Normally \(\zeta\)-reversible profinite groups
Abstract
We examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally \(\zeta\)-reversible. We conjecture that these groups are pronilpotent and we prove this conjecture if \(G\) is a normally \(\zeta\)-reversible satisfying one of the following properties: \(G\) is prosoluble, \(G\) is perfect, all the nonabelian composition factors of \(G\) are alternating groups.
Keywords
Full Text:
PDFReferences
begin{thebibliography}
bibitem{boston} N. Boston, A probabilistic generalization of the Riemann zeta function, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) 138 (1996), 155--162.
bibitem{ventuno} F. Buekenhout, Good contributors to the order of the finite simple groups, Arch. Math. (Basel) 44 (1985), no. 4, 289--296.
bibitem{ventitre} J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985.
bibitem{zetarev} E. Damian and A. Lucchini, Profinite groups in which the probabilistic zeta function coincides with the subgroup zeta function, J. Algebra 402, 92-119 (2014).
bibitem{GSS} F. Grunewald, D. Segal and G.C. Smith, {Subgroups of finite index in nilpotent groups}, Invent. Math. {93} (1988), no.~1, 185--223.
bibitem{moltprof} E. Detomi and A. Lucchini, {Profinite groups with multiplicative probabilistic zeta function}, J. London Math. Soc. (2) {70} (2004), no.~1, 165--181.
bibitem{due} E. Detomi and A. Lucchini, Some generalizations of the probabilistic zeta function, Ischia group theory 2006, 56--72, World Sci. Publ., Hackensack, NJ, 2007.
bibitem{diciannove} D. Gorenstein, Finite simple groups. An introduction to their classification. University Series in Mathematics. Plenum Publishing Corp., New York, 1982.
bibitem{hall} P. Hall, {The eulerian functions of a group}, Quart. J. Math. (1936), no.~7, 134--151.
bibitem{venti} I. M. Isaacs, Character theory of finite groups. Pure and Applied Mathematics, No. 69. Academic Press, New York-London, 1976.
bibitem{sette} W. Kimmerle, R. Lyons, R. Sandling and D. N. Teague, Composition factors from the group ring and Artin's theorem on orders of simple groups, Proc. London Math. Soc. (3) 60 (1990), no. 1, 89--122.
bibitem{ventidue} V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418--443.
bibitem{L:mobius} A. Lucchini, Profinite groups with nonabelian crowns of bounded rank and their probabilistic zeta function, Israel J. Math. 181 (2011), 53--64.
bibitem{otto} J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28, (1952). 177--181.
bibitem{pfg} A. Mann, {Positively finitely generated groups}, Forum Math. {8} (1996), no.~4, 429--459.
bibitem{diciassette} C. E. Praeger and J. Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), no. 4, 303--307.
bibitem{sz} G. Seitz and A. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups II, J. Algebra 158 (1993), no. 1, 233--243.
bibitem{diciotto} P. H. Tiep, Low dimensional representations of finite quasisimple groups, Groups, combinatorics and geometry (Durham, 2001), 277--294, World Sci. Publ., River Edge, NJ, 2003.
bibitem{wa1} A. Wagner, The faithful linear representation of least degree of $S_n$ and $A_n$ over a field of characteristic 2. Math. Z. 151 (1976), no. 2, 127--137.
bibitem{wolf} T. R. Wolf, Solvable and nilpotent subgroups of $GL(n,q^m)$. Canad. J. Math. 34 (1982), no. 5, 1097--1111.
bibitem{quindici} K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265--284.
end{thebibliography}
Refbacks
- There are currently no refbacks.