Free abelian dimonoids

Yurii Zhuchok

Abstract


We construct a free abelian dimonoid and describe
the least abelian congruence on a free dimonoid. Also we show
that free abelian dimonoids are determined by their endomorphism
semigroups.


Keywords


free abelian dimonoid, abelian dimonoid, congruence, endomorphism semigroup.

Full Text:

PDF

References


Loday J.-L., Dialgebras, in: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7-66.

Kinyon M.K., Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), no. 1, 99-114.

Liu K., The Generalizations of groups, Research Monographs in Math. 1, 153 Publishing: Burnaby, 2004.

Pirashvili T., Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169-183.

Zhuchok Yu.V., Representations of ordered dimonoids by binary relations, Asian-European J. Math. 07 (2014), 1450006-1-1450006-13.

Zhuchok A.V., Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196-208.

Zhuchok A.V., Free commutative dimonoids, Algebra and Discrete Mathematics 9 (2010), no. 1, 109-119.

Zhuchok A.V., Free normal dibands, Algebra and Discrete Math. 12 (2011), no. 2, 112-127.

Zhuchok A.V., Free (lr; rr)-dibands, Algebra Discrete Math. 15 (2013), no. 2, 295-304.

Birkho G., On the structure of abstract algebras, Proc. Cambr. Phil. Soc. 31 (1935), 433-454.

Felipe R., Generalized Loday algebras and digroups, Comunicaciones del CIMAT, no. I-04-01/21-01-2004.

Ulam S.M., A Collection of Mathematical Problems, Interscience Publishers, New York, 1960. MR22:10884

Plotkin B.I., Seven Lectures on the Universal Algebraic Geometry, Preprint, In-

stitute of Mathematics, Hebrew University, 2000.

Formanek E., A question of B. Plotkin about the semigroup of endomorphisms of a free group, Proc. American Math. Society 130 (2001), 935{937. MR2002h:20032

Mashevitsky G., Schein B.M., Automorphism of the endomorphism semigroup

of a free monoid or a free semigroup. Proceedings of the AMS 131 (2003), no. 6, 1655-1660.

Zhuchok Yu.V., The endomorphism semigroup of a free dimonoid of rank 1, Bul. Acad. Stiinte Repub. Mold. Mat. 76 (2014), no. 3, 30-37.


Refbacks

  • There are currently no refbacks.