. Math., 47, 2, 1995, pp. 246-261.

J. C. Beidleman, M. R. Dixon, D. J. S. Robinson, The Wielandt Subgroup, In: Infinite Groups 94, Berlin-New-Jork, 1995, pp. 23-40.

F. Giovanni, S. Fransiosi, Groups in which every infinite subnormal subgroup is normal, J. Algebra, 96, 2, 1985, pp.566-580.

С. Franchi, Subgroups like Wielandt's in Soluble Groups, Glasgow Math. J., 42, 2000, pp. 67-74.

С. Franchi, m-Wielandtseries in infinite Groups, J. Austral. Math. Soc., 70, 2001, pp. 76-87.

F. Mari, F. Giovanni, Groups with Few Normalizer Subgroups, Irish. Math. Soc. Bulletin, 56, 2005, pp. 103-113.

F. Amin, A. Ali, M. Arif, On Generalized Wielandt Subgroup, World Applied Sciences Journal, 30(12), 2014, pp. 1939-1946.

Sh. Lia, Zh. Shenb, On the intersection of the normalizers of derived subgroups of all subgroups of a finite group, Journal of Algebra, 323, 5, 2010, pp. 1349-1357.

Z. Shen, S. Lia, W. Shi, On the norm of the derived subgroups of all subgroups of a finite group, Bull. Iranian. Math. Soc., 40, 1, 2014, pp. 281-291.

Zh. Shen, W. Shi, G. Qian, On norm of the nilpotent residuals of all subgroups of a finite order, Journal of Algebra, 352, 1, 2012, pp. 290-298.

L. Gong, X. Guo, On the Intersection of the Normalizers of the Nilpotent Residuals of All Subgroups of a Finite Group, Algebra Colloq., 20, 2, 2013, pp. 349-360.

N. Su, Ya. Wang, On the intersection of normalizers of the F–residuals of all subgroups of a finite group, Journal of Algebra, 392, 15, 2013, pp. 185-198.

X. Chen, W. Guo, On the πF-norm and the hF-norm of a finite group, Journal of Algebra, 405, 1, 2014, pp. 213-231

A. Ballester-Bolinches, J. Cossey, L. Zhang, Generalised norms in finite soluble groups, Journal of Algebra, 402(15), 2014, pp. 392-405.

R.Laue, Kerne von Permutationsdarstellungen der Automorphismengruppe einer endlichen Gruppe, Archiv der Mathematic, 27, 1, 1976, pp. 463-472.

F. М. Lyman, Groups with invariant non-cyclic subgroups, Doklady AN USSR, 12, 1967, pp. 1073-1075.

F. М. Lyman, 2-groups with invariant non-cyclic subgroups, Mathematical Notes, 4, 1, 1968, pp. 75-83.

F. М. Lyman. Non-peridic groups with some systems of invariant subgroups, Algebra and Logic, 7, 4, 1968, pp. 70-86.

F. М. Lyman, On infinite groups which non-cyclic norm has finite index, Ukrainian Math. J., 49, 5, 1997, pp. 678-684.

Т. D. Lukashova, Locally finite p-groups (р2) with non-Abelian norm of non-cyclic subgroups, Bulletin of University of Kiev, 1, 2001, pp. 43-53.

Т. D. Lukashova, On non-cyclic norm in infinite locally finite groups, Ukrainian Math. J., 54, 3, 2002, pp. 342-348.

Т. D. Lukashova, Finite 2-groups with non-Dedekind norm of non-cyclic subgroups, Proceedings of Francisk Scorina Gomel State University, 6, 3, 200, pp. 139-150.

Т. D. Lukashova, Locally finite groups with non-nilpotent norm of non-cyclic subgroups, Bulletin of Taras Shevchenko National University of Kiev, 3, 2001, pp. 38-42.

F. М. Lyman, Т. D. Lukashova, Generalized norms of non-periodic groups, Proceedings of Francisk Scorina Gomel State University, 19, 4, 2003, pp 62-67.

A. Yu. Ol'shanskii, An infinite group with subgroups of prime orders, Mathematics of the USSR-Izvestiya, 44, 2, 1980, pp. 309-321.

Z. Shen, W. Shi, J. Zhang, Finite non-nilpotent generalizations of Hamiltonian groups, Bull. Korean. Math.Soc., 48, 6, 2011, pp. 1147-1155.

Z. Shen, J. Zhang, W. Shi, On a Generalization of HamiltonianGroups and a Dualization of PN-Groups, Communications in Algebra, 41(5), 2013, pp. 1608-1618.

F. М. Lyman, Т. D. Lukashova, On norm of infinite Abelian subgroups in non-periodic groups, ІІІ International Algebraic Conference in Ukraine, Sumy 2001, pp. 205-207.

F. М. Lyman, Т. D. Lukashova, On infinite groups with givenproperties of norm of infinite subgroups, Ukrainian Math. J., 53, 2001, pp. 625-630.

F. М. Lyman, Т. D. Lukashova, On norm of infinite cyclic subgroups in non-periodic groups, Bulletin of VSU named after P. M. Masherov, 4, 2006, pp. 108-111.

S. N. Chernikov, Groups with invariant infinite Abelian subgroups, In: Groups with restrictions for subgroups, К.: Naukova dumka, 1971, pp. 47-65.

S. N. Chernikov, Groups with given properties of systems of infinite subgroups, Ukrainian Math. J., 19, 6, 1967, pp.111-131.

Т. D. Lukashova, М. G. Drushlyak, On norm of cyclic subgroups of non-prime order in non-periodic groups, Naukovyi chasopys M. P. Dragomanov NPU, 7, 2006, pp. 72-77.

Т. G. Lelechenko, F. N. Lyman, Groups with invariant maximalAbelian subgroups of rank of non-prime order, In: Subgroup characterization of groups, К.: Math. Inst., 1982, pp. 85-92.

F. М. Lyman, Т. D. Lukashova, On infinite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups, Bulletin of Taras Shevchenko National University of Kiev, 1, 2005, pp.56-64.

Т. D. Lukashova, On norm of Abelian non-cyclic subgroups in infinite locally finite p-groups (р2), Bulletin of Taras Shevchenko National University of Kiev, 3, 2004, pp. 35-39.

F. М. Lyman, р-groups, all Abelian non-cyclic subgroups of which are invariant, Doklady AN USSR, 8, 1968, pp. 696-699.

F. М. Lyman, Periodic groups, all Abelian non-cyclic subgroups of which are invariant, In: Groups with restrictions on subgroups, К.: Naukova dumka, 1971, pp. 65-96.

F. М. Lyman, Non-periodic groups, all Abelian non-cyclic subgroups of which are invariant, Doklady AN USSR, 1, 1969, pp. 11-13.

М. G. Drushlyak, Finite p-groups ( ) with non-Abelian norm of Abelian non-cyclic subgroups, Proceedings of Francisk Scorina Gomel State University, 58, 1, 2010, pp. 192-197.

F. М. Lyman, Т. D. Lukashova, М. G. Drushlyak, Finite 2-groups with non-cyclic center and non-Dedekind norn of Abelian non-cyclic subgroups, Bulletin of Taras Shevchenko National University of Kiev, 1, 2012, pp. 26-32.

F. N. Lyman, Т. D. Lukashova, Infinite locally finite groups with locally nilpotent non-Dedekind norm of Abelian non-cyclic subgroups, Bulletin of VSU named after P. M. Masherov, 6(72), 2012, pp. 5-12.

М. G. Drushlyak, On norm of Abelian non-cyclic subgroups in non-periodic groups, Bulletin of Taras Shevchenko National University of Kiev, 1, 2009, pp. 14-18.

F. N. Lyman, М. G. Drushlyak, On non-periodic groups without free Abelian subgroups of rank 2 with non-Dedekind norm of Abelian non-cyclic subgroups, Bulletin of University of Dnipropetrovsk, 16, 2011, pp. 83-97.

F. N. Lyman, Т. D. Lukashova, On norm of decomposable subgroups in locally finite groups, Ukrainian Math. J., 67, 4, 2015, pp. 480-488.

F. М. Lyman, Groups, all decomposable subgroups of which are invariant, Ukrain. Math. J., 22, 6, 1970, pp.725-733.

F. N. Lyman, Т. D. Lukashova, On norm of decomposable subgroups in non-periodic groups, Ukrainian Math. J., 67, 12, 2015, pp. 1679-1689.

G. М. Romalis, N. F. Sesekin, On metahamiltonian groups I, Math. Notes of Ural University, 5, 3, 1966, pp. 45-49.

N. F. Sesekin, G. М. Romalis, On metahamiltonian groups II, Math. Notes of Ural University, 6, 5, 1968, pp. 50-53.

G. М. Romalis, N. F. Sesekin, On metahamiltonian groups III, Math. Notes of Ural University, 7, 3, 1970, pp. 195-199.

V. T. Nagrebeckiĭ, Finite non-nilpotent groups, evry non-Abelian subgroups of which is invariant, Math. Notes of Ural University, 1, 1967, pp.80-88.

А. A. Makhnev, On finite metahamiltonian groups, Math. Notes of Ural University, 1, 1976, pp.60-75.

S. N. Chernikov, Groups with given properties of system of subgroups, М.: Nauka, 1980.

М. F. Kuzennyi, М. M. Semko, Metahamiltonian groups and their generalizations, К: Math. Inst. NAS Ukraine, 1996.

Yu. M. Gorchakov, Groups with finite classes of conjugate elements, М.: Nauka, 1978.


Refbacks

  • There are currently no refbacks.