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Alfred Lvovich Shmelkin

(12.06.1938 – 22.12.2015)

With deep sorrow and regret we learnt about the death on December 22,
2015 of our colleague, Alfred Lvovich Shmelkin, a prominent algebraist,
Honoured Professor of Lomonosov Moscow State University and member
of ADM editorial board over the past thirteen years.

Alfred L. Shmelkin was born on June 12, 1938 in Moscow. In 1956
he began his studies at Moscow State University. He graduated in 1961
from the Department of Mathematics and Mechanics. For the next three
years he was a PhD student of J.N. Golovin. In 1964 A.L. Shmelkin
defended his PhD thesis in Algebra and three years after, in 1967, he
got a degree of Doctor of Science for his dissertation entitled “Products
of group varieties”. In 1972, by the age of 32, he already became a full
Professor at the Department of Higher Algebra of the Lomonosov Moscow
State University.



D Alfred Lvovich Shmelkin (12.06.1938 – 22.12.2015)

Professor Shmelkin devoted his life to science and teaching. As the
founder and leader of the world famous school on group varieties, he
made a great contribution to the theory of group varieties and infinite di-
mensional Lie algebras. His main results, the famous Shmelkin-Neumann
Theorem, the construction of verbal wreath products and group vari-
eties of Lie type have found many applications and are widely used by
many algebraists. Known for his outstanding teaching abilities, Professor
Shmelkin shared his knowledge as a supervisor to 25 PhD students. Many
of them became recognizable mathematicians: A. Olshanskii, Yu. Bakh-
turin, Yu. Razmyslov, A. Krasilnikov, V. Spilrain, R. Stohr, holding the
degree of Doctor of Science.

We shall remember Professor Shmelkin as a talented mathematician,
a mentor, and a kind, always ready to help, warm-hearted man. He will
be greatly missed by all of us.

The Editorial Board
of Algebra and Discrete
Mathematics Journal
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Classification of L-cross-sections of the finite
symmetric semigroup up to isomorphism

Eugenija Bondar∗

Communicated by V. Mazorchuk

Abstract. Let Tn be the symmetric semigroup of full trans-
formations on a finite set with n elements. In the paper we give
a counting formula for the number of L-cross-sections of Tn and
classify all L-cross-sections of Tn up to isomorphism.

Introduction

Let ρ be an equivalence relation on a semigroup S. A subsemigroup S′

of S is called a ρ-cross-section of S provided that S′ contains exactly one
representative from each equivalence class of ρ. Thus, the restriction ρ to
the subsemigroup S′ is the identity relation. It is natural to investigate
the cross-sections with respect to equivalences related somehow to the
semigroup operation: Green’s relations, conjugacy and various congruences.
In general, a semigroup need not to have a ρ-cross-section. It is possible,
for example, that a semigroup S has an R-cross-section, while L-cross-
sections of S do not exist at all. Thus, the existence of cross-sections of a
given semigroup is an essential and non-obvious fact.

The transformation semigroups are classical objects for investigations
in semigroup theory (see [1]). For the full finite symmetric semigroup Tn,
all H- and R-cross-sections have been described in [3]. It has been proved

∗The author acknowledges support from the Ministry of Education and Science of
the Russian Federation, project no. 1.1999.2014/K, and the Competitiveness Program
of Ural Federal University.

2010 MSC: 20M20.
Key words and phrases: symmetric semigroup, cross-section, Green’s relations.



2 Classification of L-cross-sections of Tn

that there exists a unique R-cross-section up to isomorphism. A pair of
non-isomorphic L-cross-sections of T4 has been constructed in [4]. The
author has obtained a description of the L-cross-sections of Tn in [5] (see
Theorem 1).

In the present paper we continue to investigate L-cross-sections of Tn.
We give necessary information in Section 1. Section 2 is devoted to some
additional definitions. In Section 3 we show how to count all different
L-cross-sections of Tn (Theorem 2). In Section 4 we classify all L-cross-
sections up to isomorphism (Theorem 3).

1. Preliminaries

For any nonempty set X, the set of all transformations of X into
itself, written on the right, constitutes a semigroup under the composition
x(αβ) = (xα)β for all x ∈ X. This semigroup is denoted by T(X)
and called the symmetric semigroup. If |X| = n, then the symmetric
semigroup T(X) is also denoted by Tn. We write idX for the identity
transformation on X, and cx for the constant transformation whose image
is the singleton {x}, x ∈ X. For the image of a transformation α ∈ Tn

we write im (α). The cardinality | im (α)| of the image of α is called the
rank of this transformation and is denoted by rk (α). The kernel of α is
denoted by kerα. Recall that kerα = {(a, b) ∈ X ×X | aα = bα}. If X ′

is a subset of X, then α|X′ is the restriction α to X ′. We will assume X
is finite. As the nature of elements of X is not important for us, suppose
further that X = {1, 2, . . . , n}.

We recall that two elements in a semigroup S are called L-equivalent
provided that they generate the same principal left ideal in S. Transforma-
tions α, β ∈ Tn are L-equivalent if and only if im (α) = im (β) (see e.g. [2]).
The last means that an L-cross-section of Tn contains exactly one trans-
formation with the image M for each nonempty M ⊆ X. We will use the
last fact frequently. Suppose further that L is an L-cross-section in Tn.

First we isolate two trivial cases:
(i) L = {c1 = idX}, if n = 1;
(ii) L = {idX , c1, c2}, if n = 2.

For the rest of the paper we may and will assume that n > 3.
In order to present our description of L-cross-sections for an arbitrary

finite Tn [5], we need following definitions.
Let X be a nonempty finite set and let < be a strict total order on X.

We define a strict order ≺ on the family of all nonempty subsets of X by:
A ≺ B if for all a ∈ A and all b ∈ B, a < b.
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Denote by {1, 2}+ the free semigroup of words over the alphabet {1, 2},
and by {1, 2}∗ the free monoid over {1, 2}, with 0 as the empty word.
Recall, that a subsequence of b ∈ {1, 2}∗ is a word a that can be derived
from b by deleting some symbols without changing the order of the
remaining symbols. If a is a subsequence of b we will write a ⊆ b.

Definition 1. Let X be a finite set (possibly empty) and let < be a
strict total order on X. An indexed family {Aa}a∈{1,2}∗ of subsets of X
is called a Γ-family over (X,<) if for every a ∈ {1, 2}∗:

(a) A0 = X;
(b) if |Aa| 6 1, then Aa1 = Aa2 = ∅;
(c) if |Aa| > 1, then Aa1 and Aa2 are nonempty with Aa1 ≺ Aa2 and

Aa = Aa1 ∪Aa2.

We will say that {Aa}a∈{1,2}∗ is a Γ-family overX if {Aa}a∈{1,2}∗ is a Γ-
family over (X,<) for some strict total order < on X (necessarily unique).
For simplicity, we will write Γ = {Aa} instead of Γ = {Aa}a∈{1,2}∗ .

Recall that a tree is a connected graph without cycles. A full binary
tree is defined as a tree in which there is exactly one vertex of degree two
(referred to as the root) and each of the remaining vertices is of degree
one or three. Vertices of degree one are called leaves. Each vertex except
the root has a unique parent, that is, the vertex connected to it on the
path to the root. A child of a vertex v is a vertex of which v is the parent.
Thus, in a full binary tree each vertex v either is a leaf or has exactly two
children that we refer to as the left child of v and the right child of v.

It is easy to see that every Γ-family Γ = {Aa} over a nonempty set
can be represented by a rooted full binary tree T (Γ) whose vertices are
the nonempty sets from {Aa} and a pair {Aa, Ab}, for a, b ∈ {1, 2}∗, is
an edge if and only if a = bi or b = ai, where i ∈ {1, 2} (see Fig. 1). For
the full binary tree that represents a Γ-family Γ, we will write Γ instead
of T (Γ), and refer to the tree as a Γ-tree.

A0 = X

A1

A11

A111 A112

A12

A2

A21

A211 A212

A22

A221 A222

Figure 1. A Γ-tree.
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Definition 2. A Γ-family Γ = {Aa} over (X,<) is called an L-family
over (X,<) if for all a, b ∈ {1, 2}∗ and all i, j ∈ {1, 2} with i 6= j,

|Aaijb| 6 |Aajb|. (1)

We will say that {Aa}a∈{1,2}∗ is an L-family over X if {Aa}a∈{1,2}∗ is
an L-family over (X,<) for some strict total order < on X.

Example 1. Let {1, 2, 3, 4, 5} be naturally ordered. Consider the following
Γ-family {Aa} (see Fig. 2).

A0 = {1, 2, 3, 4, 5}

A1 = {1, 2}

A11 = {1} A12 = {2}

A2 = {3, 4, 5}

A21 = {3} A22 = {4, 5}

A221 = {4} A222 = {5}

Figure 2. Γ-family {Aa}.

This Γ-family satisfies condition (2) for all a, b ∈ {1, 2}∗ and all
i, j ∈ {1, 2} with i 6= j, hence {Aa} is an L-family by definition.

Figure 3 shows a Γ-family {Ba} that does not satisfy condition (2)
since |B21| > |B1|.

B0 = {1, 2, 3, 4, 5}

B1 = {1} B2 = {2, 3, 4, 5}

B21 = {2, 3}

B211 = {2} B212 = {3}

B22 = {4, 5}

B221 = {4} B222 = {5}

Figure 3. Γ-family {Ba}.

Let Γ be an L-family of subsets of X, M ⊆ X and M 6= ∅. Our
aim now is to construct a map αAa

M : Aa → M with im (αAa
M ) = M .

We construct this map inductively using partial transformations, whose
domains go through vertices of a Γ-tree bottom up. For the domain of a
partial transformation f we write dom (f).
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For functions f and g with disjoint domains, we denote by f ∪ g the
union of f and g (viewed as sets of pairs). In other words, if h = f ∪ g,
then dom (h) = dom (f) ∪ dom (g) and for all x ∈ dom (h), xh = xf if
x ∈ dom (f), and xh = xg if x ∈ dom (g).

Definition 3. Let Γ = {Aa} be an L-family over X and let M ⊆ X with
M 6= ∅. Denote by 〈M〉 the intersection of all Ac ∈ Γ such that M ⊆ Ac,
and note that 〈M〉 = Ab for some b ∈ {1, 2}∗. For every a ∈ {1, 2}∗, we
define the mapping αAa

M inductively as follows:
(a) if Aa = ∅ then αAa

M = ∅ (empty mapping);
(b) if M = {m} and Aa 6= ∅, then dom (xαAa

M ) = Aa and xαAa
M = m

for every x ∈ Aa;
(c) if |M | > 1 and Aa 6= ∅, then αAa

M = αAa1
M∩Ab1

∪ αAa2
M∩Ab2

.

Lemma 1. Let Γ = {Aa} be an L-family over X. If M ⊆ Aa or Aa 6= ∅
and M ∩Aa = ∅ then dom (xαAa

M ) = Aa and im (xαAa
M ) = M .

Proof. The proof is by induction on |M |. If M = {m}, then the statement
is true by (b) of Definition 3. Let |M | > 1 and suppose the statement is
true for every M ′ with 1 6 |M ′| < |M |. Assume M ⊆ Aa or Aa 6= ∅ and
M ∩Aa = ∅. By (c) of Definition 3, αAa

M = αAa1
M∩Ab1

∪ αAa2
M∩Ab2

. Consider
two possible cases.

Case 1. M ⊆ Aa. Then Ab ⊆ Aa since Ab is the intersection of all Ac
such that M ⊆ Ac. If Ab = Aa then

M ∩Ab1 = M ∩Aa1 ⊆ Aa1,

M ∩Ab2 = M ∩Aa2 ⊆ Aa2,

and |M ∩Ab1|, |M ∩Ab2| < |M | (since 〈M〉 = Ab). Thus, by the inductive
hypothesis, the statement is true for αAa1

M∩Ab1
and for αAa2

M∩Ab2
. Hence it is

true for αAa
M .

If Ab 6= Aa then, since Aa = Aa1 ∪ Aa2 and Aa1 ∩ Aa2 = ∅, we get
either Ab ⊆ Aa1 or Ab ⊆ Aa2. We may assume that Ab ⊆ Aa1. Then

M ∩Ab1 ⊆ Aa1,

(M ∩Ab2) ∩Aa2 = ∅.

Note that Aa2 6= ∅ (since M ⊆ Aa and |M | > 1) and |M ∩ Ab1|,
|M ∩ Ab2| < |M | (since 〈M〉 = Ab). Again, the statement follows by
the inductive hypothesis from αAa

M = αAa1
M∩Ab1

∪ αAa2
M∩Ab2

.
Case 2. Aa 6= ∅ and M ∩ Aa = ∅. Then (M ∩ Ab1) ∩ Aa1 = ∅ and

(M ∩Ab2) ∩Aa2 = ∅. As before, we get the statement by the inductive
hypothesis from αAa

M = αAa1
M∩Ab1

∪ αAa2
M∩Ab2

.
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Denote by LΓ
X the set of all transformations of the form αXM , where

M ⊆ X, M 6= ∅. We will denote the elements αXM also by αM .

Example 2. Let {1, 2, 3, 4, 5} be naturally ordered. We will construct
the transformation α = αM with M = {1, 2, 4, 5} for the L-family {Aa}
from Example 1. Clearly, 〈M〉 = A0, so by definition of αM

α = αA0
M = αA1

M∩A1
∪ αA2

M∩A2
= αA1

{1,2} ∪ αA2

{4,5}.

Since 〈{1, 2}〉 = A1, 〈{4, 5}〉 = A22, thus

αA1

{1,2} = αA11

{1,2}∩A11
∪ αA12

{1,2}∩A12
= αA11

{1} ∪ αA12

{2} ,

αA2

{4,5} = αA21

{4,5}∩A221
∪ αA22

{4,5}∩A222
= αA21

{4} ∪ αA22

{5} .

Thus, since A11 = {1}, A12 = {2}, A21 = {3}, and A22 = {4, 5}, we
have

α = αA11

{1} ∪ αA12

{2} ∪ αA21

{4} ∪ αA22

{5} =

(
12345
12455

)
.

The other transformations from LΓ
X can be obtained in the same way (see

[5, Example 3]).

The following theorem describes the L-cross-sections of Tn:

Theorem 1 ([5, Theorem 1]). For each L-family Γ of X, the set LΓ
X

is an L-cross-section of the symmetric semigroup Tn. Conversely, every
L-cross-section of the symmetric semigroup Tn is given by LΓ

X for a
suitable L-family Γ on X.

2. Alternative definition of L-family

Since the definition of an L-family may seem difficult to use and
understand, we try to find a way to make it easy and more visual. We
state a new definition in Proposition 1. But first we need some preparation.

Definition 4. Let Γ1, Γ2 be the full binary trees that represent Γ-families
{Aa} over X1 and {Ba} over X2 respectively. We say that Γ1 is less than
or equal to Γ2, written Γ1 6 Γ2, if |Aa| 6 |Ba| for all a ∈ {1, 2}∗.

Let Γ = {Aa}a∈{1,2}∗ be a Γ-family over X. For every a ∈ {1, 2}∗,
denote by Γ(a) the family {Bb}b∈{1,2}∗ of subsets of Aa such that Bb = Aab
for each b ∈ {1, 2}∗. It is clear that Γ(a) is a Γ-family over the set Aa and
that, if Aa 6= ∅, then Γ(a) is represented by the subtree Γ(a) of the full
binary tree Γ with the root Aa.
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Definition 5. Let Γ be a Γ-tree. For all a ∈ {1, 2}∗ and i ∈ {1, 2}, we
call the tree Γ(a) the parent tree of the subtree Γ(ai). We will say that Γ
is monotone if for all a ∈ {1, 2}∗ and i ∈ {1, 2}, Γ(ai) 6 Γ(a).

Proposition 1. A Γ-tree Γ with root X represents an L-family over X
if and only if Γ is monotone.

Proof. Necessity. Suppose that a Γ-tree Γ with root X represents an
L-family over X and let a ∈ {1, 2}∗. We aim to prove that Γ(a1) 6 Γ(a).
If |Aa1| = 1, then it is clear that Γ(a1) 6 Γ(a). Let |Aa1| > 1. To prove
Γ(a1) 6 Γ(a) we show first Γ(a12) 6 Γ(a2) and then Γ(a11) 6 Γ(a1).

Let Γ(a12) represent {Bb} and let Γ(a2) represent {Cb}. Then, for
every b ∈ {1, 2}∗,

|Bb| = |Aa12b| 6 |Aa2b| = |Cb|,

where 6 follows by (2). Thus, Γ(a12) 6 Γ(a2).

To prove that Γ(a11) 6 Γ(a1), denote by {Bb} and {Cb} the L-families
that are represented by Γ(a11) and Γ(a1), respectively. Denote by k, k > 0,
the empty word 0 if k = 0 and 11 . . . 1︸ ︷︷ ︸

k

∈ {1, 2}∗ if k > 1. Then, for every

b ∈ {1, 2}∗, if b = k, k > 0, then

|Bb| = |Aa11k| 6 |Aa1k| = |Cb|,

since Aa11k ⊂ Aa1k; and if b = k2c (k > 0, c ∈ {1, 2}∗), then

|Bb| = |Aa11k2c| 6 |Aa1k2c| = |Cb|,

where 6 follows by (2).

Now, since |Aa1| < |Aa|, Γ(a11) 6 Γ(a1) and Γ(a12) 6 Γ(a2), we
get Γ(a1) 6 Γ(a). In dual way, one can show that Γ(a2) 6 Γ(a). So any
subtree of Γ is less than or equal to the parent tree of this subtree, thus
Γ is monotone.

Sufficiency. Let a ∈ {1, 2}∗ and i, j ∈ {1, 2} with i 6= j. Let the
subtrees Γ(ai) and Γ(a) of Γ represent {Bb}b∈{1,2}∗ and {Cb}b∈{1,2}∗ ,
respectively. Since Γ(ai) 6 Γ(a),

|Aaijb| = |Bjb| 6 |Cjb| = |Aajb|.

Hence (2) holds, that is, Γ is an L-family.
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Definition 6. For n ∈ N we will write Γn to mean an L-family over
a set with n elements. Let Γn = {Aa} be an L-family with n > 2. Let
s, t ∈ {1, 2, . . . , n} with s+ t 6 n. We denote by Qs,t the set of all pairs
(Γs,Γt) of L-families Γs and Γt such that:

(a) Γs = Γn(a) and Γt = Γn(b) for a, b ∈ {1, 2}∗ such that Aa∩Ab = ∅;
(b) if s > 1 then Γs(2) 6 Γt, and if t > 1 then Γt(1) 6 Γs.

Example 3. Figure 4 shows a pair of L-families (Γ4, Γ5) that does not
belong to Q4,5. To simplify the picture we denote the nodes of the trees
by their cardinalities.

Γ4 : 4

1 3

1 2

1 1

Γ5 : 5

3

2

1 1

1

2

1 1

Γ5(1) : 3

2

1 1

1

Γ4(2) : 3

1 2

1 1

Figure 4. Γ4 and Γ5 such that (Γ4, Γ5) /∈ Q4,5.

As the picture shows, Γ4 and Γ5(1) do not satisfy the condition
Γ5(1) 6 Γ4 (2 > 1 in the first position). However, Γ5 and Γ4(2) satisfy
the condition Γ4(2) 6 Γ5.

Fix a total order < on an n-element set X and denote by Qn the
number of L-families over X.

Proposition 2. The number Qn of all distinct L-families Γ on the totally
ordered set (X,<), with |X| = n, is given by the formula:

Q1 = 1, Qn =
∑

s,t
s+t=n

|Qs,t| if n > 2.

Proof. Obviously, Q1 = 1. Let n > 2. Let Γn be an L-family over (X,<)
and let Γs = Γn(1) and Γt = Γn(2). It is clear that s + t = n. Using
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Proposition 1, we get Γs 6 Γn, Γt 6 Γn, whence Γs(2) 6 Γt, Γt(1) 6 Γs and
thus (Γs,Γt) ∈ Qs,t. It is then clear that the mapping Γn → (Γn(1),Γn(2))
is a bijection from the set of L-families over (X,<) onto the union of the
sets Qs,t with s+ t = n.

Second variant of proof, using the first definition of an L-family (con-
dition (2)): Since Γn is an L-family, if |A1| > 1 then |A12b| 6 |A2b| for all
b ∈ {1, 2}∗, therefore Γs(2) 6 Γt. Analogously we obtain Γt(1) 6 Γs.

Thus, Γs,Γt ∈ Qs,t and Qn =
∑
s+t=n |Qs,t|, for n > 2.

We give the initial values of Qn, n ∈ N below. To calculate them we
have used a computer programm.

n 1 2 3 4 5 6 7 8 9 10

Qn 1 1 2 3 6 10 18 32 58 101

3. The number of L-cross-sections of Tn

Suppose a ∈ {1, 2}∗ is an arbitrary word. The word obtained from a
by replacing each 1 by 2 and each 2 by 1, is denoted by ā.

Definition 7. Let Γ1 = {Aa}, Γ2 = {Ba} be L-families over X1 and X2,
respectively. We say that Γ1 and Γ2 are similar if

∀a ∈ {1, 2}∗ |Aa| = |Ba| or ∀a ∈ {1, 2}∗ |Aa| = |Bā|.

The similarity of L-families Γ1 and Γ2 is denoted by Γ1 ∼ Γ2.

The relation of similarity is clearly an equivalence and partitions the
set of all L-families over the n-element set into disjoint equivalence classes.

Lemma 2. Let <1, <2 be strict total orders on X, Γ1 = {Aa}, Γ2 = {Ba}
be arbitrary L-families over (X,<1) and (X,<2), respectively. If L1 = LΓ1

<1
,

L2 = LΓ2
<2

are corresponding L-cross-sections of Tn, then L1 = L2 if and
only if one of the following conditions is satisfied:

(i) Γ1 = Γ2 (i. e. Γ1 ∼ Γ2 and <1 = <2);

(ii) Γ1 ∼ Γ2 and <2 = <−1
1 .

Proof. Sufficiency. Obviously (i) implies L1 = L2. Suppose (ii) holds.
Then Aa = Ba for all a ∈ {1, 2}∗. To prove that L1 = L2, it suffices to show

that αAa
M = α

Ba
M for all a ∈ {1, 2}∗ and M ⊆ X with M 6= ∅. We proceed

by induction on |M |. Let M = {m}. If Aa = ∅, then Ba = Aa = ∅, and
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so αAa
M = ∅ = α

Ba
M . If Aa 6= ∅ then dom (αAa

M ) = Aa = Ba = dom (α
Ba
M )

and for all x in the common domain, xαAa
M = m = xα

Ba
M , which implies

αAa
M = α

Ba
M .

Let |M | > 1 and suppose that the statement is true for all M1 ⊆ X

with |M1|<M . Again, if Aa = ∅, then Ba=Aa=∅, and so αAa
M =∅=α

Ba
M .

Suppose that Aa 6=∅ and let 〈M〉 = Ab, b ∈ {1, 2}∗. Then Bb = Ab = 〈M〉,
and so

αAa
M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
,

αBā
M = αBā1

M∩Ab̄1
∪ αBā2

M∩Ab̄2
= α

B
a2

M∩A
b2

∪ α
B

a1
M∩A

b1
.

By the inductive hypothesis, αAa1
M∩Ab1

= α
B

a1
M∩A

b1
and αAa2

M∩Ab2
= α

B
a2

M∩A
b2

.

Thus αAa
M = αBā

M .

Necessity. Let L1 = L2. According to [5, Corollary 4], Γ1 and⋃
α∈L1

X/ kerα coincide as unindexed families of sets. The same result is
true for Γ2 and L2. Since L1 = L2, it follows that Γ1 and Γ2 are the same
as unindexed families of sets.

If <1 = <2, then Γ1 and Γ2 coincide as L-families, so (i) holds. Suppose
<2 = <−1

1 . Then Aa = Ba for all a ∈ {1, 2}∗, which implies Γ1 ∼ Γ2, so
(ii) holds.

To complete the proof we show that in all other cases one gets a
contradiction. Let <1 6= <2 6= <1

−1. Since Γ1 and Γ2 are the same
as unindexed families of sets, we have either A1 = B1 and A2 = B2 or
A1 = B2 and A2 = B1. First suppose that Ai = Bi, i ∈ {1, 2}. Let

x, y ∈ X such that x <1 y, y <2 x. Then
(
A1 A2
x y

)
∈ L1,

(
B1 B2
y x

)
=

(
A1 A2
y x

)
∈ L2 and we get a contradiction with L1 = L2.

Suppose now that A1 = B2, A2 = B1. Let x, y ∈ X such that x <1 y

and x <2 y. In this case we have
(
A1 A2
x y

)
∈ L1,

(
B1 B2
x y

)
=
(
A2 A1
x y

)
∈ L2.

The last is impossible since L1 = L2.

Theorem 2. The number of different L–cross-sections in the semigroup
Tn, n > 2, equals Qn · n!

2 .

Proof. Let AΓ and AL be the sets of L-families over X and L-cross-
sections in Tn, respectively. Since there are n! strict orders on X and
Qn L-families for each strict order <, |AΓ| = Qn · n! . Define a mapping
ω : AΓ → AL by Γω = LΓ. By Theorem 1, ω is onto. Suppose that
Γ1ω = Γ2ω with Γ1 6= Γ2. Let Γ1 = {Aa} and Γ2 = {Ba}. By Lemma 2,
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we have Ba = Aā for every a ∈ {1, 2}. Thus ω is two-to-one, and so

|AL| = |AΓ|
2 = Qn · n!

2 .

4. The classification of L-cross-sections of Tn

up to isomorphism

It is well known that not all L-cross-sections in semigroup T(X) are
isomorphic to each other (see [4]). We now investigate when two L-families
correspond to isomorphic L-cross-sections. Throughout this section let
L1 and L2 be two L-cross-sections of T(Xn); Γ1 = {Aa}, Γ2 = {Ba} be
the L-families associated with L1 and L2, i. e. L1 = LΓ1

X and L2 = LΓ2
X .

Note that if |X| 6 3 all the possible L-cross-sections are isomorphic
and all the possible L-families are similar. The following is true for an
arbitrary finite set X.

Lemma 3. If Γ1 ∼ Γ2, then L1
∼= L2.

Proof. If |Aa| = |Ba|, for all a ∈ {1, 2}∗, then set

θ : Γ1 → Γ2 : Aa 7→ Ba

and if |Aa| = |Bā| for all a ∈ {1, 2}∗, then set

θ : Γ1 → Γ2 : Aa 7→ Bā.

Without loss of generality we can assume that |Aa| = |Ba|, for all
a ∈ {1, 2}∗. Let x, y ∈ X be arbitrary elements and Aa = {x}, Aa ∈ Γ1,
a ∈ {1, 2}∗. Set

ψ : X → X : x 7→ y ⇔ Aaθ = {y}.

It is clear that this mapping is a bijection, and for all a ∈ {1, 2}∗, we
have Aaψ = Aaθ, where Aaψ = {xψ | x ∈ Aa}. Let

τ : L1 → L2 : ϕ 7→ ϕ′ = ψ−1ϕψ.

Now we verify that ϕ′ ∈ LΓ2
X . To be more precise, we show that ϕ′ =

α(imϕ)ψ for ϕ ∈ L1 with ϕτ = ϕ′. Let a ∈ {1, 2}∗ be an arbitrary element
such that Aa 6= ∅. Consider the image of Ba under the map ϕ′. Since ψ
is a bijection, we have

〈Baϕ
′〉 = 〈(Aaψ)(ψ−1ϕψ)〉 = 〈Aa(ϕψ)〉 = 〈(Aaϕ)ψ〉. (2)
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We denote byM the image of ϕ, so ϕ=αM . LetM={m1,m2, . . . ,mk}
for m1,m2, . . . ,mk ∈ X. By definition of αM we have

αM = α
Ab1

{m1} ∪ α
Ab2

{m2} ∪ . . . ∪ α
Abk

{mk}

for suitable b1, b2, . . . , bk ∈ {1, 2}∗. In virtue of arbitrariness of a ∈ {1, 2}∗

in (2) we obtain 〈Bbi
ϕ′〉 = 〈(Abi

ϕ)ψ〉 = 〈{miψ}〉, 1 6 i 6 k. Since Bbi, 1 6

i 6 k, are pairwise disjoint and |Bb1 ∪Bb2 ∪. . . Bbk
| = |Ab1 ∪Ab2 ∪. . . Abk

| =
|X|, we get Bb1 ∪Bb2 ∪ . . . Bbk

= X, consequently im (ϕ′) = (imϕ)ψ.
Now to prove ϕ′ = α(imϕ)ψ it suffices to show ϕ′|Ba = αBa

(Aaϕ)ψ for

all a ∈ {1, 2}∗. We proceed by induction on |(Aaϕ)ψ|. If Ba = ∅, then
ϕ′|Ba = ∅ = αBa

(Aaϕ)ψ. If |Ba| = |Aa| 6= 0 and (Aaϕ)ψ = {m} then

dom (αBa

(Aaϕ)ψ) = Ba = dom (ϕ′|Ba) and by (2)

〈im (ϕ′|Ba)〉 = 〈(Aaϕ)ψ〉 = 〈{m}〉,

thus, for all x in the common domain, xϕ′|Ba = m = xαBa

(Aaϕ)ψ, which

implies ϕ′|Ba = αBa

(Aaϕ)ψ.

Let |(Aaϕ)ψ| > 1 and suppose the statement is true for all M1 ⊆ X
with M1 6= ∅ and |M1| < |(Aaϕ)ψ|. Again, if Ba = ∅, then ϕ′|Ba = ∅ =
αBa

(Aaϕ)ψ. Suppose Ba 6= ∅, then, clearly, ϕ′|Ba = ϕ′|Ba1 ∪ ϕ′|Ba2 . By the

inductive hypothesis ϕ′|Ba1 = αBa1

(Aa1ϕ)ψ and ϕ′|Ba2 = αBa2

(Aa2ϕ)ψ. Thus

ϕ′|Ba = αBa1

(Aa1ϕ)ψ ∪ αBa2

(Aa2ϕ)ψ = αBa

(Aaϕ)ψ for all a ∈ {1, 2}∗.

Hence,

ϕ′ = αB1

(A1ϕ)ψ ∪ αB2

(A2ϕ)ψ = αB1∪B2

(A1ϕ∪A2ϕ)ψ = α(imϕ)ψ ∈ LΓ2
X .

Since αMτ = αMψ, M ⊆ X and ψ is bijective, we get τ is bijective too.
Finally, for all β, γ ∈ L1, we have

(β)τ(γ)τ = ψ−1(βγ)ψ = (βγ)τ.

To prove the converse we first need some preparations.
Let τ : L1 → L2 be an isomorphism. In both L1 and L2, the set

{cx | x ∈ X} of constant transformations is the minimum ideal. Thus,
τ maps {cx | x ∈ X} onto {cx | x ∈ X}. For x ∈ X, denote by x′ the
element of X such that cxτ = cx′ .

If Aa ∈ Γ1 and x ∈ Aa is an arbitrary fixed element, then denote
by ϕ(Aa, x) the transformation in L1 with the image (X \ Aa) ∪ {x}.
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Whenever we say that L1
∼= L2, we will assume that τ is an isomorphism

from L1 to L2.

It is clear, that if Γ1 ∼ Γ2, then |Aaθ| = |Ba| (|Aaθ̄| = |Ba|). Obviously,
if L1

∼= L2, then |Γ1| = |Γ2|. We show in following Lemma, that if L1
∼= L2,

then for every set in Γ1 there exists a unique set in Γ2 with the same
cardinality.

Lemma 4. Let L1
∼= L2. For every Aa ∈ Γ1, x ∈ Aa, the following

statements hold true:

(i) ϕ(Aa, x)|X\Aa
= idX\Aa

, ϕ(Aa, x)|Aa = cx.
(ii) there exists Ba′ ∈ Γ2 such that |Aa| = |Ba′ | and ϕ(Aa, x)τ =

ϕ(Ba′ , x′), where cxτ = cx′ .

Proof. (i) For every Aa ∈ Γ1, x ∈ Aa, consider the elements ϕ(Aa, x) ∈ L1

such that

im (ϕ(Aa, x)) = (X \Aa) ∪ {x}.

If Aa = X we get ϕ(Aa, x) = cx, and ϕ(Aa, x) = idX if |Aa| = 1.

Suppose Aa 6= X, |Aa| > 1. In this case denote subsets of Γ1 as
follows: put X = X1 ⊎ X ′

1, if Aa ⊆ X ′
1; X ′

1 = X2 ⊎ X ′
2 if Aa ⊆ X ′

2; . . .,
etc., until we get, for a natural p, that X ′

p−1 = Xp ⊎ X ′
p and Aa = X ′

p,
where C = D ⊎ E means that C = D ∪ E and D ∩ E = ∅.

In the proof of [5, Lemma 4, (ii)] it was shown that

σp =

(
X1 X2 ... Xp X′

p

x1 x2 ... xp x′
p

)
∈ L1, (3)

where x′
p ∈ X ′

p, xj ∈ Xj , 1 6 j 6 p. Since X \ Aa = X1 ∪X2 ∪ . . . ∪Xp,
and x ∈ Aa = X ′

p with X ′
p ∩Xi = ∅ for all 1 6 i 6 p, we get

im (ϕ(Aa, x)σp) = im (σp).

From ϕ(Aa, x)σp, σp ∈ L1, we obtain ϕ(Aa, x)σp = σp. The last equality is
true for every σp as in (3), which is only possible if ϕ(Aa, x)|X\Aa

= idX\Aa
,

ϕ(Aa, x)|Aa = cx.

(ii) Let x, t ∈ Aa, z ∈ X \Aa. On the one hand,

(czϕ(Aa, x))τ = czτ = cz′ and (czτ)(ϕ(Aa, x)τ) = cz′(ϕ(Aa, x)τ), (4)

so cz′(ϕ(Aa, x)τ) = cz′ . On the other hand,

(ctϕ(Aa, x))τ = cxτ = cx′ and (ctτ)(ϕ(Aa, x)τ) = ct′(ϕ(Aa, x)τ), (5)
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so ct′(ϕ(Aa, x)τ) = cx′ . Consider x′(ϕ(Aa, x)τ)−1 ∈ kerϕ(Aa, x)τ . For all
t ∈ Aa, z ∈ X \Aa we have cz′ 6= cx′ (since x 6= z), cz′(ϕ(Aa, x)τ) = cz′ ,
ct′(ϕ(Aa, x)τ) = cx′ . It follows that

x′(ϕ(Aa, x)τ)−1 = {t′ | t ∈ Aa},

and so {t′ | t ∈ Aa} ∈ X/ kerϕ(Aa, x)τ . By [5, Corollary 4], Γ2 and
∪α∈L2X/ kerα are the same as unindexed families of sets, thus there
exists Ba′ ∈ Γ2, for some a′ ∈ {1, 2}∗, with Ba′ = {t′ | t ∈ Aa}. Due
to bijectivity of τ , we have |Aa| = |Ba′ |. Furthermore, by (4) and (5),
(ϕ(Aa, x)τ)|X\Ba′

= idX\Ba′
and (ϕ(Aa, x)τ)|Ba′ = cx′ , x′ ∈ Ba′ . Hence,

ϕ(Aa, x)τ = ϕ(Ba′ , x′) and cx′ = cxτ .

Denote the set of all nonempty subsets of X by U(X).

Lemma 5. Let L1
∼= L2, ψ : U(X) → U(X) : M 7→ M ′ ⇔ αMτ = αM ′ .

The following statements hold true:
(i) for all Aa ∈ Γ1, Aaψ ∈ Γ2;
(ii) for all Aa ∈ Γ1 and β ∈ L1, (Aaβ)ψ = Aaψ(βτ).

Proof. (i) It is clear that if |Aa| = 1, then Aaψ ∈ Γ2. Let |Aa| > 1
and α = αAa ∈ L1. Let x ∈ Aa be an arbitrary fixed element,
and ϕ(Aa, x)τ = ϕ(Ba′ , x′), Ba′ ∈ Γ2, x′ ∈ Ba′ , |Aa| = |Ba′ |. Since
αϕ(Aa, x) = cx, we have (ατ)ϕ(Ba′ , x′) = cx′ , therefore im (ατ) ⊆ Ba′ .
Suppose that rk (α) > rk (ατ) and denote by β′ the transformation from
L2 with im (β′) = Ba′ .

Let δ ∈ L1 such that im (δ) ⊆ Aa. Just as in [5, Lemma 4,(iv)] it can
be shown, that there exists γ ∈ L1 with im (γ|Aa) = im (δ). We denote
this transformation by γδ. Thus, for all δ ∈ L1 with im (δ) ⊆ Aa, there
exists γδ ∈ L1 such that δ = αγδ.

Let β = β′τ−1. Since β′ϕ(Ba′ , x′) = c′
x, it follows that

(β′ϕ(Ba′ , x′))τ−1 = βϕ(Aa, x) = cx, hence im (β) ⊆ Aa. Thus, β = αδβ,
whence β′ = (ατ)(δβτ). But

rk (β′) = rk ((ατ)(δβτ)) 6 rk (ατ) < rk (α).

The latter contradiction proves that rk (α) = rk (ατ). Hence | im (ατ)| =
|Aa| = |Ba′ | and im (ατ) ⊆ Ba′ , which implies im (ατ) = Ba′ . Thus,
αAaτ = αBa′ , hence Aaψ = Ba′ ∈ Γ2.

(ii) Suppose that Aa ∈ Γ1 and β ∈ L1. Let αAaτ = αBa′ , Ba′ ∈ Γ2.
Denote βτ by β′. Then

(αAaβ)τ = (αAaβ)τ = (αBa′ )β
′ = αAaψβ

′ = α(Aaψ)β′ ,

which implies (Aaβ)ψ = Aaψ(βτ) by the definition of ψ.



E. Bondar 15

Corollary 1. Let L1
∼= L2, ψ be the function from Lemma 5. Then, for

all Aa, Ab ∈ Γ1:
(i) |Aa| = |Aaψ|;
(ii) if Aa ⊆ Ab, then Aaψ ⊆ Abψ;
(iii) if Aa ∩Ab = ∅, then Aaψ ∩Abψ = ∅.

Proof. (i) Let Aa ∈ Γ1, x ∈ Aa, and (ϕ(Aa, x))τ = ϕ(Ba′ , x′) for Ba′ ∈ Γ2,
x′ ∈ Ba′ , with |Aa| = |Ba′ | (see Lemma 4, (ii)). The proof of Lemma 5,
(i) implies that Aaψ = Ba′ . So |Aa| = |Aaψ|.

(ii) Let Aa ⊆ Ab and z ∈ Ab be an arbitrary fixed element. Suppose
(ϕ(Ab, z))τ = ϕ(Bb′ , z′) with Bb′ ∈ Γ2, z′ ∈ Bb′ . By Lemma 4, (ii),
czτ = cz′ , consequently {z}ψ = {z′}. On the one hand,

(Aaϕ(Ab, z))ψ = {z}ψ = {z′}.

On the other hand, by Lemma 5, (ii),

(Aaϕ(Ab, z))ψ = (Aaψ)(ϕ(Ab, z)τ) = (Aaψ)ϕ(Bb′ , z′).

So (Aaψ)ϕ(Bb′ , z′) = {z′}, which is implies Aaψ ⊆ Bb′ = Abψ.
(iii) Let Aa∩Ab = ∅. Fix z ∈ Ab and let (ϕ(Ab, z))τ = ϕ(Bb′ , z′) with

Bb′ ∈ Γ2, z′ ∈ Bb′ . Suppose y ∈ Aa is an arbitrary element, and cyτ = cy′ .
By definition of ψ then we have {y}ψ = {y′}. On the one hand,

(yϕ(Ab, z))ψ = {y}ψ = {y′}, where y′ 6= z′.

On the other hand, by Lemma 5, (ii),

({y}ϕ(Ab, z))ψ = ({y}ψ)(ϕ(Ab, z)τ) = {y′}ϕ(Bb′ , z′).

So y′ϕ(Bb′ , z′) = y′, y′ 6= z′ for all y ∈ Aa. Thus

{y′ | cy′ = cyτ, y ∈ Aa} ∩Abψ = {y′ | cy′ = cyτ, y ∈ Aa} ∩Bb′ = ∅.

By (ii) of this Corollary {y′} = {y}ψ ⊆ Aaψ. Since τ is a bijection, we
have

|Aa| = |{y′ | cy′ = cyτ, y ∈ Aa}|.

By (i), we get |Aa| = |Aaψ|, thus Aaψ = {y′ | cy′ = cyτ, y ∈ Aa}. Hence
Aaψ ∩Abψ = ∅.

Now we are ready to prove

Lemma 6. If L1
∼= L2, then Γ1 ∼ Γ2.
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Proof. The result is clearly true if |X| = 1. Suppose that |X| > 2. Consider
the restriction of the function ψ from Lemma 5 to Γ1 (which we will also
call ψ). By (i) of Lemma 5, ψ : Γ1 → Γ2. It easily follows from Corollary 1
that either A1ψ = B1 and A2ψ = B2 or A1ψ = B2 and A2ψ = B1.
Suppose that A1ψ = B1 and A2ψ = B2. We will prove by induction on
|a| that for all a ∈ {1, 2}∗, Aaψ = Ba. We already know that this is true
if |a| = 1. Let k > 1 and suppose that Aaψ = Ba for every a ∈ {1, 2}∗

with |a| 6 k.
Note, that for all Tn, n ∈ N if |A1| = 1 or |A2| = 1, A1, A2 ∈ Γ1,

then the structure of Γ1 is uniquely determined in virtue of (2). Thus, if
L1 = LΓ1

X
∼= L2, then we get immediately that Γ1 ∼ Γ2.

Assume further that |A1|, |A2| > 1. We will prove by induction on |a|
that for all a ∈ {1, 2}∗ Aaψ = Ba or Aaψ = Bā.

Suppose, that condition Aaψ = Ba or Aaψ = Bā holds for all Aa ∈ Γ1,
|a| 6 k, k ∈ N. Without loss of generality set Aaψ = Ba, for all Aa ∈ Γ1,
Ba ∈ Γ2 if |a| 6 k, k ∈ N.

Let bi ∈ {1, 2}∗, |bi| = k and Abi ∈ Γ1. As has been shown in [5,
Lemma 4, (iv)], there exists a transformation γ ∈ L1 such that Abγ = Abi,
i.e., γ|Ab

= αAb
Abi

. According to Definition 3,

αAb
Abi

= αAb1
Abi∩Abi1

∪ αAb2
Abi∩Abi2

= αAb1
Abi1

∪ αAb2
Abi2

,

so Abjγ = Abij , j ∈ {1, 2}. Moreover, by the induction hypothesis, the
following conditions hold:

(αAb
γ)τ = (αAbi

)τ = αAbiψ = αBbi
,

(αAb
γ)τ = (αAb

τ)(γτ) = (αAbψ)(γτ) = αBb
(γτ).

Consequently, αBb
(γτ) = αBbi

, and so Bb(γτ) = Bbi. Since γτ ∈ L2, we

have (γτ)|Bb
= αBb

Bbi
. According to Definition 3,

αBb
Bbi

= αBb1
Bbi∩Bbi1

∪ αBb2
Bbi∩Bbi2

= αBb1
Bbi1

∪ αBb2
Bbi2

,

so Bbj(γτ) = Bbij , j ∈ {1, 2}.
Now, on the one hand, we have Abjψ(γτ)=(Abjγ)ψ=Abijψ, j∈{1, 2},

by (ii) of Lemma 5. On the other hand, using the induction hypothesis, we
get Abjψ(γτ) = Bbj(γτ) = Bbij , j ∈ {1, 2}. Thus, Abijψ = Bbij , j ∈ {1, 2}.
Since Abj is an arbitrary element with |bj| = k, we get Acψ = Bc for all
c ∈ {1, 2}∗, |c| = k + 1, Ac ∈ Γ1. So for all a ∈ {1, 2}∗ Aaψ = Ba.

In a dual way, we can prove that if A1ψ = B2 and A2ψ = B1, then
Aaψ = Bā for every a ∈ {1, 2}∗. Since |Aa| = |Aaψ| for every a ∈ {1, 2}∗

(by Corollary 1), it follows that Γ1 ∼ Γ2.
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Now Lemmas 3 and 6 yield

Theorem 3. Two L-cross-sections of Tn are isomorphic if and only if
the L-families associated with them are similar.
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condition
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Abstract. We study the problem of classifying the pairs of
linear operators A,B (acting on the same vector space), when the
both operators are potent and AB = 0. We describe the finite, tame
and wild cases and classify the indecomposable pairs of operators
in the first two of them.

Introduction

Throughout the paper, k is an algebraic closed field of characteristic
char k = 0. All k-vector space are finite-dimensional. Under consideration
maps, morphisms, etc., we keep the right-side notation.

We call a Krull-Schmidt category (i.e. an additive k-category with
local endomorphism algebras for all indecomposable objects) of tame
(respectively, wild) type if so is the problem of classifying its objects up to
isomorphism (see precise general definitions in [1]). For formal reasons
we exclude the categories of finite type (i.e. with finite number of the
isomorphism classes of indecomposable objects) from those of tame type.

In this paper we study the problem of classifying the pairs of anni-
hilating potent linear operators (an operator C is called potent or, more
precisely, s-potent if Cs = C, where s > 1).

2010 MSC: 15A21, 16G20, 16G60.
Key words and phrases: potent operator, quiver, Krull-Schmidt category, func-

tor, canonical form, tame type, wild type, Dynkin graph, extended Dynkin graph.
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Formulate our problem more precisely and in the category language.

Let P(k) denotes the category of pairs of linear operators acting
on the same k-vector space, i.e. the category with objects the triples
U = (U,A,B), consisting of a k-vector space U and linear operators A,B
on U , and with morphisms from U = (U,A,B) to U ′ = (U ′,A′,B′) the
linear maps X : U → U ′ such that AX = XA, BX = XB. Since it
is a Krull-Schmidt category, each object is uniquely determined by its
direct summands. For natural numbers n,m > 1, denote by P◦

k(n,m)
the full subcategory of P(k) consisting of all triples (U,A,B) with A
being n-potent, B being m-potent and AB = 0. Our aim is to describe
the type of every such category and to classify (up to isomorphism) the
indecomposable objects in finite and tame cases.

Theorem 1. A category P◦
k(n,m) is of

• finite type if nm < n+m+ 3,
• tame type if nm = n+m+ 3,
• wild type if nm > n+m+ 3.

With respect to the mentioned classification see section 2.

Note that from Theorems 3.1 and 3.2 of [2] it follows that without
the relation AB = 0 the corresponding overcategory Pk(n,m) is of tame
type if n = m = 2 and of wild type otherwise (see more in 3.6 below).

1. Proof of the theorem

We first establish a connection between the categories P◦
k(n,m) and

the categories of representations of quivers.

Recall the notion of representations of a quiver [3].

Let Q = (Q0, Q1) be a finite quiver (directed graph), where Q0 and
Q1 are the sets of its vertices and arrows, respectively. A representation
of the quiver Q = (Q0, Q1) over a field K is a pair R = (V, γ) formed
by a collection V = {Vx |x ∈ Q0} of K-vector spaces Vx and a collection
γ = {γα |α : x → y runs throughQ1} of linear maps γα : Vx → Vy.
A morphism from R = (V, γ) to R′ = (V ′, γ ′) is given by a collection
λ = {λx |x ∈ Q0} of linear maps λx : Vx → V ′

x, such that γαλy = λxγ
′
α

for any arrow α : x → y. The category of representations of Q = (Q0, Q1)
over K will be denoted by repK Q. It is a Krull-Schmidt category.

A quiver Q is said to be of finite, tame or wild representation type
over K if the caregory repK Q has respectively finite, tame or wild type.
By results of [3] (respectively, [4] and [5]), a connected quiver is of finite
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(respectively, tame) representation type if and only if it is a Dynkin
(respectively, extended Dynkin) graph. Note that by a Dynkin graph we
mean a Dynkin diagram with some orientation of edges, and for simplicity
denote it in the same way as the Dynkin diagram (analogously for an
extended Dynkin graph).

Now we proceed to investigate connections between categories of the
forms P◦

k(n,m) and repkQ.

We identify a linear map α of U = U1 ⊕ . . . Up into V = V1 ⊕ . . . Vq
with the matrix (αij)

p
i=1

q
j=1, where αij : Ui → Vj are the linear maps

induced by α; if p = q and the matrix is diagonal, we write α = ⊕p
i=1αi.

The identity linear operator on W is denoted by 1W .

For natural numbers n,m > 1, denote by Q(n,m) the quiver with
set of vertices Q0(n,m) = {1, 2 . . . , n+m} and set of arrows Q1(n,m) =
{i → j | j = 1, . . . , n, i = n+ 1, . . . , n+m}. The primitive root of unity
of degree s is denoted by εs.

Define the functor Gnm from repkQ(n − 1,m − 1) to P◦
k(n,m) as

follows. Gnm assigns to each object (V, γ) ∈ repkQ(n − 1,m − 1) the
object (V ⊕,Aγ ,Bγ) ∈ P◦

k(n,m) where V ⊕ = ⊕n+m−2
i=1 Vi, Aγ

ij = εin−11Vi

if i = j 6 n − 1 and Aγ
ij = 0 if otherwise, Bγn+i−1,n+i−1 = εim−11Vn+i−1

if i 6 m − 1, Bγn+i−1,j = γij if i 6 m − 1, j 6 n − 1, and Bγpq = 0 in all
other cases. Gnm assigns to each morphism λ of repkQ(m− 1, n− 1) the
morphism ⊕n+m−2

i=1 λi of P◦
k(n,m).

Proposition 1. The functor Gnm is full and faithful.

Proof. It is obvious that Gnm is faithful. Prove that it is full. Let δ be a
morphism from (V, γ)Gnm = (V ⊕,Aγ ,Bγ) to (W,σ)Gnm = (W⊕,Aσ,Bσ).
In other words, δ is a linear map of V ⊕ into W⊕ such that Aγδ = δAσ and
Bγδ = δBσ. We consider these equalities as matrix ones (see the definition
of V ⊕), and the induced by them scalar equalities (Aγδ)ij = (δAσ)ij and
(Bγδ)ij = (δBσ)ij denote, respectively, by [a, i, j] and [b, i, j].

Since εn−1, ε
2
n−1, . . . , ε

n−1
n−1 and 0 are pairwise different elements of the

field k, it follows from the equalities [a, i, j] with i, j ∈ {1, . . . , n − 1},
i 6= j, [a, i, j] with i ∈ {1, . . . , n− 1}, j ∈ {n, . . . , n+m− 2} and [a, i, j]
with i ∈ {n, . . . , n+m− 2}, j ∈ {1, . . . , n− 1} that the block (δpq)

n−1
p,q=1 of

σ (as a matrix) is diagonal and the blocks (δpq)
n−1
p=1

n+m−2
q=n , (δpq)

n+m−2
p=n

n−1
q=1

are zero. Then analogously to above, it follows from the equalities [b, i, j]
with i, j ∈ {n, . . . , n+m−2}, i 6= j, that the block (δpq)

n+m−2
p,q=n is diagonal.

Thus σ (as a matrix) is diagonal, and it is easy to see that the equalities
[b, i, j] with i ∈ {n, . . . , n + m − 2}, j ∈ {1, . . . , n − 1} means that σ =
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(σ1, . . . , σn+m−2) is a morphism between the objects (V, γ) and (W,σ) of
the category repkQ(n− 1,m− 1). Since σ = σGnm, the fullness of Gnm
is proved.

Proposition 2. Each object of P◦
k(n,m) is isomorphic to an object of

the form RGnm ⊕ (W, 0, 0), where R is an object of repkQ(n− 1,m− 1),
W is a k-vector space of dimension d > 0.

Proof. Let T = (U,A,B) be an objects of the category P◦
k(n,m). Since

the roots εn−1, . . . , ε
n−1
n−1 and 0 of the polynomial xn − x are pairwise

different, we can assume (by the theorem on the Jordan canonical form)
that U = U1⊕. . .⊕Un−1⊕U0 with Us = Ker(A−εsn−11U ) and U0 = Ker A;
then A = A1 ⊕ . . . ⊕ An−1 ⊕ A0 with As : Us → Us to be the scalar
operator εsn−11Us and A0 : U0 → U0 to be zero (here s = 1, . . . , n − 1).
From AB = 0 it follows that U1 ⊕ . . .⊕ Un−1 ∈ Ker B, and consequently
we have (since Bm = B) that the operator B0 : U0 → U0, induced
by B, satisfies the equality Bm0 = B0. Then, analogously as above, U0 =
Un⊕. . .⊕Un+m−2⊕W with Un+s−1 = Ker(B0−εsm−11U0), s = 1, . . . ,m−1,
and W = Ker B0. Besides, it follows from Bm = B that W0 ∈ Ker B.

Thus, U = U1 ⊕ . . .⊕ Un+m−2 ⊕W and now the operators A,B are
uniquely defined by the maps Bij : Ui → Uj with i and j running from
n to n+m− 2 and from 1 to n− 1, respectively. The representation R
of the quiver Q(n− 1,m− 1), corresponding to these maps, satisfies the
required condition, i. e. T = RGnm ⊕ (W, 0, 0).

Denote by P̂◦
k(n,m) the full subcategory of P◦

k(n,m) consisting of all
objects that have no objects (W, 0, 0), with W 6= 0, as direct summands.

We have as an immediate consequence of Propositions 1 and 2 the
following statement.

Theorem 2. The functor Gnm, viewed as a functor from the category
repkQ(n− 1,m− 1) to the category P̂◦

k(n,m), is an equivalence of cate-
gories.

Using this theorem it is easy to show by the standard method that
the types of categories P◦

k(n,m) and repkQ(n− 1,m− 1) coincide.

Now Theorem 1 follows from the simple facts that Q = Q(n−1,m−1)
is a Dynkin graph iff either n = 2,m = 2, 3, 4, or vice versa,n = 2, 3, 4,m =
2 (then Q = A2, A3, D4, respectively), and an extended Dynkin graph
iff either n = 2,m = 5, or vice versa, n = 5,m = 2 (then Q = D̃4), or
n = m = 3 (then Q = Ã3).
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2. The classification of the indecomposable pairs
of annihilating potent operators

The functor Gnm allows to obtain a classification of indecomposable
objects (up to isomorphism) of any category P◦

k(n,m) of finite and tame
types (see Theorem 2). To do this, it is need to take representatives of the
classes of isomorphic indecomposable objects (one from each class) of the
category repkQ with Q = Q(n− 1,m− 1) and apply to them the functor
Gnm (as a result we get all representatives of the classes of isomorphic
indecomposable objects of P◦

k(n,m), except (k, 0, 0)). Such (of the most
simple form) representatives are well-known: see [3] for Q = A2, A3, D4

(our cases of finite type) and [4, 5] for Q = Ã3, D̃4 (our cases of tame
type).

3. Remarks

3.1. All the above results are true if k is any field of characteristic 0
and εn, εm ∈ k.

3.2. All the above results are true if k is an algebraic closed field of
characteristic p 6= 0, which does not divide nm.

3.3. All the above results are true if k is as in 3.2, but does not
necessarily algebraically closed, and εn, εm ∈ k.

3.4. All the above results are true if k is an algebraic closed field of any
characteristic and A,B satisfy, respectively, polynomials ϕ(x) and ψ(x)
of degrees n and m without multiple roots such that ϕ(0) = 0, ψ(0) = 0
(without the last condition the problem is trivial).

3.5. Theorem 1 is true if k is any field of any characteristic and A,B
satisfy, respectively, any fixed separable polynomials ϕ(x) and ψ(x) of
degrees n and m such that ϕ(0) = 0, ψ(0) = 0 (see the definitions in [1]).

3.6. Classifying the pairs of idempotent operators. As the first
author pointed out, the following classification of the pairs of idempotent
operators (the objects of Pk(2, 2)) follows from [2, Section 3] and [4].

One will adhere to the matrix language. The field k is assumed to
be any algebraic closed (otherwise, it is necessary to replace the below
Jordan blocks in 1) by indecomposable Frobenius companion ones).

Let Jm(λ) denotes the (upper) m × m Jordan block with diagonal
entries λ, Em the m×m identity matrix. Define 0Em (respectively, 0Em)
as Em with added null first column (respectively, last row). For an m×m
matrix X, put X+ = X, X− = Em − X, and for a pair of m × m
matrices P = (X,Y ) and µ, ν ∈ {+,−}, put Pµν = (Xµ, Y ν). Finally,
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for matrices A,B with the same number of rows, introduce the squared
matrices

F [A,B] =

(
A B
0 0

)
, S[A,B] =

(
0 0
A B

)
.

Theorem 3. The set of all pairs of matrices over k of the forms
1) P = (F [En, En], S[Jn(λ), En]), λ ∈ k \ 0,
2) Pµν for P = (F [En, En], S[Jn(0), En]) and µ, ν ∈ {+,−},
3) Pµν for P = (F [En, 0En−1], S[0En−1, En−1]) and µ, ν ∈ {+,−},

where n runs through the natural numbers, is a complete set of pairwise
nonsimilar indecomposable pairs of idempotent matrices over k.

Note that this classification implies those of the pairs of involutory
matrices (the representations of the infinite dihedral group) if char k 6= 2.
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Normally ζ-reversible profinite groups
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Abstract. We examine (finitely generated) profinite groups
in which two formal Dirichlet series, the normal subgroup zeta
function and the normal probabilistic zeta function, coincide; we
call these groups normally ζ-reversible. We conjecture that these
groups are pronilpotent and we prove this conjecture if G is a
normally ζ-reversible satisfying one of the following properties: G
is prosoluble, G is perfect, all the nonabelian composition factors of
G are alternating groups.

Assume that G is a profinite group with the property that for each
positive integer n, G contains only finitely many open subgroups of index
n. We denote by ζG(s) the Dirichlet generating function associated with
the sequence counting the number of open subgroups of index n in G: so

ζG(s) =
∑

n∈N

an(G)

ns

where an(G) is the number of open subgroups of G of index n and s
is a complex variable. Another sequence of nonnegative integers can
be associated to G by setting bn(G) =

∑
|G:H|=n, H6oG µ(H,G), where

the Möbius function µ of the lattice of open subgroups of G is defined
recursively by µ(G,G) = 1 and

∑
H6K6oG µ(K,G) = 0 for any proper

open subgroupH <o G. Again we can consider the corresponding Dirichlet
generating function

pG(s) =
∑

n∈N

bn(G)

ns
.

2010 MSC: 20E07.
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The study of the subgroup sequence {an(G)}n and the corresponding
zeta function ζG(s) started with [5]; since then there has been an intense
research activity aiming at understanding analytical properties of subgroup
zeta functions and their local factors for finitely generated nilpotent groups.

The formal inverse of pG(s) is the probabilistic zeta function which
was first introduced and studied by A. Mann in [15] for finitely generated
profinite groups and by N. Boston in [1] in the case of finite groups.
A central role in the investigation of the properties of the probabilistic
zeta function was played by the probabilistic meaning of pG(t) when
G is a finite group and t is a positive integer: Hall in [9] showed that
pG(t) is equal to the probability that t random elements of G generate
G. In [15] Mann made a conjecture which implies that pG(s) has a
similar probabilistic meaning for a wide class of profinite groups. More
precisely, define ProbG(t) = µ(ΩG(t)), where µ is the normalised Haar
measure uniquely defined on the profinite group Gt and ΩG(t) is the set
of generating t-tuples in G (in the topological sense). We say that G is
positively finitely generated if there exists a positive integer t such that
ProbG(t) > 0. Mann considered the infinite sum

∑

H6G

µ(H,G)

|G : H|s
.

As it stands, this is not well defined, but he conjectured that this sum is
absolutely convergent if G is positively finitely generated. The Dirichlet
series pG(s) can be obtained from this infinite sum, grouping together
all terms with the same denominator so in particular Mann’s conjecture
implies that if G is positively finitely generated, then pG(s) converges in
some right half-plane and pG(t) = ProbG(t), when t ∈ N is large enough.
The second author proved in [13] that this is true if G is a profinite group
with polynomial subgroup growth. But even when the convergence is
not ensured, the formal Dirichlet series pG(s) encodes information about
the lattice generated by the maximal subgroups of G and combinatorial
properties of the probabilistic sequence {bn(G)} reflect on the structure
of G. For example in [6] it is proved that a finitely generated profinite
group G is prosoluble if and only if the sequence {bn(G)} is multiplicative.

One can ask whether and how the two formal Dirichlet series ζG(s) and
pG(s) are related. The first example that it is usually presented is when
G = Ẑ, the profinite completion of an infinite cyclic group. In this case
ζẐ(s) =

∑
n 1/ns is the Riemann zeta function, while pẐ(s) =

∑
n µ(n)/ns

and an easy application of the Möbius Inversion Formula shows that
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pẐ(s) and ζẐ(s) are one the multiplicative inverse of the other. A natural
question is whether this is a particular coincidence or a more general
phenomenon. Motivated by this question, in [4] it was introduced the
notion of ζ-reversible profinite groups: a profinite group G is said to be ζ-
reversible if and only if the formal identity pG(s)ζG(s) = 1 is satisfied. This
definition can be introduced and studied independently of the convergence
and possible analytic properties of pG(s) and ζG(s). Hence ζ-reversible only
means that

∑
rs=n ar(G)bs(G) = 0 for each n > 1 while a1(G)b1(G) = 1.

In [4] it is proved that, even when the convergence of the two series involved
is not ensured, the information that G is ζ-reversible can have useful
consequences. The results obtained in [4] indicate that ζ-reversibility
is a strong property: a ζ-reversible group must have a sort of uniform
subgroup structure, in the sense that the open subgroups, even when they
are not all isomorphic, must have a comparable structure.

In this paper, our aim is to study a corresponding property, obtained by
restricting the attention to the open normal subgroups of a profinite group
G. We assume that G is a profinite group with the property that for each
positive integer n, G contains only finitely many open normal subgroups
of index n (a sufficient, but not necessary, condition for satisfying this
property is that G is topologically finitely generated). For any n ∈ N,
let a⊳n(G) be the number of the open normal subgroups of G and let
b⊳n(G) =

∑
|G:H|=n,H�oG µ

⊳(H,G), where µ⊳ is the Möbius function in
the lattice of the open normal subgroups of G. Again the properties
of the sequences {a⊳n(G)}n∈N and {b⊳n(G)}n∈N can be encoded by the
corresponding Dirichlet generating function

ζ⊳G(s) =
∑

n∈N

a⊳n(G)

ns
and p⊳G(s) =

∑

n∈N

b⊳n(G)

ns

called, respectively, the normal subgroup zeta function and the normal
probabilistic zeta function of G. Again p⊳G(s) has a probabilistic meaning:
if G is a finite group and t ∈ N, then p⊳G(t) is the probability that
t randomly chosen elements of G generate a subgroup whose normal
closure is G (see [7, Section 3]). We will say that a profinite group G is
normally ζ-reversible if ζ⊳G(s)p⊳G(s) = 1. We conjecture that a normally
ζ-reversible profinite group is pronilpotent. An evidence for this conjecture
will be given by the following theorem, which implies in particular that a
prosoluble normally ζ-reversible profinite group is pronilpotent.
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Theorem 1. Assume that G is a normally ζ-reversible profinite group.
If there is no open normal subgroup N ⊳G such that G/N is a nonabelian
simple group, then G is pronilpotent.

Our main results are the following.

Theorem 2. A non trivial normally ζ-reversible profinite group cannot
be perfect.

Theorem 3. Let G be a normally ζ-reversible profinite group. If G is
not pronilpotent, then G has as a composition factor a nonabelian simple
group which is not an alternating group.

The proofs of the previous two theorems rely on the following result
(see Theorem 22): suppose that a normally ζ-reversible profinite group
G admits a finite nonabelian simple group as an epimorphic image; then
there exists a pair (H,T ), where H is a finite epimorphic image of G and
T is a finite nonabelin simple group, with the following properties:

1) |H| = |T |2.
2) H contains a unique minimal normal sugroup N .
3) Either H/N is nilpotent, or there exists a finite nilpotent group X

and a nonabelian simple group S such that H/N ∼= X × S. In the
latter case |T | 6 |S| and π(S) = π(T ).

With the help of the classification of the finite simple groups, we prove
that there are no pairs (H,T ) with these properties, under the additional
assumption that either H is perfect or all the nonabelian composition
factors of H are alternating groups.

1. Notations and general auxiliary results

Given an integer k and a set π of primes, kπ will be the greatest
divisors of k whose prime divisors belong to π. In particular, with a little
abuse of notation, if p is a prime we will call kp the greatest power of p
dividing k. Moreover we will say that k is a π-number if kπ = k.

Let R be the ring of formal Dirichlet series with integer coefficients.
For every set π of prime number, we consider the ring endomorphism
of R defined by:

F (s) =
∑

n∈N

an
ns

7→ Fπ(s) =
∑

n∈N

a∗
n

ns

where a∗
n = an if n is a π-number, a∗

n = 0 otherwise.
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An element F (s) =
∑
n an/n

s ∈ R is said to be multiplicative if
ars = aras whenever (r, s) = 1 (equivalently F (s) coincides with the
infinite formal product

∏
p Fp(s)of its p-local factors). It can be easily

proved that if F (s) is multiplicative, then also the formal inverse F (s)−1

is multiplicative.

During our proofs we will need information about the “prime gap”.
For our purpose the following result will suffice.

Lemma 4. For every integer n > 5, n /∈ {6, 10}, there exist two primes
p, q such that n

2 < p < q 6 n.

This lemma is in fact a corollary of a more complete result, proved by
Nagura in [14], stating that, if n > 25, then there is a prime p such that
n 6 p 6 6n/5.

We conclude this section by recalling some results concerning the
finite nonabelian simple groups.

A crucial role in our proof will be played by the following result:

Theorem 5. [11, Theorem 6.1] Let S and T be non-isomorphic finite
simple groups. If |Sa| = |T b| for some natural numbers a and b, then
a = b and S and T either are A2(4) and A3(2) or are Bn(q) and Cn(q)
for some n > 3 and some odd q.

This result is a consequence of a collection of more general results
obtained in [11] and leading to the conclusion that a finite simple group is
in general uniquely determined by some partial information on its order
encoded by some arithmetical invariants (called Artin invariants). We will
make a large use of these results, so we recall here some related definitions.

Definition 6. Let n be a natural number and r one of its prime divisors.
The greatest power of r dividing n is called the contribution of r to n and
is denoted by nr. Moreover, r is called the dominant prime if nr > nq for
every other prime q. Given a finite group G, we will call the dominant
prime of G the dominant prime of its order. We will use the symbol p(G)
to denote the dominant prime of G.

Proposition 7. [11, Theorem 3.3] The dominant prime of a simple group
of Lie type coincides with its characteristic, apart from the following cases:

1) A1(q), where q is a Mersenne prime;
2) A1(q − 1), where q is a Fermat prime;
3) A1(8), 2A2(3), 2A3(2).
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Definition 8. Let G be a finite group and p = p(G) its dominant prime,
then

λ(G) =
log(|G|p)

log(|G|)

is called the logarithmic proportion of G.

Proposition 9. [11, Theorems 3.5, 3.6] Let x = pu be the contribution
of the dominant prime of a finite simple group S of Lie type, then x2 <
|G| < x3, that is

1

3
< λ(G) <

1

2
.

Definition 10. Let n be an integer which is not a prime power, let
p = p(n) be its dominant prime and pl its contribution to n, then we
define ω(n) as the largest order of p modulo a prime divisor p1 of n/pl.
We will call such a p1 a prominent prime in n.

Lemma 11. [11, Lemma 4.2] Given n and α ∈ N, then ω(nα) = ω(n).
Furthermore, if p1 is prominent in n with contribution pl11 , then it is also
prominent in nα with contribution pl1α1 .

Remark 12. Notice that, if a and b have the same prime divisors and
the same dominant prime, then they have also the same prominent prime
and ω(a) = ω(b).

Let S = L(q) be a finite simple group of Lie type, defined over a
field of cardinality q = pr, where p is a prime (which we will call the
characteristic of S). We will factorize the order of a simple group S = L(q)
of Lie type in the form

|L(q)| =
1

d
qhP (q),

where d, h and P (q) are given in [11, Table L1]. In particular this order
has the cyclotomic factorization in terms of p:

|L(q)| =
1

d
pl
∏

m

Φm(p)em ,

where Φm(x) is the m-th cyclotomic polynomial. Summing up [11, Propo-
sition 4.5] and [11, Lemma 4.6], we obtain:
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Theorem 13. Let S = L(q) be a simple group of Lie type with charac-
teristic p and q = pr. Then the cyclotomic factorization

|S| =
1

d
prhΦα1(p)Φα2(p)Φα3(p) · · · Φαu(p)

satisfies the following properties:
1) α1 > α2;
2) d divides Φα3(p) · · · Φαu(p) unless S = A1(q) and r = 1;
3) ω(|S|) = α1 unless p = 2 and α1 = 6.

Definition 14. Let G be a group with dominant prime p1, let pn1
1 be its

contribution to the order of G. Suppose that pi is a prime dividing the
order of G and that pni

i is the contribution to the order. Then pi is called
a good contributor to G if ni log(pi) log(3) > n1 log(p1) log(2).

The good contributors of the finite simple groups are classified in [2].
For later use we need to recall some definitions and results concerning

Zsigmondy primes.

Definition 15. A prime number p is called a primitive prime divisor of
an − 1 if it divides an − 1 but it does not divide ae − 1 for any integer
1 6 e 6 n− 1.

The following theorem is due to K. Zsigmondy [21]:

Theorem 16 (Zsigmondy’s Theorem). Let a and n be integers greater
than 1. There exists a primitive prime divisor of an − 1 except exactly in
the following cases:

1) n = 2, a = 2s − 1 (i.e. a is a Mersenne prime), where s > 2.
2) n = 6, a = 2.

Primitive prime divisors have a close relation with the cyclotomic
factorization described in Theorem 13: if r is a primitive prime divisor of
pn − 1, then n is the smallest positive integer with the property that r
divides Φn(p).

2. A reduction to a question on finite groups

Assume that G is a profinite group and let S be the set of the open
normal subgroups N of G with the property that SN := G/N is a
nonabelian simple group. Let

AG(s) = PG/G′(s) and BG(s) =
∏

N∈S

(
1 −

1

|SN |s

)
.
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We know from [7, Section 5] that

p⊳G(s) = AG(s)BG(s). (2.1)

Now consider the two series

ΓG(s) := (AG(s))−1 =
∑

n

γn(G)

ns
, ∆G(s) := (BG(s))−1 =

∑

n

δn(G)

ns
.

Lemma 17. If G is a normally zeta-reversible profinite group, then

ΓG(s) =
∏

p

ΓG,p(s) =
∏

p

ζ⊳G,p(s).

Proof. Since G is normally ζ-reversible, we have

1 = (ζ⊳G(s)p⊳G(s))p = ζ⊳G,p(s)p
⊳
G,p(s) = ζ⊳G,p(s)AG,p(s)BG,p(s).

Since AG(s) and ΓG(s) are multiplicative series, we deduce

ΓG(s) =
∏

p

ΓG,p(s) =
∏

p

AG,p(s)
−1 =

∏

p

ζ⊳G,p(s)BG,p(s),

but there are no nonabelian simple groups whose order is a prime power,
thus BG,p(s) = 1 for every prime p and we get ΓG(s) =

∏
p ζ

⊳
G,p(s).

Lemma 18. If G is a normally zeta-reversible profinite group, then for
every n ∈ N, γn(G) coincides with the number of open normal subgroups
N of G with the property that G/N is a nilpotent group of order n.

Proof. For every m ∈ N, let Nm be the set of the open normal subgroups
N of G with the property that G/N is nilpotent of order m. Let n ∈ N and
write n = q1 · · · qr as a product of powers of different primes. If Ni ∈ Nqi

for every 1 6 i 6 r, then N = N1 ∩ · · · ∩ Nr ∈ Nn. Conversely every
N ∈ Nn can be uniquely expressed in the form N = N1 ∩ · · · ∩Nr, with
Ni ∈ Nqi for every 1 6 i 6 r. This implies that |N | = |Nq1 | · · · |Nqr |. On
the other hand if q is a prime power and N is an open normal subgroup of
G of index q, then G/N , being a p-group, is nilpotent, hence |Nq| = a⊳q(G);
moreover a⊳q(G) = γq(G) by Lemma 17. Hence

γn(G) = γq1(G) · · · γqr (G) = a⊳q1
(G) · · · a⊳qr

(G) = |Nq1 | · · · |Nqr | = |N |.

Proof of Theorem 1. If there is no open normal subgroup N of G such
that G/N is a nonabelian simple group, then BG(s) = 1, hence, by (2.1),
we have ΓG(s) = AG(s)−1 = p⊳G(s)−1 = ζ⊳G(s), i.e. γn(G) = a⊳n(G) for
every n ∈ N. We conclude from Lemma 18 that G/N is nilpotent for
every open normal subgroup N of G.
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Conjecture 1. If G is a normally ζ-reversible profinite group, then there
is no open normal subgroup N ⊳G such that G/N is a nonabelian simple
group (and consequently G is pronilpotent).

For the remaining part of this section we will assume that G is a
counterexample to the previous conjecture. We will denote with ΣG the
set of the finite nonabelian simple groups which are continuous epimorphic
images of G. Take T ∈ ΣG with the property that the set π = π(T ) of the
prime divisors of |T | is minimal and let M = Oπ(G) be the intersection
of the open normal subgroups N of G with the property that G/N is a
π-group. It can be easily checked that G/M is a pro-π-group. Moreover
ζ⊳G/M (s) = ζ⊳G,π(s) and p⊳G/M (s) = p⊳G,π(s). But then ζ⊳G/M (s)p⊳G/M (s) =

ζ⊳G,π(s)p⊳G,π(s) = (ζ⊳G(s)p⊳G(s))π = 1, hence G/M is still a normally ζ-
reversible profinite group and represents a counterexample to Conjecture 1.
So we may assume that M = 1. With this assumption, if S ∈ ΣG, then S is
a π-group and, by the minimality property of T , π 6 π(S). Hence π(S) = π
for every S ∈ ΣG. There are only finitely many nonabelian simple groups
S with π(S) = π, hence ΣG is finite. Let m = |T | = m1 < m2 < · · · < mu

be the orders of the nonabelian simple in ΣG and for i ∈ {1, . . . , u} let ti
(with t = t1) be the cardinality of the set of the open normal subgroups
N of G such that G/N is a nonabelian simple group of order mi. We
must have:

∆G(s) =


∏

i

(
1 −

1

ms
i

)ti


−1

=
∏

i




∞∑

j=0

1

ms·j
i



ti

and

ζ⊳G(s) = ΓG(s)∆G(s) = ΓG(s)
∏

i

(
1 +

1

ms
i

+
1

m2s
i

+ · · ·

)ti
.

We now want to collect information about the open normal subgroups N
of G with |G/N | 6 m2. Consider the series

∑

n

a∗
n

ns
:= ΓG(s)

(
1 +

1

ms
+

1

m2s

)t u∏

i=2

(
1 +

1

ms
i

)ti
.

If n 6 m2, then, as n < m2
i for i 6= 1, we have a⊳n(G) = a∗

n.

Lemma 19. Let N be an open normal subgroup of G. If |G/N | < m2

then either G/N is nilpotent or G/N ∼= X1 × X2 where X1 is nilpotent
and X2 is a nonabelian simple group.
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Proof. If n < m2, then

a⊳n(G) = a∗
n = γn(G) +

∑

mir=n

tiγr(G). (2.2)

Let Nr be the set of the open normal subgroups N of G with the property
that G/N is nilpotent of order r and let Si be be the set of the open
normal subgroups M of G with the property that G/M is a nonabelian
simple group of order mi. Suppose mir = n. If N ∈ Nr and M ∈ Si,
then G/(N ∩M) ∼= G/N ×G/M (since the nilpotent group G/N and the
simple group G/M have no common composition factor) and this is the
unique way to obtain N ∩M as intersection of two subgroups in Nr∗ and
Si∗ , for some r∗ 6 n and i∗ 6 u. Hence there are at least a∗

n open normal
subgroups N of G of index n and with the property that G/N is either
nilpotent or is the direct product of a nilpotent subgroup with a finite
nonabelian simple group. Since, by (2.2), a⊳n(G) = a∗

n all the open normal
subgroups of G of index n have this property.

Let us consider now the set of open normal subgroups of index m2 in
G: in this case we have

a⊳m2(G) = a∗
m2 = γm2(G) +

∑

mir=m2

tiγr(G) +

(
t

2

)
+ t. (2.3)

With the same arguments used in the proof of the previous lemma, it can
be easily noticed that:

Lemma 20. The first three summands in the previous expression of
a⊳m2(G) = a∗

m2 have the following meaning:
1) γm2(G) is the number of the open normal subgroups N of index m2

such that G/N is nilpotent;
2)
∑
mir=m2 tiγr(G) is the number of the open normal subgroups N of

index m2 such that G/N is a direct product of a nilpotent group and
a nonabelian simple group.

3)
(t

2

)
is the number of the open normal subgroups N of index m2 such

that G/N is the direct product of two nonabelian simple groups of
order m.

Notice that the last summand in equation (2.3) consists of t open
normal subgroups of index m2 that does not fill in any of the three classes
described in Lemma 20: let M be one of these normal subgroups and let
H = G/M .
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Lemma 21. H has a unique minimal normal subgroup.

Proof. Suppose by contradiction that H has two different minimal normal
subgroups N1, N2. By Lemma 19, there exists two finite nilpotent groups
X1, X2 and two finite groups Y1 and Y2 that are either trivial or nonabelian
and simple such that G/N1

∼= X1 × Y1 and G/N2
∼= X2 ∩ Y2. Since

N1 ∩ N2 = 1, H is a subdirect product of X1 × X2 × Y1 × Y2, However
this implies that H is either nilpotent, or it is the direct product of two
nonabelian simple groups of order m, or it is the direct product of a
simple nonabelian group with a nilpotent group; but then M fills in one
of the three family of open normal subgroups described in Lemma 20, a
contradiction.

We may summarize the conclusions of this section in the following
statement.

Theorem 22. If Conjecture 1 is false, then there exists a finite nonabelian
simple group T and a finite group H with the following properties:

1) |H| = |T |2.
2) H contains a unique minimal normal sugroup N .
3) Either H/N is nilpotent, or there exists a finite nilpotent group X

and a nonabelian simple group S such that H/N ∼= X × S. In the
latter case |T | 6 |S| and π(S) = π(T ).

3. Perfect profinite groups

In this section we concentrate our attention on the case of perfect
profinite groups. Our aim is to prove that a perfect profinite group cannot
be normally ζ-reversible.

It follows immediately from Theorem 22 that:

Proposition 23. If there exists a perfect normally ζ-reversible profinite
group, then exist there a finite nonabelian simple group T and a finite
perfect group H with the following properties:

1) |H| = |T |2.
2) H contains a unique minimal normal sugroup N .
3) There exists a finite nonabelian simple group S such that H/N ∼= S.

Moreover |T | 6 |S| and π(S) = π(T ).

Lemma 24. If H is a finite group satisfying the statement of Proposi-
tion 23, then N = socH is abelian.
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Proof. Suppose by contradition that N is nonabelian: there exist a non-
abelian simple group L and a positive integer u such thatN = L1×· · ·×Lu,
with Li ∼= L for all i. It must be u 6= 1 (otherwise, by the Schreier con-
jecture, H/N would be soluble). The conjugation action on {L1, · · · , Lu}
induces a homomorphism ψ : H → Sym(u) and ψ(H) is a transitive
subgroup of Sym(u). The kernel of this action coincides with N so
S ∼= H/N ∼= ψ(H). In particolar S contains a subgroup of index u.
We have two cases:

1) S ∼= Alt(n) for some n. We must have n 6 u. Moreover, by Lemma 4,
there exists a prime number r such that n/2 < r 6 n, in particular
r divides |S| with multiplicity 1. On the other hand |H| = |T |2 =
|S||N | = |S||L|u, hence r| |L|. Since finite nonabelian simple groups
have even order, we deduce that 2r divides |L| and (2r)u divides
|N |, thus

|T |2

|S|
= |N | > (2r)u > nu > nn >

n!

2
=

∣∣∣∣
H

N

∣∣∣∣ = |S|,

but then |T | > |S|, against Proposition 23.
2) S is not an alternating group and has a (faithful) transitive action

of degree u. In particular S has a primitive action of degree v 6 u,
hence, by [16], |S| 6 4v 6 4u. By Proposition 23, |T | 6 |S|, hence

|L|u = |N | =
|T |2

|S|
6 |S| 6 4u,

but then |L| 6 4, contradiction.

Corollary 25. If there exists a perfect normally ζ-reversible profinite
group, then there exists a triples (S, T, V ) with the following properties:

1) T and S are finite nonabelian simple groups;
2) V is an irreducible S-module of dimension a over the field with p

elements;
3) |T |2 = |S| · |V | = |S| · pa;
4) |V | < |T | < |S|;
5) p ∈ π(T ) = π(S);
6) if a = 1, then p divides the order of the Schur multiplier M(S) of

S and divides |S| with multiplicity at least 3.

Proof. The first five statements follow immediately from Proposition 23,
taking V = soc(H) (we cannot have |S| = |T |, since this would imply
|T | = pa). We have only to prove (6). A faithful irreducible representation
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of a nonabelian simple group cannot have degree 1; thus, if a = 1, then V
is a central S-module: in particular H = V.S is a central perfect extension
of S and, consequently, |V | = p divides |M(S)|. Moreover, if a = 1 then,
by (3), p must divide |S| with odd multiplicity. Now suppose that a = 1
and p divides |S| with multiplicity 1: then a Sylow p-subgroup of H,
having order p2, is abelian. We apply [10, Proposition 5.6] stating that,
if a group J has an abelian Sylow p-subgroup, then p does not divide
|J ′ ∩ Z(J)|: since H ′ = H and Z(H) = socH ∼= V , we would have that p
does not divide |V | = p, a contradiction.

In the remaining part of this section, we will prove that there is no
triple (S, T, V ) satisfying the properties listed in the previous corollary.
Suppose by contradiction that such a triple (S, T, V ) exists.

Remark 26. Since |S| · pa = |T |2, every prime divisor of |S| different
from p divides |S| with even multiplicity.

Proposition 27. S is a simple group of Lie type.

Proof. By Remark 26, it suffices to prove that, if S is alternating or spo-
radic, then there are at least two primes dividing |S| with odd multiplicity.
This can be directly verified for the sporadic groups and for the alternating
groups Alt(n) when n 6 10. For the remaining alternating groups, we
deduce from Lemma 4 that there are at least two primes p, q dividing
| Alt(n)| = n!/2 with multiplicity exactly one.

Proposition 28. If a 6= 1, then p is the characteristic of S.

Proof. If a 6= 1, then a is the degree of a faithful irreducible representation
of S over the field of order p. Assume, by contradiction, that p does not coin-
cide with the characteristic of S. We must have a > δ(S), denoting by δ(S)
the smallest degree of a nontrivial irreducible representation of S in cross
characteristic. Lower bounds for the degree of irreducible representations
of finite groups of Lie type in cross characteristic were found by Landazuri
and Seitz [12] and improved later by Seitz and Zalesskii [17] and Tiep [18].
It turns out that δ(S) is quite large, and, apart from finitely many excep-
tions, we have pδ(S) > |S|, in contradiction with |S| > pa > pδ(S). The few
exceptions can be easily excluded, proving directly that, for these particu-
lar choices of S, there are no T and V with |T 2| = |S| · |V |. For example,
if S = An(q) with n > 2, then |S| < qn

2+2n and, except in the excep-

tional cases (n, q) = (2, 2), (2, 4), (3, 2), (3, 3), we have δ(S) > qn+1−q
q−1 − 1

[18, Table II], which implies that either pδ(S) > |S| or (n, q) = (2, 3). On
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the other hand, if (n, q) = (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), then there are
at least two primes dividing |S| = |An(q)| with odd multiplicites, so these
cases must be excluded by Remark 26. The other families of finite simple
groups of Lie type can be discussed with similar arguments.

Proposition 29. The dominant prime of S coincides with the charac-
teristic of S.

Proof. By Proposition 7, if the dominant prime of S does not coincide
with the characteristic of S, then one of the following three cases occurs.

1) S = A1(q), with q = 2t − 1 a Mersenne prime. We must have that t
is an odd prime but then 2 and q divide |S| = (q − 1) · q · (q + 1)/2
with odd multiplicity, against Remark 26.

2) S = A1(q − 1) with q = 22k
+ 1 a Fermat prime. Since

|T |2 = (q − 2) · (q − 1) · q · pa

we have that p = q, a is odd and |T |2 =
(
22k

+ 1
)a+1

22k
(
22k

− 1
)
;

this would imply that 22k
− 1 is a square too, which is impossible.

3) S ∈ {A1(8), 2A2(3), 2A3(2)}. The orders |A1(8)| and |2A2(3)| are
divisible by at least two different primes with odd multiplicity, so
these two cases must be excluded. If S = 2A3(2), then |T |2 =
|S| · pa = 26 · 34 · 5 · pa, hence p = 5, a is odd and the condition
|T | < |S| implies a = 1, 3, 5; however it cannot be a = 1 since 5 does
not divide the order of the Schur multiplier of 2A3(2), and it cannot
be a = 3, 5 since there exists no simple group of order 23 · 32 · 52 or
23 · 32 · 53.

Corollary 30. If a 6= 1, then p is the dominant prime of S and T .

Proof. Suppose a 6= 1. By Propositions 28 and 29, p is the characteristic
and the dominant prime of S. Since |T |2 = |S| · pa, p is also the dominant
prime of T .

Proposition 31. T is not an alternating group.

Proof. Let T = Alt(m), m > 5. First assume m 6 9. We use [3, p. 239–
242] to check that if |S| is a finite simple group with π(S) = π(T ) and
|T |2 = |S| · pa for some prime power pa, then m = 6, p = 5, a = 1 and
S = 2A3(2); however we must exclude this possibility, since 5 does not
divide the order of the Schur multiplier of 2A3(2).
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So from now on we will assume m > 10. This implies that 2 is the
dominant prime of T [11, Table L.4]. We will prove that the dominant
prime of S is 2 too. Suppose, by contradiction, that the dominant prime
q of S is not 2. Then, being |T |2 = |S|pa, we must have p = 2 and, by
Corollary 30, a = 1, so

|T |2 = 2 |S| . (3.1)

Let |T |2 = 2t, |T |q = qh, then 2t > qh (as 2 is the dominant prime of

T ) and, by (3.1), q2h > 22t−1 (as q is the dominant prime of S). Joining
these inequalities we get qh < 2t < qh+1/2, whence h log(q) < t log(2) <(
h+

1

2

)
log(q), and so

1 <
t log(2)

h log(q)
< 1 +

1

2h
6

3

2
<

log(3)

log(2)
. (3.2)

By Equation (3.2), q is a good contributor to T , but [2, Theorem 3.8]
enlists all good contributors to alternating groups, and for m > 10, it
must be {

q = 3 or

q = 5 and m ∈ {10, 11, 15, 25, 26, 30}.

Moreover [2, 3.2] gives some useful lower and upper bounds for t, h as
linear functions on m. Using these bounds and some direct computations
for the small values of m, it can be easily proved that the only case in
which we really have q2h > 22t−1 is when q = 3 and m = 15; however, we
can again use [3, p. 239–242] to see that there is no simple group S with
2 · |S| = | Alt(15)|2, against (3.1).

Now we claim that p 6= 2. Indeed, assume by contradiction, p = 2. By
Corollary 30, it must be a = 1. If m = 10, then we would have λ(S) < 1/3,
in contradiction with Proposition 9. For m > 11 we have λ(Alt(m)) < 1/3
(see [11, Table L.4]), hence

1

3
>

log(|T |22)

log(|T |2)
=

log(|S|2) + log(2)

log(|S|) + log(2)
>

log(|S|2)

log(|S|)

contradicting again Proposition 9.

Thus S and T both have dominant prime 2 and p is odd. By Proposi-
tion 9 (

m

e

)m
<
m!

2
= |T | < |S| 6 |S|32 6 |T |62 . (3.3)
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Let |T |2 = 2l, then we can estimate l by

l =
∞∑

i=1

[
m

2i

]
− 1 <

∞∑

i=1

m

2i
− 1 = m− 1.

This result, joined with (3.3), gives m < e ·26−12/m; in particular m 6 165.

Since p 6= 2, we have |S|2 = |T |22 and, by Proposition 9,

1

3
6

log(|S|2)

log(|S|)
=

log(|T |22)

log(|T |)2 − a log(p)
. (3.4)

Moreover 3 is dominant prime of |Alt(m)|2′ for every m > 10 (see
[2, Theorem 3.7 (b)]), so

pa 6
|T |23

3
. (3.5)

From Equations (3.4) and (3.5) we finally get

1

3
6

log(|T |22)

log(|T |)2 − log(|T |23) + log(3)
=

log(|T |2)

log(|T |3′) + log(3)/2
(3.6)

and it is easy to verify that, in the given range 10 6 m 6 165, (3.6) is true
only for 10 6 m 6 14 or 16 6 m 6 21 or m = 24. In all these cases, S
should be a simple group of Lie type of characteristic 2 with the property
that |S| = | Alt(m)|2 · pa for some odd prime prime p 6 m and some
positive integer a. A boring but elementary check shows that there is no
simple group S with these properties.

Proposition 32. T is not a sporadic simple group.

Proof. At first, we will prove that S and T have the same dominant prime.
Suppose by contradiction that the dominant primes do not coincide: then,
since |T |2 = |S|pa, p coincides with the dominant prime of T and, by
Corollary 30, a = 1. So we have

|T |2 = p · |S| . (3.7)

Let q be the dominant prime of |T |p′ , necessarily it is the dominant prime

of S. Let |T |p = pt, |T |q = qh, then pt > qh and, by (3.7), q2h > p2t−1, so
we get

qh < pt < qht/(t−1/2).
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By Corollary 25 (6), it must be t > 1 so

1 <
t log(p)

h log(q)
<

t

t− 1/2
<

log(3)

log(2)
. (3.8)

This implies that q is a good contributor to T . The good contributors to
sporadic simple groups are listed in [2, Theorem 1]: it is easy to verify
that these good contributors does not satisfy (3.8), apart from the cases
T = F5 and T = J1. However

{
T = F5 ⇒ |S| = |F5|2 /2 ⇒ λ(S) < 1/3

T = J1 ⇒ |S| = |J1|2 /19 ⇒ λ(S) < 1/3.

contradicting Proposition 9.
Thus, we know that S and T have the same dominant prime p(S)
Now suppose a 6= 1. Then p = p(S) by Corollary 30 and λ(S) > 1/3

by Proposition 9, so

1

3
<

2 log(|T |p) − a log(p)

2 log(|T |) − a log(p)

whence

2 6 a 6

[
3 log(|T |p) − log(|T |)

log(p)

]
= a∗(T ). (3.9)

It can be easily checked that Equation (3.9) is satisfied only if

T ∈ {B,F i22, Co2, Ru,M24,M22,
2F4(2)′}.

All these groups have dominant prime 2, so p = p(S) = p(T ) = 2 and S
should be a simple group of Lie type of characteristic 2 with |T |2 = |S| ·2a

and 2 6 a 6 a∗(T ). It can be checked that no simple group S satisfies
these conditions.

Thus, a = 1. In particular, |S| = |T |2 /p. A direct computation shows
that that, for every possible choice of a sporadic simple group T and
every prime divisor p of its order, there is no simple group of Lie type
satisfying this condition (many possibilities can be excluded since they
are not compatible with the condition λ(S) > 1/3).

So from now on we may assume that both S and T are simple groups
of Lie type.

Lemma 33. If p is the dominant prime of S, then p coincides with the
characteristic of T .
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Proof. Suppose that p is the dominant prime of S. Since |T |2 = |S| · pa, p
is also the dominant prime of T . By Proposition 7, if p does not coincide
with the characteristic of T , then one of the following cases occurs.

1) T = A1(q), where q = 2k − 1 is a Mersenne prime (so in particular
k is prime). The dominant prime of T is 2. So p = 2 and, by
Proposition 29, it also coincides with the characteristic of S. The
order of |S| has a cyclotomic factorization in term of 2 as it is
described in the statement of Theorem 13. We have

|S| =
|T |2

2a
= 22k−a · (2k − 1)2 · (2k−1 − 1)2 =

2b · Φα1(2) · · · Φαu(2)

d
.

We must have α1 = k. Moreover Φk(2) = 2k − 1 = q, and the
multiplicity of Φk(2) in the factorization of |S| is 2, so α2 = α1,
contradicting Theorem 13 (1).

2) T = A1(q − 1), where q = 22k
+ 1 is a Fermat prime. Then q is the

dominant prime of T , whence q = p and (q ·(q−1)·(q−2))2 = |S|·qa,
in particular q2 = qa · |S|q. As |S| and |T | have the same prime

divisors, q must divide |S|, so a = 1, but then |S| = q ·(q−1)2 ·(q−2)2

and
|S|2 = (q − 1)2 = 22k+1

> 22k
+ 1 = q = |S|q ,

thus q cannot be the dominant prime for S, a contradiction.
3) T = A1(8). Then |T | = 23 · 32 · 7, p = 3 and 26 · 34 · 72 = |S| · 3a for

a > 1, whence |S|3 6 33 < 26 = |S|2, a contradiction.
4) T = 2A2(3). Then |T | = 25 · 33 · 7, p = 2 and 210 · 36 · 72 = |S| · 2a

for a > 1, whence |S|2 6 29 < 36 = |S|3, a contradiction.
5) T = 2A3(2). Then |T | = 26 · 34 · 5, p = 3 and 212 · 38 · 52 = |S| · 3a

for a > 1, whence |S|3 6 37 < 212 = |S|2, a contradiction.

From Lemma 33, Proposition 28 and Proposition 29, it follows:

Corollary 34. If a 6= 1, then p coincides with the characteristic and
dominant primes of S and T .

Lemma 35. Let α1(T ), α1(S) be the greatest indexes in the cyclotomic
decompositions of |T | and |S| described in Theorem 13. Then

α1(T ), α1(S) > 2

and, denoting by pT and pS the characteristics of S and T , we have

(pT , α1(T )), (pS , α1(S)) /∈ {(2, 6), (2k − 1, 2)|k ∈ N}.
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Proof. First notice that α1(T ), α1(S) > 2 from Theorem 13.

If R is a simple group of Lie type with pR = 2k − 1 and α1(R) = 2,
then R = A1(2k − 1). We can exclude (pS , α1(S)) = (2k − 1, 2) by
Proposition 29 and (pT , α1(T )) = (2k − 1, 2) by Lemma 33. Suppose now
(pS , α1(S)) = (2, 6). Then S ∈ Σ = {A5(2), A2(22), A1(23), B3(2), D4(2)},
but in these cases |S| is divisible with odd multiplicity by at least two
primes, contradicting Remark 26. Finally assume (pT , α1(T )) = (2, 6).
Then T ∈ Σ. We may exclude T = A1(23), since there is no simple group
S with |S| ·pa = |T |2 for some prime power pa. In the remaining cases, 2 is
the dominant prime of |T | and also of |T |/2 and this implies that 2 is also
the dominant prime of S (if a 6= 1 this follows from Corollary 30, while
if a = 1 it suffices to recall that |S| = |T |2/p). Hence the characteristic
of S is 2 too, moreover α1(S) 6 6, as |S| cannot have primitive prime
divisors not dividing |T |. We have already proved that α1(S) 6= 6. It is
easy to verify that if S is a simple group of Lie type with characteristic 2
and satisfying α1(S) 6 5 then the condition |T |2 = |S| · pa cannot be
verified.

Lemma 36. The characteristic pS of S does not coincide with the prime p.

Proof. Suppose p = pS . By Proposition 29, p coincides with the dominant
prime of S, and consequently, since |S| = |T |2 · pa, with the dominant
prime of T ; but then, by Lemma 33, p coincides also with the characteristic
of T . By Lemma 35 and Theorem 13 (3), we get that α1(T ) = ω(|T |)
and α1(S) = ω(|S|). By Remark 12, ω(|S|) = ω(|T |), so we conclude that
α1(T ) = α1(S). Again by Lemma 35, we can use Zsigmondy’s Theorem
to find a primitive prime divisor t of pα1(T ) − 1. The multiplicity of t in
|T | coincides with the multiplicity of t in ΦαT (pT ) = ΦαS (pS), which is
equal to the multiplicity of t in |S|, thus contradicting |T |2 = |S| · pa.

Proposition 37. a = 1.

Proof. Suppose a 6= 1: then, by Corollary 34, p is the characteristic and
dominant prime of both S and T , contradicting Lemma 36.

We remain with the possibility that a = 1 and consequently |T |2 =
|S| · p where p divides the order of the Schur multiplier M(S). Moreover,
the Schur multiplier can be decomposed as M(S) = R× P , where P is a
pS-group and R a p′

S-group whose order coincides with the denominator
dS of the cyclotomic factorization of the order of S (see [8, Table 4.1]).
By Lemma 36, p 6= pS , thus p divides dS .



L. Cimetta, A. Lucchini 43

Lemma 38. If S, T have the same dominant prime u and u 6= p, then u
coincides with the characteristic of T .

Proof. By Proposition 7, if u does not coincide with the characteristic
of T , then one of the following cases occurs.

1) T = A1(q), where q = 2k − 1 is a Mersenne prime. Then u = 2 and

((2k − 1) · 2k · (2k−1 − 1))2 = |S| · p.

By Proposition 29, the characteristic of S coincides with u = 2,
hence, considering the cyclotomic factorization of |S| described in
Theorem 13, we have α1(S) = k and Φk(2) = 2k − 1 = q. By
Theorem 13 (1), Φk(2) divides |S| with multiplicity 1, so necessarily
p = q by Remark 26. On the other hand, p divides dS and, by
Theorem 13 (2), dS divides Φα3(2) · · · Φαu(2) = (2k−1 − 1)2/Φα2(2),
thus p divides (2k−1 − 1), whence p 6 2k−1 − 1 < 2k − 1 = q = p, a
contradiction.

2) T = A1(q − 1), where q = 22k
+ 1 is a Fermat prime. Then u = q

and

q2 · (q − 1)2 · (q − 2)2 = |S| · p.

By Proposition 29, the characteristic of S coincides with u = q, in
particular the characteristic of S divides |S| with multiplicity 2 and
it is easy to check that the only group satisfying this condition is
S = A1(q2), but then dS = 2 whence p = 2. Hence

q2 · (q − 1)2 · (q − 2)2 = |A1(q2)| · 2 = q2 · (q2 − 1) · (q2 + 1),

whence (q − 1) · (q − 2)2 = (q + 1) · (q2 + 1), but this is false.
3) T = A1(23). Then |T | = 23 · 32 · 7, u = 3, p = 2 and |S| = 25 · 34 · 72,

however there is no simple group of Lie type S with this order.
4) T = 2A2(3). Then |T | = 25 ·33 ·7, u = 2, p = 3 and |S| = 210 ·35 ·72,

however there is no simple group of Lie type S with this order.
5) T = 2A3(2). Then |T | = 26 ·34 ·5, u = 3, p = 2 and |S| = 211 ·38 ·52,

however there is no simple group of Lie type S with this order.

Lemma 39. S and T have different dominant primes.

Proof. Suppose that r is the dominant prime of S and T . Then, by
Lemma 36, r 6= p and therefore |T |2r = |S|r and, by Remark 12, ω(S) =
ω(T ). Moreover, by Lemma 35 and Theorem 13 (3), α1(S) = ω(S) and
α1(T ) = ω(T ), whence α1(S) = α1(T ) = α. By Proposition 29 and
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Lemma 38, r is also the characteristic of both S and T . Again by Lemma 35,
we can apply Zsigmondy’s Theorem and consider a primitive prime divisor
u dividing of rα − 1. This prime u divides |S| and |T | with the same
multiplicity (coinciding with the multiplicity of u in Φα(r)). On the other
hand |S| · p = |T |2, so we must have that r = p and that p divides |S|
with multiplicity 1, in contradiction with Corollary 25 (6).

Now we are ready to conclude our proof. We have reduced to the case
|T |2 = p · |S|, where the dominant prime of T and S (which coincide with
their characteristic) are different, and consequently p is the dominant
prime of T . Let r be the dominant prime of S and let pt, rh be the
contributions of p and r to |S|. We have

pt < rh < pt+1, (3.10)

and consequently, since t > 1 by Corollary 25 (6),

1 <
h log(r)

t log(p)
< 1 +

1

t
<

log(3)

log(2)
.

thus p is a good contributor of S. By [2, Theorem 4.1] S is one of following
groups:

1) A3(3), 2A3(3), 2A3(7), 2A4(3) ,B2(3), B2(5), B2(7), B2(9), B3(3),
C3(3), D4(3), G2(3) (and p = 2);

2) 2A3(2), 2A4(2), 2A5(2), B3(2), D4(2) (and p = 3);
3) A1(r), A2(r), 2A2(r).

The possibilities listed in (1) and (2) can be immediately excluded noticing
that either p does not divide |M(S)|, or there exists a prime different
from p dividing |S| with odd multiplicity, or |S| · p is not a square.

The only cases that remain to be discussed are thus A1(r), A2(r),
2A2(r): we have |S| = rǫ ·u where ǫ is odd and (u, r) = 1, so, by Remark 26,
r = v2 for some integer v. If S = 2A2(v2), then |M(S)| = (3, v2 + 1) = 1,
a contradiction. Suppose S = A1(v2). We have already excluded the
possibilities S ∼= A1(4) ∼= Alt(5) and S ∼= A1(9) ∼= Alt(6), so we have
|M(S)| = (2, v2 − 1) and consequently p = 2 and v is odd. In particular

|S|2 =
(v4 − 1)2

2
=

(v2 − 1)2(v2 + 1)2

2
= (v2 − 1)2

and from (3.10) we deduce (v2 −1)2 < v2 < 2(v2 −1)2: the only possibility
is v = 3, but we have already excluded this case. Finally, suppose S =
A2(v2). We may exclude S = A2(4) since in this case 5 and 7 divide |S|
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with multiplicity 1. In the remaining case M(S) = (3, v2 − 1), so it must
v2 − 1 = 0 mod 3 and p = 3. But then v4 + v2 + 1 = (v2 − 1)2 + 3v2 ∼=
3v2 ∼= 3 mod 9, thus

|S|3 =
(v2 + 1)3(v2 − 1)2

3(v4 + v2 + 1)3

3
= (v2 − 1)2

3

and by (3.10) we have (v2 −1)2
3 < v6 < 3(v2 −1)2

3, whence v6 < 3(v2 −1)2,
a contradiction.

4. Proof of Theorem 3

It follows immediately from Theorem 22 that:

Proposition 40. If there exists a non-pronilpotent normally ζ-reversible
profinite group all of whose composition factors are of alternating type,
then there exist a positive integer m and a finite group H with the following
properties:

1) |H| = | Alt(m)|2.
2) H contains a unique minimal normal sugroup N .
3) Either H/N is nilpotent or there exist a nilpotent group X and a

positive integer n > m such that H/N ∼= X × Alt(n); in the latter
case π(m!) = π(n!) i.e. there is no prime q with m < q 6 n.

4) Either N is abelian or N ∼= Alt(u)t for some u and t ∈ N.

In this section we will prove that there is no pair (m,H) satisfying
the condition requested by the previous proposition. We will assume, by
contradiction, that (m,H) is one of these pairs and we will prove a series
of restrictions that will lead to a finale contradiction.

Lemma 41. H is not soluble.

Proof. If H is soluble, then H is a finite soluble group which is not
nilpotent but all of whose proper quotients are nilpotent. This implies
that H = N ⋊A, where N is an elementary abelian p-group and A is a
nilpotent p′-subgroup of AutN . By [20, Theorem 1.6], |A| 6 |N |β/2 with
β = log(32)/log(9) so

log(|H|)

log(|N |)
<

log(288)

log(9)
. (4.1)

On the other hand, since |H| = | Alt(m)|2, we have

log(|H|)/ log(|N |) >
(
λ(Alt(m))

)−1
.
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The values of the logarithmic proportion of alternating groups are listed
in [11, Tables L.3 and L.4] and it can be easily seen that

log(|H|)

log(|N |)
>
(
λ(Alt(m))

)−1
>

log(288)

log(9)
for m /∈ {5, 8}

contradicting (4.1). Direct computations show that (4.1) is false also when
m ∈ {5, 8}.

Lemma 42. N = socH is abelian.

Proof. Suppose by contradiction that N is nonabelian: then there exist
positive integers u > 5 and t such that N = L1 × · · · ×Lt, with Li ∼= L =
Alt(u) for all i. In particular

Lt ∼= N �H 6 Aut(N) ∼= Aut(L) ≀ Sym(t).

If t = 1, then | Alt(m)|2 = |H| = 2j · u! for some j ∈ Z, however by
Lemma 4 there exists an odd prime dividing u! with multiplicity 1, a
contradiction. If t = 2, then from | Alt(m)|2 = H, we would deduce
(m!)2 = (u!)22j for some positive integer j ∈ {1, 2, 3, 4, 5}, but this is
impossible. So we can assume t > 3. By Proposition 40 we can write
H/N = X1/N × X2/N , where X1/N is nilpotent and either X2/N = 1
or X2/N ∼= Alt(n) for some n > m. First suppose that either X2/N = 1
and m /∈ {6, 10}, or X2/N ∼= Alt(n) with n /∈ {6, 10}. Then, by Lemma 4,
we can find two primes p, q as follows:

{
n
2 < p < q 6 n if X2/N ∼= Alt(n),
m
2 < p < q 6 m if X2/N = 1.

We claim that p, q both divide the order of Alt(m) with multiplicity 1:
this is clear if X2/N is trivial, while if X2/N ∼= Alt(n) it follows from
the fact that m/2 6 n/2 < p < q 6 m. So p and q divide |H| = (m!/2)2

with multiplicity exactly 2: as Lt 6 H and t > 2, they cannot divide |L|,
so they divide |H/N | = |X1/N ||X2/N | with multiplicity 2. On the other
hand, by the way in which they have been defined, they divide |X2/N |
with multiplicity at most 1, so p · q must divide order of the nilpotent
group X1/N . This implies that the transitive permutation group induced
by the conjugacy action of H on the t direct factors L1, . . . , Lt contains
a central element of order p · q. In particular t > p · q and consequently,

60
m2

4 6 60p·q 6 |L|t 6 |H| = (m!)2 6 m2m
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but this is false for all m > 5. We have still to consider the two cases
X2/N = 1 and m ∈ {6, 10} or X2

∼= Alt(n) with n ∈ {6, 10}. If m = 6 or
n = 6 (and consequently m 6 6), then | Alt(u)|3 divides | Alt(6)|2, hence
53 divides (6!)2, a contradiction. If m = 10 or n = 10, then 7 divides |H|
with multiplicity at most 2; as a consequence |H/N | is divisible by 7 and
t > 7; but then

7 · 607 6 |H/N | · |N | = |H| 6 (10!)2

which leads again to a contradiction.

Combining Proposition 40 with Lemma 41 and Lemma 42, we can
conclude that there exist two subgroups X1 and X2 of H such that

1) H/N = X1/N ×X2/N ;
2) X1/N is nilpotent;
3) X2/N ∼= Alt(n).
4) N is an elementary abelian p-group.

Lemma 43. N is not central in X2.

Proof. Assume, by contradiction, N 6 Z(X2). Notice that Frat(X2) is a
nilpotent normal subgroup of H, so either Frat(X2) = 1 or Frat(X2) = N .
In the first case, we would have X2 = N × S, with S ∼= Alt(n). But
then S would be normal in H, against the fact that N is the unique
minimal normal subgroup of G. If Frat(X2) = N , then X2 is a perfect
central extension of N , so in particular |N | divides the order of the Schur
multiplier of Alt(n), hence |N | ∈ {2, 3}. This implies that X1 is a {2, 3}-
group (if a prime q > 3 would divide |X1|, then a Sylow q-subgroup of
X1 would coincide with Oq(CX1(N)) and would be normal in H). From
|H| = |X1/N | · |X2|, we deduce

(m!)2 = n! · 2α · 3β

for some positive integers α, β, in contradiction with the fact that, by
Lemma 4, there exists a prime dividing n! with multiplicity 1.

The previous result, combined with Clifford’s theory, implies that N
contains a nontrivial irreducible Alt(n)-modulo, say M .

Lemma 44. n 6 8.



48 Normally ζ -reversible profinite groups

Proof. Suppose n > 9. By [19, Theorem 1.1], the dimension of a nontrivial
irreducible Alt(n)-module is at least n − 2, so |N | > |M | > pn−2. But
then, from | Alt(m)|2 = |H| > |N | · | Alt(n)|, we get

((m!/2))2
p > pn−2 · (n!/2)p.

Let now a = m − n > 0 and ηp = 0 is p is odd, η2 = 1 if p = 2; since
(m!)p < pm/(p−1), we have

pm/(p−1)−ηp > (m!/2)p > (m+ 1)p · · · (m+ a)p · pm+a−2 > pm+a−2.

This implies

p = 2, n = m, |N | = |M | = 2n−2 = (n!/2)2.

Since

|H| =

(
n!

2

)2

=
|X1||X2|

|N |
=
n!|X1|

2
and 2n−2 = (n!/2)2,

we must have that X1 = N⋊K, where N is an elementary abelian 2-group
and K is a nilpotent group of odd order; more precisely |K| = (n!)2′ .
Moreover, the fact that N is the unique minimal normal subgroup of
H implies CK(N) = 1, hence K is a completely reducible subgroup of
AutN . In particular

|K| 6
|N |β

2
= 2β(n−2)−1 with β =

log(32)

log(9)

whence

n! = (n!)2′ · (n!)2 = |K| · (n!)2 6 2β(n−2)−1 · 2n−1 = 2n(β+1)−2β−2

which is false for n > 9.

We remain with the the cases 5 6 m 6 n 6 8. Recall that π(n!) =

π(m!) and that |N | · | Alt(n)| divides |H| =

(
m!

2

)2

(i.e. 2|N |n! divides

(m!)2). This means that N is a completely reducible Alt(n)-module of
relatively small order. Looking to the irreducible representations of small
degree of Alt(n) over the field with p elements when 5 6 n 6 8 and p 6 n,
we easily conclude that the only possibilities are: m = n = 8 and N is
an irreducible Alt(8)-module with |N | ∈ {24, 26}. In both these cases,
a 2′-Hall subgroup K of X1 would be nilpotent and of order 32 · 5 · 7.
Moreover CK(N) = 1 (otherwise we would have N 6= socH) and Aut(N)
would contain an element of order 32 · 5 · 7, which is false.
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Abstract. We show how to produce a reasonable outer
measure on a commutative ring from a given measure on a family
of prime ideals of this ring. We provide a few examples and prove
several properties of such outer measures.

Introduction

Throughout the present paper, R is a nonzero commutative ring with
identity. We denote by Spec(R) the family of all the prime ideals of R.
(Notice that, by definition, every prime ideal is proper).

It is well known [1] that topological properties of Spec(R) equipped
with the Zariski topology reflect algebraic properties of R. But are there
useful relationships between algebraic or geometric properties of R and
measures on Spec(R)? This question seems to be quite interesting and
not worked out in the specialist literature. The present paper provides
some basic remarks concerning the question and, hopefully, is a starting
point for further study.

In the paper, we will show that an arbitrary measure on a suitable
subfamily of Spec(R) induces an outer measure on R with good multi-
plicative properties. We will also discuss a few elementary examples of
such outer measures.
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ideal.
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By “measure” we mean a “non-negative σ-additive measure”. We
denote by 2X the power set of a set X. We define

|X| =

{
the cardinality of X, if X is finite,
+∞, otherwise.

By R× we denote the set of invertible elements of R. Notice that
℘ ∩R× = ∅ whenever ℘ ∈ Spec(R). We define Max(R) to be the family
of all the maximal ideals of R. One can prove that Max(R) ⊆ Spec(R)
and

⋃
Max(R) = R \R×.

We refer to [1] for more information about commutative rings and
to [2] for elements of measure theory.

1. Construction

We will use the definition of outer measure taken from [2].

Definition 1. We say that µ∗ : 2X −→ [0,+∞] is an outer measure on
a set X, if the following conditions are satisfied:

(1) µ∗(A) 6

∞∑

n=1

µ∗(Bn) for every sequence {Bn}∞
n=1 of subsets of X

and every A ⊆
∞⋃

n=1

Bn,

(2) µ∗(∅) = 0.

Let P ⊆ Spec(R) be such that
⋃

P = R\R×, and let M be a σ-algebra
of subsets of P. For a set A ⊆ R we define

Ω(A) =
{

S ∈ M :
⋃

S ⊇ A \R×
}
.

Proposition 1. Suppose that µ : M −→ [0,+∞] is a measure. Then the
function µ∗ : 2R −→ [0,+∞] defined by

µ∗(A) = inf
S∈Ω(A)

µ(S)

is an outer measure on R. (This outer measure will be referred to as the
outer measure induced by µ).

Proof. It is obvious that µ∗(∅) = 0. Let {Bn}∞
n=1 be a sequence of subsets

of R and let ε be an arbitrary positive real number. Observe that

∀n ∈ N \ {0} ∃ Sn ∈ Ω(Bn) : µ(Sn) 6 µ∗(Bn) +
ε

2n
.
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If A ⊆
∞⋃

n=1

Bn, then
∞⋃

n=1

Sn ∈ Ω(A) and hence

µ∗(A) 6
∞∑

n=1

µ(Sn) 6 ε+
∞∑

n=1

µ∗(Bn).

Since ε is arbitrary, the above inequalities yield µ∗(A) 6
∞∑

n=1

µ∗(Bn).

The outer measure induced by a measure on a family of prime ideals
is a slight modification of a well known measure-theoretical construction.
In the next section we give examples that illustrate and motivate this
modification.

2. Examples

We denote by (a) the principal ideal generated by an element a ∈ R.
Consider a further example of a “covering by prime ideals”.

Example 1. We assume that R is a unique factorization domain and
define Pirr(R) = {(0)} ∪ {(a) : a ∈ R, a is irreducible}. Observe that
Pirr(R) ⊆ Spec(R) and

⋃
Pirr(R) = R \R×. Moreover, if n ∈ N \ {0, 1}

and R = C[x1, . . . , xn], then Pirr(R) ∩ Max(R) = ∅.

Recall that for every ideal I of the ring of integers there exists exactly
one m ∈ N ∪ {0} such that I = (m). Notice also that Max(Z) = {(p) :
p ∈ P}, where P stands for the set of prime numbers.

Proposition 2. Let µ∗ : 2Z −→ [0,+∞] be the outer measure in-
duced by the counting measure on Max(Z), and let A ⊆ Z be such that
A \ {−1, 1} 6= ∅. Then

(i) µ∗({−1, 1}) = 0,
(ii) µ∗(A) = 1 if and only if

∃ d ∈ N \ {0, 1} ∀ k ∈ A \ {−1, 1} : d | k

(in particular, µ∗(A) = 1 whenever A is a singleton or a proper
ideal of Z),

(iii) µ∗(A) 6 |A|.
Moreover, in the case where A ∩ {−1, 1} = ∅ and A is a finite set,
µ∗(A) = |A| if and only if the elements of A are pairwise relatively prime.
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Proof. Since {−1, 1} = Z×, we have ∅ ∈ Ω({−1, 1}). Equality (i) follows.
By the above characterization of Max(Z) and the definition of counting

measure, µ∗(A) = 1 if and only if A \ {−1, 1} ⊆ (p1) for a prime number
p1. The latter condition means precisely that

∃ p1 ∈ P ∀ k ∈ A \ {−1, 1} : p1 | k.

Finally, if d ∈ N \ {0, 1}, k ∈ Z and d | k, then k is divisible by every
prime factor of d. Property (ii) follows.

Property (iii) is an immediate consequence of the definition of outer
measure and the fact that µ∗({k}) 6 1 for all k ∈ Z.

Assume that A ∩ {−1, 1} = ∅ and A is a finite set. Let us define
ℓ = |A|. Observe that µ∗(A) 6= |A| if and only if

∃ S ∈ Ω(A) : |S| 6 ℓ− 1.

Since the cardinality of A is greater than the cardinality of S, the latter
condition holds true if and only if

∃ s, t ∈ A∃ p2 ∈ P :

{
s 6= t,
s, t ∈ (p2),

and this means precisely that there exist two distinct elements of A which
are not relatively prime.

Let n ∈ N \ {0}. Consider a σ-algebra N of subsets of Cn, a measure
λ : N −→ [0,+∞], and the map

Φ : Cn ∋ z 7−→ {f ∈ C[x1, . . . , xn] : f(z) = 0} ∈ Max(C[x1, . . . , xn]).

The family M = {S ⊆ Max(C[x1, . . . , xn]) : Φ−1(S) ∈ N} is a σ-algebra
of subsets of Max(C[x1, . . . , xn]). The function η : M ∋ S 7→ λ(Φ−1(S)) ∈
[0,+∞] is a measure.

Let us define U = C[x1, . . . , xn]×. (Obviously, U = C \ {0}).

Proposition 3. If η∗ : 2C[x1,...,xn] −→ [0,+∞] is the outer measure
induced by η and A ⊆ C[x1, . . . , xn] is such that A \ U 6= {0}, then

η∗(A) = inf{λ(Z) : Z ∈ N, Z ∩ f−1(0) 6= ∅ for every f ∈ A \ C}.

Proof. If A ⊆ U , then {Z ∈ N : Z ∩ f−1(0) 6= ∅ for every f ∈ A \ C} =
N, and hence

inf{λ(Z) : Z ∈ N, Z ∩ f−1(0) 6= ∅ for every f ∈ A \ C} = 0 = η∗(A).
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By Hilbert’s Nullstellensatz, the map Φ is bijective. Consequently, M =
{Φ(Z) : Z ∈ N}. Suppose that A \ C 6= ∅. Then for any Z ∈ N the
following equivalences hold true:

Φ(Z) ∈ Ω(A) ⇐⇒ (∀ f ∈ A \ U ∃℘ ∈ Φ(Z) : f ∈ ℘) ⇐⇒

(∀ f ∈ A \ C ∃ z ∈ Z : f(z) = 0) ⇐⇒
(
∀ f ∈ A \ C : Z ∩ f−1(0) 6= ∅

)
.

(The second equivalence holds because 0 belongs to every ideal). Therefore,

η∗(A) = inf
S∈Ω(A)

η(S) =

= inf{λ(Φ−1(Φ(Z))) : Z ∈ N, Z ∩ f−1(0) 6= ∅ for every f ∈ A \ C},

which completes the proof.

Example 2. Let η∗ : 2C[x,y] −→ [0,+∞] be the outer measure induced by
the counting measure on Max(C[x, y]). Consider the set E = {f, g, h, k} ⊂
C[x, y], where

f(x, y) = x2 − y + 1, g(x, y) = y2, h(x, y) = xy − 1, k(x, y) = xy + 1.

Since f−1(0) ∩ g−1(0) ∩ h−1(0) ∩ k−1(0) = ∅ and f−1(0) ∩ g−1(0) 6= ∅,
we have η∗(E) ∈ {2, 3}. Observe that {f, g}, {f, h} and {f, k} are the
only two-element subsets of E which have a common zero. Consequently,
no three-element subset of E has a common zero. It follows, therefore,
that η∗(E) = 3.

Notice that in the example above, if I is a proper ideal of C[x, y], then
I ⊆ ℘ for an ideal ℘ ∈ Max(C[x, y]) and hence η∗(I) = 1.

Let K be a nonempty compact subset of Rn and let C(K,R) stand
for the ring of all the continuous functions f : K −→ R. Recall that
C(K,R)× = {f ∈ C(K,R) : f(x) 6= 0 for all x ∈ K}. The map

Ψ : K ∋ x 7−→ {f ∈ C(K,R) : f(x) = 0} ∈ Max(C(K,R))

is well known to be a bijection [3]. Consequently, if B is a σ-algebra of
subsets of K and ξ : B −→ [0,+∞] is a measure, then M = {Ψ(Z) : Z ∈
B} is a σ-algebra of subsets of Max(C(K,R)) and

η : M ∋ S 7→ ξ(Ψ−1(S)) ∈ [0,+∞]

is a measure. The obvious counterpart of Proposition 3 remains true.
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Example 3. Let η∗ : 2C(K,R) −→ [0,+∞] be the outer measure induced by
η. We will denote by W the set of all the polynomial functions f : K −→ R.
Since

∀x ∈ K ∃ f ∈ W : f−1(0) = {x},

we have η∗(W ) = η∗(C(K,R)) = ξ(K).
Now, suppose that K is the Euclidean closed unit ball and ξ is the

n-dimensional Lebesgue measure. If E stands for the set of all the radially
symmetric functions belonging to C(K,R) and L is the straight line
segment that joins the origin to a boundary point of K, then

∀ f ∈ E \ C(K,R)× : L ∩ f−1(0) 6= ∅.

Consequently, η∗(E) = ξ(L) = 0 whenever n > 2. It is easy to see that if
n = 1, then η∗(E) = 1.

3. General properties

In the theorem below (it is the main result of the paper) we use
the notations and assumptions of Proposition 1. For n ∈ N \ {0} and
A1, . . . , An ⊆ R we define A1 . . . An = {a1 . . . an : a1 ∈ A1, . . . , an ∈ An}.
Moreover, if A ⊆ R, then An = {an : a ∈ A} and A•n = A . . . A︸ ︷︷ ︸

n

.

Theorem 1. Let A,B ⊆ R and let C be a nonempty subset of R×. Then
(i) µ∗(R×) = 0,
(ii) µ∗(A) = µ∗(A \R×),
(iii) µ∗({0}) = min{µ∗(E) : E ⊆ R, E \R× 6= ∅},
(iv) ∀n ∈ N \ {0} : µ∗(An) = µ∗(A•n) = µ∗(A),
(v) µ∗(AC) = µ∗(A),
(vi) µ∗(AB) > max{µ∗(A), µ∗(B)} whenever A ∩R× 6= ∅ and

B ∩R× 6= ∅,
(vii) µ∗(AB) 6 µ∗(A) + µ∗(B),
(viii) µ∗(AB) = µ∗(A) whenever A ∩R× = ∅ and B ∩R× 6= ∅,
(ix) µ∗(AB) = min{µ∗(A), µ∗(B)} whenever A ∩R× = ∅ and

B ∩R× = ∅.

Proof. Properties (i) and (ii) are obvious.
Property (iii) follows from the facts that 0 /∈ R× and 0 belongs to

every ideal of R.
Fix a positive integer n. Let a1, . . . , an ∈ R. The product a1 . . . an is

not invertible if and only if there exists an index i ∈ {1, . . . , n} such that
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ai is not invertible. Similarly, a1 . . . an ∈ ℘ for an ideal ℘ ∈ Spec(R) if and
only if there exists an index i ∈ {1, . . . , n} such that ai ∈ ℘. Therefore,
Ω(An) = Ω(A•n) = Ω(A). Property (iv) follows.

Let a ∈ R and c ∈ R×. Observe that ac /∈ R× if and only if a /∈ R×.
Moreover,

∀℘ ∈ Spec(R) : ac ∈ ℘ ⇔ a ∈ ℘.

Consequently, Ω(AC) = Ω(A).

Suppose that C1 = A ∩ R× 6= ∅ and C2 = B ∩ R× 6= ∅. Since
AC2 ∪BC1 ⊆ AB, we have max{µ∗(AC2), µ∗(BC1)} 6 µ∗(AB). Property
(v) yields µ∗(AC2) = µ∗(A) and µ∗(BC1) = µ∗(B). This completes the
proof of (vi).

Let S ∈ Ω(A) and T ∈ Ω(B). Suppose that ab /∈ R× for some a ∈ A
and b ∈ B. Then a /∈ R× or b /∈ R×. By the definition of ideal, we get
therefore

ab ∈
⋃

S ∪
⋃

T .

Consequently, S ∪ T ∈ Ω(AB) and hence µ∗(AB) 6 µ(S) + µ(T ). Since
S and T are arbitrarily chosen, it follows that µ∗(AB) 6 µ∗(A) + µ∗(B).

Assume that A ∩R× = ∅ and C2 = B ∩R× 6= ∅. Then, by the defi-
nition of ideal, Ω(A) ⊆ Ω(AB) which implies that µ∗(AB) 6 µ∗(A). On
the other hand, by (v), we have µ∗(A) = µ∗(AC2) 6 µ∗(AB). Therefore,
µ∗(AB) = µ∗(A).

Finally, assume that A ∩R× = ∅ and B ∩R× = ∅. Then µ∗(AB) 6
min{µ∗(A), µ∗(B)} (cf. the proof of property (viii)). Suppose now that
µ∗(AB) < min{µ∗(A), µ∗(B)}. Then

∃ U ∈ Ω(AB) :

{
µ∗(
⋃

U) < µ∗(A),
µ∗(
⋃

U) < µ∗(B).

(Notice that µ∗(
⋃

U) 6 µ(U)). Consequently,

µ∗(A \
⋃

U) > µ∗(A) − µ∗(A ∩
⋃

U) > µ∗(A) − µ∗(
⋃

U) > 0

and, in the same way, µ∗(B \
⋃

U) > 0. Since AB∩R× = ∅ and therefore
AB ⊆

⋃
U , we get

∃ a ∈ A∃ b ∈ B ∃℘ ∈ U ⊆ Spec(R) :

{
ab ∈ ℘,
a /∈ ℘, b /∈ ℘,

a contradiction. Property (ix) follows.
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We will conclude the paper with an example illustrating the behavior
of µ∗(AB) in the case where A and B both contain invertible elements.

Example 4. Let µ∗ : 2Z −→ [0,+∞] be the outer measure induced by
the counting measure on Max(Z). If A = {1, 2, 3}, B1 = {1, 2, 3, 5}, B2 =
{1, 2, 5, 7} and B3 = {1, 5, 7, 11}, then µ∗(A) = 2, µ∗(B1) = µ∗(B2) =
µ∗(B3) = 3, µ∗(AB1) = 3, µ∗(AB2) = 4 and µ∗(AB3) = 5.

References

[1] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Westview
Press, 1994.

[2] H. Federer, Geometric Measure Theory, Springer, 1969.

[3] W. Rudin, Functional Analysis, McGraw-Hill, 1991.

Contact information

D. Dudzik Institute of Mathematics,
Pedagogical University of Cracow,
ul. Podchora̧żych 2,
30-084 Kraków, Poland
E-Mail(s): dariusz.dudzik@gmail.com

M. Skrzyński Institute of Mathematics,
Cracow University of Technology,
ul. Warszawska 24,
31-155 Kraków, Poland
E-Mail(s): pfskrzyn@cyf-kr.edu.pl

Received by the editors: 15.10.2015
and in final form 05.01.2016.



Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 21 (2016). Number 1, pp. 59–68

© Journal “Algebra and Discrete Mathematics”

Construction of self-dual binary
[22k, 22k−1, 2k]-codes

Carolin Hannusch∗ and Piroska Lakatos

Communicated by V. I. Sushchansky

Abstract. The binary Reed-Muller code RM(m − k,m)
corresponds to the k-th power of the radical of GF (2)[G], where G
is an elementary abelian group of order 2m (see [2]). Self-dual RM-
codes (i.e. some powers of the radical of the previously mentioned
group algebra) exist only for odd m.

The group algebra approach enables us to find a self-dual code
for even m = 2k in the radical of the previously mentioned group
algebra with similarly good parameters as the self-dual RM codes.

In the group algebra

GF (2)[G] ∼= GF (2)[x1, x2, . . . , xm]/(x2

1 − 1, x2

2 − 1, . . . x2

m − 1)

we construct self-dual binary C = [22k, 22k−1, 2k] codes with prop-
erty

RM(k − 1, 2k) ⊂ C ⊂ RM(k, 2k)

for an arbitrary integer k.
In some cases these codes can be obtained as the direct product

of two copies of RM(k−1, k)-codes. For k > 2 the codes constructed
are doubly even and for k = 2 we get two non-isomorphic [16, 8, 4]-
codes. If k > 2 we have some self-dual codes with good parameters
which have not been described yet.
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Introduction and Notation

Let K be a finite field of characteristic p and let V be a vector space
over K, and C be a subspace of V. Then C is called a linear code. Let
x, y ∈ C, then the Hamming weight of x is the number of its non-zero
coordinates and the Hamming distance of x and y is the weight of x− y.
The Hamming distance (or weight) of a linear code C is the minimum of
all Hamming distances of its codewords.

In the study of binary codes C ⊆ V it is convenient that the space
V has an additional algebraic structure. For example, if V is a group
algebra K[G], where G is a finite abelian p-group and C is an ideal of
such a group algebra, then C is called an abelian group code.

The Hamming distance of a linear code determines the ability of
error-correcting property of the code. The authors in [6] proved that for

any 1 6 d 6
[
m+1

2

]
there exists an Abelian 2-group Gd that a power

of the radical is a self-dual code with parameters (2m, 2m−1, 2d). These
codes are ideals in the group algebra GF (2)[Gd] and they are “monomial
codes” in the sense of [5] as defined below.

Throughout, p will denote a prime and K a field of p elements. Let
G = 〈g1〉 × · · · × 〈gm〉 ∼= Cmp be an elementary abelian p-group of order
pm i.e. K[G] is a modular group algebra, then the group algebra K[G]
and Kn are isomorphic as vector spaces by the mapping

ϕ : K[G] 7→ Kn, where ϕ

(
n∑

i=1

aigi

)
7→ (a1, a2, . . . , an) := c ∈ C.

Reed-Muller (RM) binary codes were introduced in [12] as binary functions.
These codes are frequently used in applications and have good error
correcting properties. Now we are looking for self-dual codes in the radical
of K[G] with similarly good parameters as the RM codes.

If K is a field of characteristic 2 Berman [2] and in the general case
Charpin [3] proved that all Generalized Reed-Muller (GRM) codes coincide
with powers of the radical of the modular group algebra of K[G], where G
is an elementary abelian p-group. This group algebra is clearly isomorphic
with the quotient algebra

GF (p)[x1, x2, . . . xm]/(xp1 − 1, . . . xpm − 1).

Self-dual RM-codes (i.e. some power of the radical of the group algebra

GF (2)[G]) exist only for odd m. They are (2m, 2m−1, 2
m+1

2 )-codes.
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For any basis {g1, g2, . . . gm} of such a group G consider the algebra
isomorphism µ mapping gj 7→ xj (1 6 j 6 m), and therefore we have the
algebra isomorphism

Ap,m
∼= GF (p)[x1, x2, . . . , xm]/(xp1 − 1, xp2 − 1, . . . xpm − 1),

where GF (p)[x1, x2, . . . , xm] denotes the algebra of polynomials in m
variables with coefficients in GF (p).

It is known ([7]) that the set of monomial functions (ki ∈ N ∪ 0)
{

m∏

i=1

(xi − 1)ki where 0 6 ki < p

}

form a linear basis of the radical Jp,m. Clearly the nilpotency index of
Jp,m (i.e. the smallest positive integer t, such that J t

p,m = 0) is equal to
t = m(p− 1) + 1.

Introducing the notation

Xi = xi − 1, (1 6 i 6 m)

(which will be used from now on) we have the following isomorphism

Jp,m ≃ GF (p)[X1, X2, . . . , Xm]/(Xp
1 , X

p
2 , . . . X

p
m). (1)

The k-th power of the radical consists of reduced m-variable (non-
constant) polynomials of degree at least k, where 0 6 k 6 t− 1, where
t = m(p− 1) + 1.

J k
p,m = GRM(t− 1 − k,m) = 〈

m∏

i=1

(Xi)
ki |

m∑

i=1

ki > k (0 6 ki < p)〉. (2)

Such a basis was exploited by Jennings [7].
By (2) the quotient space J k

p,m/J
k+1
p,m has a basis

{
m∏

i=1

Xki
i + J k+1

p,m , where 0 6 ki < p and
m∑

i=1

ki = k

}
. (3)

Remark 1. It is known [15] that the dual code C⊥ of an ideal C in Ap,m

coincides with the annihilator of C∗, where C∗ is the image of C by the
involution ∗ defined on Ap,m by

∗ : g 7→ g−1 for all g ∈ G from Ap,m to itself.

The annihilator of J k
p,m is obviously J

m(p−1)+1−k
p,m . Thus the dual codes

of GRM-codes are GRM-codes and

GRM(k,m)⊥ = GRM(m(p− 1) − k − 1,m).

It follows that for m = 2k+ 1 and p = 2 the code GRM(k,m) is self-dual.
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1. Construction of binary self-dual codes

Let us consider the group algebra

A2,m = GF (2)[x1, . . . xm]/(x2
1 − 1, x2

2 − 1, . . . x2
m − 1) ≃ GF (2)[Cm2 ]

as a vector space with basis

xa1
1 x

a2
2 . . . xam

m , ai ∈ {0, 1}. (4)

It is known ([7]) that the radical J2,m of this group algebra is generated
by the monomials Xi = xi − 1 = xi + 1.

Definition 1 ([5]). The code C in J2,m (see (1)) is said to be a monomial
code if it is an ideal in A2,m generated by some monomials of the form

Xk1
1 Xk2

2 . . . Xkm
m , where 0 6 ki 6 1 (5)

The codes we intend to study are monomial codes.

For p = 2 using the usual polynomial product in the Boolean monomial
Xk1

1 Xk2
2 . . . Xkm

m (ki ∈ {0, 1}) we have

Xk1
1 Xk2

2 . . . Xkm
m = (x1 + 1)k1(x2 + 1)k2 . . . (xm + 1)km

and the Hamming weight in the basis (4) of this monomial equals
m∏
i=1

(1+ki).

Example. Let G be an elementary abelian group of order 2m, m > 2.
Define the codes Cj as ideals in K[G] generated by Xj = xj − 1. These
codes are binary self-dual [2m, 2m−1, 2] codes and they are self-dual since
Cj = C⊥

j = 〈Xj〉. Further, this code is a direct sum of [2, 1, 2]-codes.
The dimension of the code Cj is 2m−1, the same as the dimension of the
radical of the group algebra GF (2)[H], where H is an elementary abelian
2-group of rank m− 1. The minimal distance of Cj is d = 2. This follows
from the fact that the element Xj = xj + 1 is included in the basis of Cj .
Thus, Cj is a self-dual [2m, 2m−1, 2]-code.

By Remark 1 one can see that a power of the radical of a modular
group algebra is self-dual if and only if the nilpotency index of the radical
is even. In our case (when G is elementary abelian of order pm) the
nilpotency index is even if and only if p = 2 and m is odd.

If m is odd, the binary RM-codes with parameters [2m, 2m−1, 2
m+1

2 ]
are self-dual and they are the m+1

2 -th powers of the radical A2,m.
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For m = 2k where k is an arbitrary integer, we have a new method to
construct a doubly-even class of binary self-dual C codes with parameters
[2m, 2m−1, 2k]. For this code C we have RM(k− 1, 2k) ⊂ C ⊂ RM(k, 2k).

In the case of m = 4, we get two known extremal [16, 8, 4] codes (listed
in [14]) and for m > 4 these codes are not extremal. A doubly-even (i.e.
its minimum distance is divisible by 4) self-dual code is called extremal,
if we have for its minimum distance d = 4

[
n
24

]
+ 4, where n denotes the

code length (see Definition 39 and Lemma 40 in [8]).

To abbreviate the description of our codes, we shall refer to the mono-
mial Xk1

1 . . . Xkm
m as the m-tuple (k1, k2, . . . , km) ∈ {0, 1, . . . , p− 1}m of

exponents.

Using Plotkin’s construction of RM-codes (see Theorem 2 [13], Ch. 13,
§ 3) we obtain the following property of RM-codes.

Lemma 1. If m is even and m = 2k, then RM(k−1,m) = J k+1
2,m contains

a proper subspace which is isomorphic to RM(k − 1,m− 1).

Proof. Recall, that the set of monomials in the basis (2) of J k+1
2,m is

invariant under the permutations of the variables Xi, i.e. the set of binary
m-tuples (k1, k2, . . . , km) assigned to the basis (2) is invariant under the
permutation of all elements of the symmetric group Sm. Take the basis
elements with km = 1. Then the monomials Xk1

1 . . . Xkm
m of degree m can

be projected by π : (k1, k2, . . . , km−1, 1) 7→ (k1, k2, . . . , km−1). In this way
we get a basis of J k

2,m−1
∼= RM(k − 1,m− 1).

For m = 2k denote the set of all k-subsets of {1, 2, . . . , 2k} by X.
The elements of X can be described by binary sequences (k1, k2, . . . , km)
consisting of k ‘0‘-s and k ‘1‘-s in any order. Clearly, the cardinality of
the set X is

(2k
k

)
.

We say that the subset Y of binary m-tuples in X is complement free
if y ∈ Y implies 1 − y /∈ Y, where 1 = (1, 1, . . . , 1). Denote the set of
monomials corresponding to the set of exponents in X by X . Denote the
set with maximum number of pairwise orthogonal monomials in X by Y
and their corresponding exponents in X by Y.

Example. For m = 6 the quotient space J 3
2,m/J

4
2,m has a basis with(6

3

)
= 20 elements, where the binary 6-tuples corresponding to the coset
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representative monomials (the set X) are listed in pairs of complements:

(1, 1, 1, 0, 0, 0) (0, 0, 0, 1, 1, 1)
(1, 1, 0, 1, 0, 0) (0, 0, 1, 0, 1, 1)
(1, 1, 0, 0, 1, 0) (0, 0, 1, 1, 0, 1)
(1, 1, 0, 0, 0, 1) (0, 0, 1, 1, 1, 0)
(1, 0, 1, 1, 0, 0) (0, 1, 0, 0, 1, 1)
(1, 0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 1)
(1, 0, 1, 0, 0, 1) (0, 1, 0, 1, 1, 0)
(1, 0, 0, 1, 1, 0) (0, 1, 1, 0, 0, 1)
(1, 0, 0, 1, 0, 1) (0, 1, 1, 0, 1, 0)
(1, 0, 0, 0, 1, 1) (0, 1, 1, 1, 0, 0)

and we have 2
1
2 (6

3) = 210 complement-free sets. For example the following
complement free sets Y and Y of 10 elements:

Y Y
(1, 1, 1, 0, 0, 0), X1X2X3

(0, 0, 1, 0, 1, 1), X3X5X6

(1, 1, 0, 0, 1, 0), X1X2X5

(0, 0, 1, 1, 1, 0), X3X4X5

(1, 0, 1, 1, 0, 0), X1X3X4

(0, 1, 0, 1, 0, 1), X2X4X6

(0, 1, 0, 1, 1, 0), X2X4X5

(0, 1, 1, 0, 0, 1), X2X3X6

(1, 0, 0, 1, 0, 1), X1X4X6

(1, 0, 0, 0, 1, 1), X1X5X6

Theorem 1. Let C be a binary code with RM(k−1, 2k) ⊂ C ⊂ RM(k, 2k)
with the following basis of the factorspace C/RM(k − 1, 2k)

{
m∏

i=1

Xki
i + RM(k − 1, 2k), where ki ∈ {0, 1} and

m∑

i=1

ki = k

}
, (6)

where the set of the exponents (k1, k2, . . . , km) is a maximal (with cardinal-

ity 2
1
2 (2k

k ) ) complement free subset of X. Then C forms a [22k, 22k−1, 2k]
self-dual doubly-even code.

Proof. Let G be an elementary abelian group of order 2m, where m =
2k, k > 2. By the group algebra representation of RM-codes and the
definition of C we have the relation J k+1

2,m ⊂ C ⊂ J k
2,m.
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For m = 2k the set X is the set of coset representatives of the quotient
space J k

2,m/J
k+1
2,m , i.e. the set of monomials satisfying (6).

Clearly, two monomials Xk1
1 Xk2

2 . . . Xkm
m and X l1

1 X
l2
2 . . . X lm

m are or-
thogonal, i.e. their product is zero, if for some i : 1 6 i 6 m we have ki = li.

Thus, the elements in the radical corresponding to these monomials
are orthogonal if their exponent m-tuples belong to a complement free
set.

Them-tuples (k1, k2 . . . km) have to be complement free in Y, otherwise
the corresponding monomials in Y are not orthogonal. Clearly Y is a
complement free subset of X (given by (4)) with cardinality 1

2

(2k
k

)
=(2k−1

k−1

)
.

By definition, C = 〈 J k+1
2,m

⋃
Y 〉 is a subspace of the radical J2,m of

the group algebra A2,m generated by the union of J k+1
2,m and Y. For the

dimension of C we have

dim(C) = dim(RM(k−1,m))+
1

2

(
2k

k

)
= 1+

k−1∑

i=1

(
2k

i

)
+

1

2

(
2k

k

)
= 22k−1.

It follows that C is self-dual. Since a binary self-dual code contains a word
of weight 2 if and only if the generator matrix has two equal columns, we
have our self-dual code to be doubly-even.

Each monomial in Y has the same weight 2k, that is the minimal
distance of C. Using the identities for the monomials involved in the basis
of our codes

xi(xj + 1) = (xi + 1)(xj + 1) + (xj + 1) and (xi + 1)2 = 0,

we easily obtain that C (which is subspace of J2,m) is an ideal in the
group algebra GF (2)[G].

Theorem 2. Let Y and Y be sets defined above and let C be the code
defined in Theorem 1. Suppose that ki = 0 for some i : 1 6 i 6 m in each
element of the subset Y, (i.e. the variable Xi is missing in each monomial
of Y). Then we have the isomorphism

C ≃ RM(k − 1, 2k − 1) ⊕ RM(k − 1, 2k − 1).

Proof. The elements of Y are of the form

Xk1
1 . . . Xkm

m = (x1 + 1)k1(x2 + 1)k2 . . . (xm + 1)km , where
m∑

i=1

ki = k
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and their weight is 2k. Project the set of monomials with ki = 0 in
C = 〈 J k+1

2,m

⋃
Y 〉 onto the monomials Xk1

1 , . . . , X
ki−1

i−1 , X
ki+1

i+1 , . . . , X
km
m .

The image C1 of this projection is a self-dual RM(k− 1, 2k− 1)-code with
parameters [22k−1, 22k−2, 2k].

By Lemma 1 the elements of the basis of Jk+1
2,m with ki = 1 generate a

subspace C2 which is isomorphic to RM(k− 1, 2k− 1). The intersection of
C1 and C2 is empty. Therefore C ≃ C1⊕C2 and the statement follows.

Remark 2. In particular, by Theorem 1 we get [16, 8, 4] self-dual codes
for m = 4. These codes are extremal doubly-even codes. Using the SAGE
computer algebra software we may check easily the classification of binary
self-dual codes listed in [14].

There are two cases:
1) If ki = 0 for some i : 1 6 i 6 m in each element of the set Y , then

we get the direct sum E8 ⊕E8, where E8 is the extended Hamming
code.

2) otherwise we get an indecomposable [16, 8, 4] code (which is denoted
by E16 in [14]).

These codes are formally self-dual. Both classes have the following
weight function:

z16 + 28z12 + 198z8 + 28z4 + 1

Remark 3. It is known that for each odd m > 1 there exists a self-dual
affine-invariant code of length 2m over GF (2), which is not a self-dual
RM-code [4].
The factor space J k

p,m/J
k+1
p,m is an irreducible AGL(m,GF (p)) module.

Thus the code C is not affine invariant (see [1] Theorem 4.17 ) as the
powers of the radical of Ap,m are. The code C cannot be an extended
cyclic code by Corollary 1 in [4].

Remark 4. Using the inclusion-exclusion principle a formula can be
given for the dimension of the RM(k + 1,m)-code (see for example in [1]
Theorem 5.5). If p = 2 and 0 6 k 6 m, then we have

dim C = 1
2

(2k
k

)
+

m∑
i=k+1

2k∑
j=0

(−1)j
(2k
j

)(2k−2j+i−1
i−2j

)
=

m∑
i=k+1

(2k
i

)
+ 1

2

(2k
k

)
,

where i− 2j > 0.

The codes constructed in the current paper are worth to be studied
further. Already for k = 2 we get two non-isomorphic codes with the
same parameters. It would be interesting to determine all classes of codes
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up to isomorphism for each arbitrary integer k and to determine their
automorphism group. The code C in Theorem 1 is not affine-invariant
and first computations show that the automorphism group of C with
ki = 0 differs from the automorphism group of C with ki = 1 for some
1 6 i 6 m.

We can formulate the following open questions about the code C of
Theorem 1:

1) Does there exist a classification for all complement-free sets for
arbitrary even m?

2) How many non-equivalent (in any sense) self-dual binary codes exist
for fixed m and p?

3) Compare the automorphism groups of the codes C defined in Theo-
rem 1 with the automorphism group of RM-codes.

4) Find decoding algorithms for C.
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A survey of results
on radicals and torsions in modules

A. I. Kashu

Abstract. In this work basic results of the author on radi-
cals in module categories are presented in a short form. Principal
topics are: types of preradicals and their characterizations; classes of
R-modules and sets of left ideals of R; notions and constructions as-
sociated to radicals; rings of quotients and localizations; preradicals
in adjoint situation; torsions in Morita contexts; duality between
localizations and colocalizations; principal functors and preradicals;
special classes of modules; preradicals and operations in the lattices
of submodules; closure operators and preradicals.

The present review contains the formulations of basic results of the
author in the theory of radicals and torsions in modules. We preserve the
chronological order, as well as the terminology and notations of surveyed
works of References [1–66]. For convenience the article is divided into
sections, dedicated to cycles of works with close subjects.

1. Radicals in modules: general questions ([1–6])

The theory of radicals and torsions in modules has its source in works of
P. Gabriel, S.E. Dickson, J.P. Jans, J.-M. Maranda, K. Morita, J. Lambek,
O. Goldman and many other algebraists. Fundamental books in this field
were written by L.A. Skornyakov, A.P. Mishina (1969), J.S. Golan (1976),
B. Stenström (1975), L. Bican, T. Kepka, P. Nemec (1982).

In the article [1] some general questions on radicals in modules are
discussed, the characterizations of hereditary and cohereditary radicals

2010 MSC: 16D90, 16S90.
Key words and phrases: ring, module, lattice, (pre)radical, torsion, localization,

adjoint functor, Morita context, closure operator.
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are shown by suitable conditions on torsion or torsion free classes of
modules. The upper and lower radicals over the given class of modules,
as well as special and cospecial radicals are studied. The filters of left
ideals corresponding to special radicals are described. In particular, the
following theorem is proved.

Theorem 1.1. A radical filter F is special if and only if the following
condition holds:

(∗) If I ∈ L(RR), I ⊆ J , J is an irreducible left ideal and (J : λ) ∈ F

for some λ /∈ J , then I ∈ F.

In the paper [2] the axiomatic basis of torsions in R-modules is
indicated in the terms of left ideals of R: technique of the work by classes
of R-modules is adapted to the sets of left ideals of R. In particular, the
approach of S.E. Dickson to torsion theories by two classes of modules is
transferred in the terms of ring R by two sets (F1,F2) of left ideals of R.
Properties of sets F1 and F2, as well as the relations between them, are
shown.

Similar ideas are developed in the work [4], where the complete de-
scription of relations between the classes of modules and the sets of
left ideals of R is obtained. These relations are expressed by mappings
Φ and Ψ, where: Φ(M) =

⋃
M∈M π(M), M is a class of modules and

π(M) = {(0 : m) | m∈M}; Ψ(F)={M ∈R-Mod | π(M)⊆F}, F⊆L(RR).
A class M ⊆ R-Mod is called closed if M = ΨΦ(M); the set F ⊆ L(RR)

is called closed if F = ΦΨ(F). The descriptions of closed classes and closed
sets are obtained. Namely, the class M is closed if and only if the following
condition holds:

(A1) M ∈ M ⇔ Rm ∈ M for every m ∈ M .

The set F is closed if and only if it satisfies the condition:

(a1) If I ∈ F, then (I : a) ∈ F for every a ∈ R.

Further, the properties of the class M are considered to be closed
under: (A2) homomorphic images; (A3) direct sums; (A4) direct products;
(A5) extensions; (A6) essential extensions. In parallel, for arbitrary set F

of left ideals of R special conditions (a2), (a3), . . . , (a6) are considered.

Theorem 1.2. The mappings Φ and Ψ define an isotone bijection between
closed classes of R-modules and closed sets of left ideals of R.

Theorem 1.3. Let M and F correspond each to other in the sense of
Theorem 1.2. The class M satisfies the condition (An) if and only if the
set F satisfies the condition (an), where n = 2, 3, . . . , 6.
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So basic closure conditions on the class M are “translated” in the
terms of left ideals. Combining suitable conditions, this result gives us the
descriptions by left ideals of many types of preradicals, such as pretorsions,
torsions, cotorsions, special radicals, etc.

In the article [3] some constructions of radicals of special types using
the properties of elements are shown. Some concrete examples are indi-
cated, in particular the multiplicative closed systems S of elements of the
ring R are considered. It is proved that the set of S-torsion elements of
each module M is a submodule of M if and only if S satisfies the left Ore
condition. Moreover, the condition is indicated when the associated to S
radical rS is a torsion.

The works [5] and [6] represent the thesis for a candidate’s degree
and its short exposition.

2. Radical closures ([7, 9, 20])

Studying idempotent radicals of R-Mod, their relations with closure
operators of special type were observed. If r is an idempotent radical of
R-Mod, then for every pair N ⊆ M , where N ∈ L(RM), denoting by N
such submodule of M that N/N = r(M/N), we obtain a closure operator
N 7−→ N in L(RM) for every M ∈ R-Mod.

In the paper [7] the notion of radical closure of R-Mod is introduced
and studied.

Theorem 2.1. There exists an isotone bijection between idempotent
radicals of R-Mod and radical closure of this category.

In continuation it is shown that radical closures of R-Mod can be
described both by dense submodules and by closed submodules. For this
purpose properties of the functions Ft1 and Ft2 are shown, which in every
module M distinguish the set of dense submodules Ft1(M) and the set of
closed submodules Ft2(M).

Theorem 2.2. There exists a bijection between radical closures of R-Mod
and functions F of the type Ft1 (as well as functions F of the type Ft2).

The application of this result to torsions is indicated: the hereditary
radical closures are obtained which uniquely correspond to the torsions
of R-Mod. Such a radical closure can be reduced to a closure operator t
in L(RR) with the condition: t(I : a) =

(
t(I) : a

)
for every a ∈ R.

Some types of radicals can be described by radical closures.
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In the work [9] the characterizations of torsions and of stable radicals
are obtained in terms of radical closures.

Theorem 2.3. For every idempotent radical r the following conditions
are equivalent:

1) r is a torsion;
2) {F1(A)} ∩B ⊆ F1(B) for every pair A ⊆ B;
3) tr(B ∩ C,A) = tr(B,A) ∩ tr(C,A) for every B,C ∈ L(A);
4) if B,C ∈ F1(A) then B ∩ C ∈ F1(A) for every module A.

Dually the description of stable radicals is obtained.

3. Divisibility, generators, cogenerators ([8, 10, 11, 20])

Some notions and constructions closely related to radicals of modules
are studied. In particular, some known notions are generalized with respect
to radicals or torsions.

In the article [8] r-divisible modules are investigated. They represent
a generalization of injectivity with respect to an idempotent radical r.
Some characterizations of r-divisible modules are indicated. Moreover,
the r-divisible envelope Er(A) of a module A is constructed. Er(A) exists
for every module A and is unique up to an isomorphism.

Theorem 3.1. Let B ⊆ A,A ∈ R-Mod and r be an idempotent radical.
The following conditions are equivalent:

1) A is a maximal r-essential extension of B;
2) A is a minimal r-divisible module containing B;
3) A is an r-divisible and r-essential extension of B.

As an application, using r-divisible envelope Er(RR) of the module RR,
an analogue of ring of quotients in the sense of Y. Utumi is constructed.

In the paper [11] some modifications of the notions of generator and
cogenerator with respect to some preradicals are studied. Any class of
modules M defines in R-Mod preradicals rM and rM by the rules:

rM(X) =
∑{

Im f | f : M → X,M ∈ M
}
,

rM(X) =
⋂{

Ker g | g : X → M,M ∈ M
}
.

If M = {M}, we have the preradicals rM and rM .

The class R(rM) contains all modules for which M is a generator class,
and similarly P(rM) contains all modules for which M is a cogenerator
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class. A module M is a generator (cogenerator) of a preradical r if
r = rM (r = rM). Every pretorsion has a generator module and every
torsion has an injective cogenerator. Generators or cogenerators for some
concrete preradicals are indicated.

Theorem 3.2. 1) The module M is a cogenerator of the radical rR if
and only if M is faithful and torsion free in the sense of H. Bass.

2) The module M is a generator of the preradical rE(R) if and only if
it is a faithful, fully divisible and endofinite module.

3) The module M is a cogenerator of a Lambek’s torsion rE(R) if and
only if M is rE(R)-torsion free and contains a faithful, fully divisible
module.

For every M ∈ R-Mod the radical rM , where rM(X) =
⋂

{Ker f |
f : X → M}, is the greatest between the radicals r such that r(M) = 0.

In the article [10] the following question is discussed: for which modules
M the radical rM is idempotent or it is a torsion.

Theorem 3.3. For every module M ∈ R-Mod the following conditions
are equivalent:

1) rM is a torsion;
2) the class P(rM) is closed under extensions and R(rM) is hereditary;
3) rM = rE(M), where E(M) is the injective envelope of M ;
4) M is a pseudo-injective module

(
i.e. E(M) ∈ P(rM)

)
.

Some applications in the particular case M = RR are considered.

4. Rings of quotients as bicommutators ([12, 13, 35, 36])

A problem of special interest is to determine when the ring of quotients
with respect to a torsion has a simple form, in particular when it can
be expressed by some known constructions. One of the most convenient
forms of representation is the bicommutator of a suitable module.

If MR ∈ Mod-R and E = HomR(M,M) is the ring of endomorphisms,
then M is a left E-module and the ring S = HomE(EM, EM) is called
the bicommutator of MR. Then we have the canonical homomorphism
h : R → S, defined by the rule (x)[h(r)] = xr, where r ∈ R, x ∈ MR and
h(r) : EM → EM .

Let MR be a pseudo-injective module. Then the radical rM of Mod-R
is a torsion, so it defines a localization functor Qr

M
. In particular, the ring

of quotients Qr
M

(RR) with canonical homomorphism σ : R → Qr
M

(RR)
is defined.
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In the paper [12] the necessary and sufficient conditions for coincidence
of ring of quotients Qr

M
(RR) with the bicommutator of MR are shown.

We denote by F(rM) the radical filter of the torsion rM .

Theorem 4.1. The bicommutator S of the pseudo-injective module MR

is the right ring of quotients of R with respect to rM if and only if the
following conditions hold:

(A) for every homomorphism f : SR → MR there exists x ∈ M such that
f(s) = xs for every s ∈ S;

(B) if K ∈ F(rM), then every homomorphism from HomR(KR,MR)
of the form ϕx can be extended to ϕx : RR → MR, where ϕ ∈
HomR(KR, SR), x ∈ M and ϕx acts by the rule ϕx(k) = xϕ(k),
k ∈ K.

From this theorem some results of J. Lambek (1971), K. Morita (1971)
and H.H. Storrer (1971) follow as particular cases.

The similar question on the coincidence of ring of quotients with the bi-
commutator of suitable module is discussed in the work [13]. The situation
is studied when by the module MR the ring QM(R) can be constructed as
the rM -closure of R-module R/K in E(R/K), where K = (0 : M). The
main result is the following.

Theorem 4.2. Let MR be a K-fully divisible module, where K = (0 : M)
is a torsion ideal of R. The bicommutator S of MR coincides with the ring
of quotients QM(R) if and only if MR is a module of type Fh (in the sense
of K. Morita) and the canonical homomorphism h : R → S is essential.

We obtain as corollaries the following statements:

1) If MR is a cofaithful and fully divisible module, then QM(R) ∼= S;
2) If MR is an injective and endofinite module, then QM(R) ∼= S;
3) If MR is injective, then QM(R) ∼= S if and only if MR is a module

of type Fh.

5. Preradicals and adjointness ([14, 15, 20, 35, 36])

Further investigations of radicals in modules require the most intensive
utilization of categorical methods, in particular, of adjoint functors and
their properties.

In the article [14] preradicals associated to the pair of adjoint func-

tors R-Mod
T

//

S
oo B are studied, where B is an abelian category
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and T is left adjoint to S. Then there exist associated natural transforma-
tions Φ: 1R-Mod → ST and Ψ: TS → 1B. Preradicals generated by this
situation are studied, the relations between them are elucidated and also
criteria of their coincidence are shown.

In particular, the radical r is defined by the rule r(M) = Ker ΦM

and if the functor T is exact, then r is a torsion. Therefore r defines a
localization functor Lr.

Furthermore, the functor Qr : R-Mod → R-Mod is considered, where
Qr(M) is the r-closure of Im ΦM in ST (M). The question when these
functors (Lr and Qr) coincide is studied.

Theorem 5.1. Let T be a selfexact functor and r be a torsion. Then for
every module M ∈ R-Mod the module Qr(M) coincides with the module
of quotients of M with respect to r (i.e. Qr = Lr).

Theorem 5.2. Let T be a selfexact functor and r be a torsion. Then the
following conditions are equivalent:

1) Qr(M) = Im ΦM ;
2) Im ΦM is an rM-injective module.

These statements generalize some results of K. Morita (1971), J. Lam-
bek (1971) and J.A. Beachy (1974).

In the paper [15] the same adjoint situation (T, S) is considered and
the question on the correspondences between preradicals (torsions) of the
categories R-Mod and B is studied. Some methods of transition from
preradicals of R-Mod to preradicals of B and inversely are indicated.

In particular, if r is a preradical of R-Mod, then the preradical r∗

of B is defined by the rule:

r∗(B) = Im (ΨB · T (iB)) ,

where B ∈ B, iB : r (S(B)) → S(B) is the inclusion and the right part is

the image of composition T
(
r (S(B))

) T (iB)
// TS(B)

ΨB
//B.

Similarly the inverse transition s 7−→ s∗ is defined for an arbitrary
preradical s of B.

Theorem 5.3. The functions r∗ and s∗ are preradicals. The operators
r 7−→ r∗ and s 7−→ s∗ preserve the order of preradicals. Moreover, the
following relations hold:

r 6 r∗∗, (r1 ∨ r2)∗ = r∗
1 ∨ r∗

2, (r1 · r2)∗ 6 r∗
1 · r∗

2,

s > s∗∗, (s1 ∧ s2)∗ = s∗
1 ∧ s∗

2, (s1 · s2)∗ > s∗
1 · s∗

2.
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Theorem 5.4. 1) The operator r 7−→ r∗ preserves the idempotence
of preradicals;

2) If T is exact and Ψ is an equivalence, then the operator r 7−→ r∗

preserves the hereditary property;
3) If S is exact, then the operator r 7−→ r∗ preserves the cohereditary

property.

Some similar results are obtained for the operator s 7−→ s∗. This
situation is analyzed more detailed in the case when T is exact and Ψ is
a natural equivalence. The main result is the following.

Theorem 5.5. Let T be an exact functor and Ψ be a natural equivalence.
Then the operators r 7−→ r∗ and s 7−→ s∗ establish an isotone bijection
between torsions r of R-Mod such that r > rT , and all torsions of B,
where rT (M) = Ker ΦM .

6. Torsions in Morita contexts ([16–18, 27])

Morita context is an important construction with a considerable role
in studying the equivalence of module categories (Morita theorems). We
use Morita contexts for the investigation of relations between torsions
of two module categories. It turned out that in this case there exists a
remarkable isomorphism between two parts of the lattices of torsions.

In the article [17] an arbitrary Morita context (R, RVS, SWR, S)
is considered with bimodule homomorphisms ( , ) : V ⊗ SW → R and
[ , ] : W ⊗ RV → S. The following functors are studied:

R-Mod
H=HomR(V, - )

//

H∗=HomS(W, - )
oo S-Mod.

The trace-ideals T = Im( , ) and L = Im[ , ] generate torsions r0 in R-Mod
and s0 in S-Mod such that:

P(r0) = {RM | Tm = 0 ⇒ m = 0}, P(s0) = {SN | Ln = 0 ⇒ n = 0}.

We use the notations:

L(R)
(
L(S)

)
is the lattice of torsions of R-Mod (S-Mod),

L0(R) = {r ∈ L(R) | r > r0}, L0(S) = {s ∈ L(S) | s > s0}.

Theorem 6.1. The functors H and H∗ determine an isotone bijection
between torsions r of R-Mod such that r > r0 and torsions s of S-Mod
such that s > s0, i.e. L0(R) ∼= L0(S).
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This is a key result and it will be repeatedly used in continuation.
The particular cases are:

1) If RV is a generator of R-Mod, then r0 = 0, therefore L(R) ∼= L0(S);
2) If RV if finitely generated and projective, then s0=0, so L0(R)∼=L(S);
3) If the rings R and S are Morita equivalent, then L(R) ∼= L(S).
We remark that the bijection of Theorem 6.1 is obtained acting by

functors H and H∗ on the injective cogenerators of corresponding torsions.
In the papers [16] and [18] the question about the preservation of

properties of torsions under the isomorphism L0(R) ∼= L0(S) is investi-
gated. The torsion r ∈ L(R) is called faithful, if r(RR) = 0. In [16] it is
shown under which conditions on the Morita context the isomorphism
of Theorem 6.1 preserves the faithfulness of torsions. In particular the
following theorem is true.

Theorem 6.2. Let VS and RV be faithful, RV be torsion free in the sense
of Bass and [W, v] = 0 implies v = 0. Then the torsion r is faithful if
and only if the torsion s is faithful, where (r, s) is a pair of corresponding
torsions.

Some applications of obtained results to the standard Morita context
(R, RVS, SV

∗
R , S) are shown, where S = End(RV ) and V ∗ = HomR(V,R).

In [18] the similar question is studied for two classes of torsions: jansian
and ideal torsions. A torsion r is jansian if its radical filter Er has the
smallest element, the ideal Ir of R. A torsion rI is called the ideal torsion,
defined by ideal I, if Er

I
is the smallest radical filter containing I.

Theorem 6.3. A torsion r ∈ L0(R) is jansian if and only if the corre-
sponding torsion s ∈ L0(S) is jansian. In this case the ideals Ir and Js,
defining r and s, are related by the rules:

Js = [W, IrV ], Ir = (V, JsW ).

Similar methods are used also in the case of ideal torsions.

Theorem 6.4. Let r and s be the corresponding torsions in the isomor-
phism L0(R) ∼= L0(S). Then r is an ideal torsion if and only if s is an
ideal torsion. If r = rI and s = rJ , then the ideals I and J are related by
the rules:

J = [W, IV ], I = (V, JW ).

In the notice [27] one more application of the isomorphism
L0(R) ∼= L0(S) is shown. For the torsion r a submodule N ⊆ M is called
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r-closed in M if M/N ∈ P(r). For the Morita context (R, RUS, SVR, S)
with trace ideals I and J the pair (r, s) of corresponding torsions is
considered, where r ∈ L0(R) and s ∈ L0(S). Denote by L

r
(RU) the

lattice of r-closed submodules of RU and by L
s
(SS) the lattice of s-closed

left ideals of R.

Theorem 6.5. The lattices L
r
(RU) and L

s
(SS) are isomorphic.

In this case to every submodule U ′ ⊆ U the annihilator {s′ ∈ S |
Us′ ⊆ U ′} corresponds, and to every left ideal K ⊆ SS the submodule
{u ∈ U | [V, u] ⊆ K} is associated. Some results of B.J. Müller (1974)
and S.M. Khuri (1984) follow as particular cases.

7. Adjointness and localizations ([19–22, 24])

Further investigations aim to compare the localizations (colocaliza-
tions) of modules with the canonical homomorphisms of adjoint situation,
as well as to search for criteria of their coincidence.

In the article [19] the adjointness determined by a bimodule RUS is
considered:

S-Mod
T=U⊗S-

//

H=HomR(U, - )
oo R-Mod

with the natural transformations Ψ: 1S-Mod → HT and Φ: TH → 1R-Mod.
The torsion class KerT defines in S-Mod the idempotent radical s such
that R(s) = KerT ; similarly, the torsion free class KerH determines in
R-Mod the idempotent radical r such that P(r) = KerH. The following
questions are studied:

1) when the homomorphism ΨN : N → HT (N) is the s-localization of
N for every N ∈ S-Mod?

2) when the homomorphism ΦM : TH(M) → M is the r-colocalization
of M for every M ∈ R-Mod?

To answer these questions the requirements from definitions of local-
izations and colocalizations are analyzed separately, indicating for each
of them some equivalent conditions.

Theorem 7.1. The following conditions are equivalent:

1) ΨN is the s-localization of N for every N ∈ S-Mod;
2) T is left Ψ-exact, full on ImH and left selfexact;
3) HT is left exact and the pair (T,H) is idempotent (i.e. the associated

triple F is a localization triple);
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4) the class L = {SN | ΨN is an isomorphism} is a Giraud subcategory
of S-Mod, whose reflector is induced by HT .

The dual result which shows when ΦM is the r-colocalization of M
for every M ∈ R-mod is also proved. Some applications and particular
cases are indicated. Some results of T. Kato (1978), R.S. Cunnigham,
etc. (1972), K. Morita (1970), R.J. McMaster (1975) are obtained as
corollaries.

The continuation of these investigations is the article [21], in which the
similar questions are studied for a pair of adjoint contravariant functors.
For a bimodule SVR the following functors are considered:

S-Mod
H=HomS( - ,V )

//

H′=HomR( - ,V )
oo Mod-R

with the natural transformations Ψ: 1S-Mod → H ′H and Φ: 1Mod-R → HH ′.
In this situation all the facts which take place in S-Mod have analogous
statements in Mod-R, so it is sufficient to study one of these categories,
for example S-Mod. We have the idempotent radical s in S-Mod, defined
by the class KerH = R(s).

Conditions are searched under which ΨN is the s-localization of N
for every N ∈ S-Mod. The analogue of Theorem 7.1 is proved and some
applications are shown.

A slightly different approach to these questions is applied in the
paper [22]: criteria of coincidence of localizations (colocalizations) of
modules with some simple modifications of canonical homomorphism of
adjointness are searched. For the bimodule RUS the following functors are
considered:

R-Mod
T=U⊗R-

//

H=HomS(U, - )
oo S-Mod

with natural transformations Φ: 1R-Mod → HT and Ψ: TH → 1S-Mod.
The kernels of the functors T and H define the idempotent radicals

r0 and s0. For any M ∈ R-Mod we have the canonical homomorphism
ΦM : M → HTM and we consider its modification Φ′

M , denoting by
Q(M) the r0-closure of Im ΦM in HT (M) and representing ΦM as the

decomposition M
Φ′

M
//Q(M)

⊆
//HT (M).

Theorem 7.2. If the functor T is exact, then for every M ∈ R-Mod the
homomorphism Φ′

M : M → Q(M) is a localization of M with respect to
the torsion r0.
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The dual result about s0-colocalizations in S-Mod is also true. As
corollaries we obtain the following statements:

1) if T is exact, then ΦM is the r0-localization of M if and only if ΨT (M)

is an isomorphism;
2) if H is exact, then ΨN is the s0-colocalization of N if and only if

ΦH(N) is an isomorphism.

To the same cycle of works we can attribute the article [24], in which so
called double localizations are defined and studied. This notion generalizes
ordinary localizations and is defined by a pair (r, s), where r is a torsion
and s is an idempotent radical of R-Mod (if r = s, then the ordinary
localization is obtained).

Let Tr (Ts) be the class of r-torsion (s-torsion) modules and Lrs be
the class of r-torsion free and s-injective modules. The homomorphism
ϕ : M → L is called (r, s)-localization of M if Kerϕ ∈ Tr, Cokerϕ ∈ Ts

and L ∈ Lrs.

The uniqueness and the existence of (r, s)-localization are proved
for every module M in the case r > s. Then we have the functor of
(r, s)-localization Lrs : R-Mod → R-Mod with the natural transformation
ϕ : 1R-Mod → Lrs.

Theorem 7.3. The module Lrs(RR) can be transformed into a ring
and ϕR : RR → RLrs(RR) can be improved to a ring homomorphism.
Every module H ∈ Lrs is an Lrs(R)-module, every R-homomorphism
f : RH → RK, where H,K ∈ Lrs, is an Lrs(R)-homomorphism.

The connections between the localization functors Lr, Ls and Lrs are
indicated. The existence of a close relation between (r, s)-localizations
and reflective subcategories of special type is also shown. As a conse-
quence we obtain a bijection between the torsions of R-Mod and the
Giraud subcategories of R-Mod. In this way some results of L. Fuchs and
K. Messa (1980) are generalized.

In the book [20] both the foundations of radical theory in modules
and some special related questions are expounded: localizations and colo-
calizations; modules and rings of quotients; torsions in diverse situations;
Giraud subcategories; torsions and triples (monads); duality between
localizations and colocalizations; lattice of torsions of R-Mod, etc. The
diversity of possible approaches to radicals and torsions in modules is
elucidated.
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8. Idempotent radicals and adjointness ([23, 26, 28])

In the article [26] the connection between idempotent radicals of two
module categories in the adjoint situation is studied. The adjoint functors
defined by a bimodule SUR are considered:

R-Mod
T=U⊗R-

//

H=HomS(U, - )
oo S-Mod.

Let I(R)
(
I(S)

)
be the class of all idempotent radicals of R-Mod

(S-Mod). The following mappings are defined:

I(R)
α′

//

α
oo I(S),

where R
(
α(s)

)
= T−1

(
R(s)

)
and P

(
α′(r)

)
= H−1

(
P(r)

)
for every r ∈ I(R)

and s ∈ I(S). The operators of orthogonality ( )
↑

and ( )
↓

on the classes
of modules determine the transition from the torsion to the torsion free
classes and inversely. By these operators the mappings α and α′ can be
expressed as follows:

P
(
α(s)

)
= [H

(
P(s)

)
]
↑↓

, R
(
α′(r)

)
= [T

(
R(r)

)
]
↓↑

.

Some properties of the mappings α and α′ are shown. In particular,
α preserves the intersection, while α′ preserves the sum of idempotent
radicals. Furthermore,

α(s) = αα′α(s), α′(r) = α′αα′(r)

for every s ∈ I(S) and r ∈ I(R). The necessary and sufficient conditions
are found for the relations s = α′α(s) and r = αα′(r). Such idempotent
radicals are called U -closed.

Theorem 8.1. The mappings α and α′ define an isotone bijection between
U -closed idempotent radicals of R-Mod and U -closed idempotent radicals
of S-Mod.

The conditions under which the mappings α and α′ define the isomor-
phism I(R) ∼= I(S) are indicated. The dual results are proved for adjoint
contravariant functors.

The continuation of these investigations is contained in the article [28],
where the action of the mappings α and α′ on torsions and cotorsions
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of given categories is studied. The question is: under which conditions α
preserves torsions or α′ preserves cotorsions. Furthermore, the question
when H preserves localizations or T preserves colocalizations of modules
is studied.

Theorem 8.2. The following conditions are equivalent:
1) α preserves torsions;
2) H transfers injective modules in up-hereditary modules;
3) H preserves up-hereditary property;
4) for every monomorphism i : N ′ → N of S-Mod the relation

KerT (i) ∈ R
(
T (N)

)
(the smallest torsion class containing T (N))

is true.

Theorem 8.3. Let T be an exact functor and r be a torsion of R-Mod.
The following conditions are equivalent:

1) H preserves r-localizations;
2) H is r-full and r-exact.

The dual results are also proved: conditions when α′ preserves cotor-
sions and the functor T preserves colocalizations of modules are shown.

The preprint [23] contains the detailed exposition of all results on
the mappings α and α′, and also of similar facts on adjoint contravariant
functors.

9. Classes of modules and localizations in Morita contexts
([29, 30])

If a Morita context (R, RUS, SVR, S) with the bimodule homomor-
phisms ( , ) and [ , ] is given, then in the categories R-Mod and S-Mod
quite a number of classes of modules with diverse closure properties (under
homomorphic images, submodules, extensions, etc.) appear in a natural
way. Therefore these classes of modules determine preradicals of various
types (idempotent radicals, torsions, etc.).

In the article [29] the most important classes of modules determined by
a Morita context, as well as the corresponding preradicals are investigated.
Properties of these classes and connections between them are shown.
Furthermore, criteria of the coincidence of some “near” preradicals are
obtained.

For example, the pairs of adjoint functors (T U , HU) and (T V , HV ) lead
to the classes KerT U and KerT V , which are torsion classes, and also to the
classes KerHU and KerHV , which are torsion free classes. An important
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role is played by the classes Gen(RU) and Gen(SV ) of modules generated
by RU or SV , and also by the dual classes Cog(RV

∗

) and Cog(SU
∗

).
In the same time, the classes of modules are considered which are

defined by trace ideals I and J of a given Morita context. For example,
the ideal I determines the classes of modules:

IT = {RM | IM = M}, IF = {RM | Im = 0 ⇒ m = 0},

A(I) = {RM | IM = 0},

and similarly for ideal J . The classes IT and JT are torsion classes, while

IF and JF are torsion free classes. Various closure properties of the classes
A(I) and A(J) lead to quite a number of associated preradicals.

Some relations between the studied classes of modules are shown. In
particular, is true the following theorem.

Theorem 9.1. 1) A(I)
↑

= IT, A(J)
↑

= JT; A(I)
↓

= IF, A(J)
↓

= JF;
2) KerT V ⊆ A(I), KerT U ⊆ A(J); KerHU ⊆ A(I), KerHV ⊆ A(J);

3) A(I) ⊆ IT
↓

, A(J) ⊆ JT
↓

; A(I) ⊆ IF
↑

, A(J) ⊆ JF
↑

.

Further, preradicals of diverse types, which are defined by these classes
of modules are considered. Some connections between them are indi-
cated and conditions under which some preradicals coincide are found.
These results are closely related to the investigations of T. Kato (1978),
K. Ohtake (1980, 1982), etc.

The article [30] is devoted to the study of localizations in the Morita
context (R, RUS, SVR, S), which define the functors:

R-Mod
HU =HomR(U, - )

//

HV =HomS(V, - )
oo S-Mod.

The trace ideal I = (U, V ) of R leads to the natural transformation
ϕ : 1R-Mod → HVHU , where ϕM : RM → RH

VHU(M) acts by the rule
u
(
v(mϕM)

)
= (u, v)m. Furthermore, the ideal I determines in R-Mod

the torsion rI such that P(rI) =I F = {RM | Im = 0 ⇒ m = 0}. The goal
of investigation: to find necessary and sufficient conditions under which
the homomorphism ϕM is an rI-localization of M for every M ∈ R-Mod.

Theorem 9.2. The following conditions are equivalent:
1) ϕM is the rI-localization of M for every M ∈ R-Mod;
2) I2 = I and the module R(U ⊗ SV ) is fully rI-projective;
3) I2 = I, I(U ⊗ SV ) = U ⊗ SV and R(U ⊗ SV ) is projective relative

to the epimorphisms πM : M → M/r
I
(M), M ∈ R-Mod.
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In particular, if R(U ⊗ SV ) is projective with the trace I, then the
conditions of this theorem hold. The connection with some results of
K. Ohtake (1980, 1982), T. Kato (1978) and B.J. Muller (1974) is indicated.

10. Principal functors and preradicals ([25, 35, 36, 43])

The investigation of general questions on connections between prerad-
icals of two module categories is continued (see Section 5).

In the preprint [25] (see also [35,36,43]) the pair of adjoint functors
defined by the bimodule RUS is considered:

R-Mod
H=HomR(U, - )

//

T=U⊗S-
oo S-Mod.

Let Φ: TH → 1R-Mod and Ψ: 1S-Mod → HT be the associated nat-
ural transformations. These functors permit to define some mappings
between preradicals of diverse types of the categories R-Mod and S-Mod
on different “levels”:

1) for preradicals, with the help of Φ and Ψ;
2) for radicals and idempotent preradicals, by functors T and H;
3) for idempotent radicals, applying T and H to torsion or torsion free

classes (see Section 8).

In general case of preradicals the “star” mappings r 7−→ r∗ and
s 7−→ s∗ are considered (see Section 5). For radicals other method is used:
acting by T and H on the generating or cogenerating classes, rK 7−→ rH(K),
rK 7−→ rT (K). Properties of these mappings are indicated and also their
relation with the “star” mappings is shown. On the next “level” of
idempotent radicals the mappings α and α′ are used (see Section 8). It
is proved that α(r) is the greatest idempotent radical contained in r∗

and similarly for α′. If the functors H or T are exact, then α and α′

coincide with the “star” mappings and in this case they preserve torsions
or cotorsions.

The next step consists in the comparison of localizations of modules
with special modifications of canonical homomorphisms for every torsion
r of R-Mod (the particular case r = r0 is considered in [22]).

By functors (T,H) and a torsion r of R-Mod for every N ∈ S-Mod
we consider the homomorphism:

Ψr
N : N

ΨN
//HT (N)

H(πT (N))
// (H · 1/r · T )(N),
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where πT (N) is the natural homomorphism. In such a way we obtain the
natural transformation Ψr : 1S-Mod → H · 1/r · T . Furthermore, in S-Mod
we have the idempotent radical s = α(r), where R(s) = T−1

(
R(s)

)
. The

problem is to find necessary and sufficient conditions under which Ψr
N is

the s-localization of N for every N ∈ S-Mod. The torsion r defines a new
pair of adjoint functors:

P(r)
Hr

//

T r
oo S-Mod

(closely related to (H,T )) with the natural transformations Ψr and Φr.
To this pair the triple Fr is associated.

Theorem 10.1. The following conditions are equivalent:
1) Ψr

N is the s-localization of N for every N ∈ S-Mod;
2) T r is left Ψr-exact, full on ImHr and left selfexact;
3) Fr is a localization triple;
4) P(s) = P(r∗) and ImHr = Fix Ψr = Ls;
5) Fix Ψr is a Giraud subcategory of S-Mod.

In the same situation the colocalizations of modules with canonical ho-
momorphisms are compared for some cotorsion s of S-Mod and r = α′(s).
The modification Φs

M of ΦM is considered and conditions under whichΦs
M

is the r-colocalization of M for any M ∈ R-Mod (the analogue of Theo-
rem 10.1) are shown. In addition, the work [25] contains the exposition
of the case of contravariant functors with dual results.

11. Principal functors and lattices of submodules
([31–37, 39, 43])

The problem of the influence of principal functors of module categories
on the lattices of submodules is of considerable interest. More exactly, if
F : M1 → M2 is a functor between module categories, then the question
on the relation between the lattices of submodules L(X) and L

(
F (X)

)
is

considered, where X ∈ M1 and F (X) ∈ M2. This problem is studied for
the principal functors:

H = HomR(U, - ), T = U ⊗ S-, H1 = HomR( - , U)

for a bimodule RUS. The mainly used method is the transition from the
lattices of all submodules to the lattices of special submodules determined
by associated preradicals r and s. To these questions the cycle of works
[31–34] is dedicated (see also [35,36,43]).

Further we expose shortly the basic results for every principal functor.
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Functor H = HomR(U, - ) : R-Mod → S-Mod

The bimodule RUS defines the pair (T,H) of adjoint functors with the
natural transformations Φ: TH → 1R-Mod and Ψ: 1S-Mod → HT . Then we
have preradicals r of R-Mod and s of S-Mod such that:

r(RM) = Im ΦM , s(SN) = Ker ΨN .

In the lattices of submodules L(RX) and L(SY ) the following sublattices
are defined:

L
r(RX) = {X ′ ⊆X | r(X ′)=X ′}, Ls(SY ) = {Y ′ ⊆Y | s(Y/Y ′)=0}.

For every X ∈ R-Mod the following mappings are defined:

L(RX)
α

//

β
oo L(SH(X)),

where

α(X ′) = {f : RU → RX | Im f ⊆ X ′}, X ′ ⊆ X,

β(Y ′) =
∑

{Im f ′ | f ′ ∈ Y ′} (= UY ′), Y ′ ⊆ H(X).

Some properties of the mappings α and β are shown. In particular,α(X ′) ∈
Ls
(
H(X)

)
and β(Y ′) ∈ Lr(X). The lattices L(RX) and L

(
SH(X)

)
are

called canonically isomorphic if α and β determine the isomorphism of
these lattices, which is equivalent to the conditions:

I) L(RX) = Lr(RX);
II) L

(
SH(X)

)
= Ls

(
SH(X)

)
;

III) Lr(RX) ∼= Ls
(

SH(X)
)
.

Further, every of these conditions is investigated in detail, the third being
the most nontrivial. For its fulfilment the key question is when the relation
Y ′ = αβ(Y ′) is true for Y ′ ⊆ H(X). Necessary and sufficient conditions
for this relation being satisfied are shown. We mention some results.

Theorem 11.1. If RU is a projective module and S = End(RU), then
the lattices Lr(RX) and Ls

(
SH(X)

)
are canonically isomorphic for every

X ∈ R-Mod.

Theorem 11.2. The following conditions are equivalent:
1) the lattices Lr(RX) and L

(
SH(X)

)
are canonically isomorphic;

2) the module RU is inner X-projective and X-compact.

Some results of F.L. Sandomierski (1972), G.M. Brodskii (1983),
A.K. Gupta, K. Varadarajan (1980) are obtained as corollaries.
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Functor T = U ⊗s - : S-Mod → R-Mod

Similar questions for the functor of tensor multiplication T are inves-
tigated. For the adjoint situation generated by RUS and for every module
Y ∈ S-Mod the following mappings are considered:

L
(

RT (Y )
)

�
α′

�

β′
L(SY ),

where

α′(Y ′) = ImT (j), j : Y ′ ⊆
// Y,

β′(X ′) = {y ∈ Y | U ⊗ Sy ⊆ X ′}, X ′ ⊆ T (Y ).

Then α′(Y ′) ∈ Lr
(

RT (Y )
)

and β′(X ′) ∈ Ls(SY ). Therefore the canonical
isomorphism L(SY ) ∼= L

(
RT (Y )

)
holds if and only if:

I) L(SY ) = Ls(SY );
II) L

(
RT (Y )

)
= Lr

(
RT (Y )

)
;

III) Ls(SY ) ∼= Lr
(

RT (Y )
)
.

The analysis of these conditions
(
the condition III) is basic

)
elucidates the

situation when the required isomorphism takes place. The main question
is when the equality X ′ = α′β′(X ′) holds for X ′ ⊆ RT (Y ). In particular,
is proved the following theorem.

Theorem 11.3. If US is flat and the pair (T,H) is idempotent, then
Lr
(

R(T (Y )
) ∼= Ls(SY ) for every Y ∈ S-Mod.

One of basic results in this case is the following.

Theorem 11.4. Let RC be a cogenerator of R-Mod which is finitely
generated and injective. For every AB5∗-module Y ∈ S-Mod the following
conditions are equivalent:

1) the lattices L
(

RT (Y )
)

and L(SY ) are canonically isomorphic;
2) the module SH(C) is inner Y -injective, Y -cofinitely cogenerated and

Y -cogenerating.

Functor H1 = HomR( - , U) : R-Mod → Mod-S

The question of the impact of functors on the lattices of submodules
is investigated by similar methods for contravariant functor H1 ([31,34–
36,43]). The bimodule RUS determines the adjoint functors:

R-Mod
H1=HomR( - ,U)

//

H2=HomS( - ,U)
oo Mod-S
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with the natural transformations Φ: 1R-Mod →H2H1 and Ψ: 1Mod-S→H1H2.
In view of the full symmetry, it is sufficient to study one of these functors,
for example H1.

For every X ∈ R-Mod the following mappings are defined:

L(RX)
α∗

//

β∗
oo L

(
H1(X)S

)
,

where

α∗(X ′) = {f ∈ H1(X) | Ker f ⊇ X ′}, X ′ ⊆ RX;

β∗(Y ′) = ∩{Ker f ′ | f ′ ∈ Y ′}, Y ′ ⊆ H1(X)S.

Further, preradicals r of R-Mod and s of Mod-S are used, where r(RX) =
Ker ΦX and s(YS) = Ker ΨY . For every RX ∈ R-Mod and YS ∈ Mod-S
the following lattices of submodules are considered:

Lr(RX)={X ′ ⊆X | r(X/X ′)=0}, Ls(YS)={Y ′ ⊆Y | s(Y/Y ′)=0}.

The problem is to find conditions under which α∗ and β∗ determine an
antiisomorphism of lattices L(RX) and L

(
H1(X)S

)
, which is equivalent

to the conditions:
I) L(RX) = Lr(RX);

II) L
(
H1(X)S

)
= Ls

(
H1(X)S

)
;

III) Lr(RX) ∼=Ls
(
H1(X)S

)
.

The main question here is when the relation Y ′ = α∗β∗(Y ′) holds for
Y ′ ⊆ H1(X)S. A series of equivalent conditions, which ensures this relation,
is found. From the basic results we mention the following.

Theorem 11.5. If RU is injective and H1(ΦX) is a monomorphism, then
Lr(R(X)) ∼=Ls

(
H1(X)S

)
.

Theorem 11.6. For every X ∈ R-Mod the following conditions are
equivalent:

1) Lr(RX) ∼=L
(
H1(X)S

)
;

2) RU is inner X-injective and X-cocompact.

As a consequence it is obtained that the antiisomorphism L(RX) ∼=

L
(
H1(X)S

)
is equivalent to the conditions that RU is inner X-injective,

X-cocompact and X-cogenerator.
From these results all the earlier known facts on the antiisomorphism

of lattices of submodules follow, in particular those of K.R. Fuller (1974),
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F.L. Sandomierski (1972), C. Năstăsescu (1979), A.K. Gupta, K. Varadara-
jan (1980), G.M. Brodskii (1983).

A combined investigation of mappings between the lattices of submod-
ules for all principal functors is realized in the paper [37] (see also [39]).
For a bimodule RUS the following functors are considered:

S-Mod �

H=HomR(U, - )

�

T=U⊗S-
R-Mod

H1=HomR( - ,U)
//

H2=HomS( - ,U)
oo Mod-S

Every module M ∈ R-Mod defines the mappings:

L
(

SH(M)
)

�

αM

�

βM

L(RM)
α∗

M
//

β∗
M

oo L
(
H1(M)S

)
,

L
(

SH(M)
) RM

//

LM

oo L
(
H1(M)S

)
,

where

αM(M ′) = {f ∈ H(M) | Im f ⊆ M ′}, βM(N ′) =
∑{

Im f ′ | f ′ ∈N ′};

α∗
M(M ′) = {f ∈ H1(M) | Ker f ⊇ M ′}, β∗

M(N ′) =
⋂{

Ker f ′ | f ′ ∈N ′};

RM(N ′) = {g : RM → RU | fg = 0 ∀f ∈ N ′},

LM(L′) = {f : RU → RM | fg = 0 ∀g ∈ L′}.

These pairs of mappings constitute the “triangular Galois theory”. They
are combined with the pairs of mappings defined by the natural transfor-
mations Ψ: 1R-Mod → HT and Φ: TH → 1R-Mod. The commutativity of
the resulting diagram is studied (it contains 12 pairs of mappings) and for
the obtained Galois connections the accompanying projectivities (isotone
bijections) or dualities (antiisotone bijections) are indicated. For example,
is true the next theorem.

Theorem 11.7. For any module M ∈ R-Mod the restrictions of the

mappings α∗
M and β∗

M define a duality ImRM
�

α∗
M

�

β∗
M

S1, where

S1 = {X ⊆ M | β∗
Mα

∗
MβMαM(X) = X}. The restrictions of the map-

pings αM and β∗
MRM define the projectivity ImLM

�

αM

�

β∗
MRM

S1. The

symmetrical statement is also true.

These facts generalize some results of G.M. Brodskii (1983) and
S.M. Khuri (1989).
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12. Morita contexts and lattices of submodules
([38, 40, 42–45, 50])

Ample opportunities for the investigation of relations between the
lattices of submodules are provided by Morita contexts. Some mappings
between the lattices of submodules in this case are considered in the
work [38]. A Morita context (R, RMS, SNR, S) with the bimodule homo-
morphisms ( , ) : M ⊗ SN → R and [ , ] : N ⊗ RM → S and with trace
ideals I0 = (M,N) and J0 = [N,M ] determines some pairs of mappings
between the lattices of submodules, in particular:

L(RM)
r′

//

l′
oo L(NR), L(RM)

PM
//

fM

oo L(SS),

L(SS) �

GN

�

QN

L(NR),

where

r′(K) = {n ∈ N | (K,n) = 0}, l′(L) = {m ∈ M | (m,L) = 0};

pM(J) = N−1J, fM(K) = (N,K);

GN(L) = annS(L), QN(J) = annN(J).

Properties of these mappings, as well as connections between them are
shown. Conditions under which the restrictions of these mappings deter-
mine projectivities or dualities are obtained. In particular, is proved the
following theorem.

Theorem 12.1. Let NR be a faithful module and [N,M ] = S. Then the
pair (pM , fM) defines a projectivity between C = {J ⊆ SS | J = GNQN(J)}
and L′ = {K ⊆ RM | K = l′r′(K)}; also, the pair (GN , QN) determines
the duality between C and R′ = {L ⊆ NR | L = l′r′(L)}.

Together with dual results the “quadrangular Galois theory” is ob-
tained, which consists in five bijections (projectivities and dualities).
These facts generalize some results of S. Kyuno, M.-S.B. Smith (1989),
J.J. Hutchinson (1987), G.M. Brodskii (1983).

A rather full picture of the relation between the lattices of submod-
ules in Morita contexts is exposed in the article [40], using preradicals
determined by trace ideals I = (M,N) and J = [N,M ] of the Morita
context (R, RMS, SNR, S). Two types of mappings between the lattices of
submodules are distinguished.
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Mappings of the first type are defined using the idempotent radicals
rI in R-Mod and rJ in S-Mod, where R(rI) = {RX | IX = X} and
R(rJ) = {SY | JY = Y }. In the lattices of submodules L(RX) and L(SS)
the following sublattices are considered:

L
rI

(RX) = {X ′ ⊆ RX | IX ′ = X ′}, L
rJ

(SS) = {A ⊆ SS | A = JA}.

The following mappings are studied:

L(RM)
αM

//

βM

oo L(SS), αM(RK) = [N,K], βM(SA) = MA;

L(SN)
αN

//

βN

oo L(RR), αN(SL) = (M,L), βN(RB) = NB.

Theorem 12.2. The pair of mappings (αM , βM) defines the lattice iso-

morphism Lr
I
(RM) ∼= Lr

J
(SS) and the pair (αN , βN) defines the lattice

isomorphism Lr
J
(SN) ∼= Lr

I
(RR). Right variants of these statements also

hold: Lr
J
(MS) ∼= Lr

I
(RR), Lr

I
(NR) ∼= Lr

J
(SS).

It is interesting that all considered mappings can be restricted to
subbimodules and then isomorphisms of lattices of subbimodules are
obtained. In particular, we have the mappings

L(RMS)
α

//

β
oo L(SNR), L(SSS)

α′
//

β′
oo L(RRR),

whose restrictions lead to lattice isomorphisms.
Mappings of the second type are defined by the torsions rI of R-Mod

and rJ of S-Mod (the ideal torsions determined by I and J). For ev-
ery module RX and every torsion r of R-Mod the lattice of r-closed
submodules {X ′ ⊆ X | r(X/X ′) = 0} is denoted by Lr(RX).

The following mappings are considered:

L(RM)
γM

//

δM

oo L(SS), L(SN)
γN

//

δN

oo L(RR),

where γM(RK) = {s ∈ S | Ms ⊆ K}, δM(SA) = {m ∈ M | [N,m] ⊆ A},
and similarly for γN and δN .

Theorem 12.3. The mappings γM and δM define the lattice isomor-
phism Lr

I
(RM) ∼= Lr

J
(SS); the mappings γN and δN define the lattice

isomorphism Lr
J

(SN) ∼= Lr
I
(RR). Right variants of these statements also

hold.



92 Results on radicals and torsions in modules

As in the first case, these mappings can be restricted to the subbimod-
ules and isomorphisms of lattices of subbimodules are obtained.

These results are closely related to the investigations of S. Kyuno,
M.-S.B. Smith (1989), S.M. Khuri (1986), B.J. Müller (1974).

In the paper [42] these investigations are continued: the pair of torsions
(rI , rJ ) of the Theorem 12.3 is substituted by an arbitrary pair (r, s) of
torsions which correspond each to other in the isomorphism L0(R) ∼= L0(S)
(see Theorem 6.1). For a Morita context (R, RUS, SVR, S) with the trace
ideals I and J , the following mappings are considered:

L(RU)
α

//

β
oo L(SS)

RS
//

LS

oo L(SS),

L(RU)
G

//

Q
oo L(SS),

where

α(U ′) = {s′ ∈ S | Us′ ⊆ U ′}, β(SA) = {u ∈ U | [V, u] ⊆ A};

RS(SX) = {s′ ∈ S | s′X ⊆ s(SS)}, LS(X) = {s′ ∈ S | s′X ⊆ s(SS)};

G(U ′) = {s′ ∈ S | U ′s′ ⊆ r(RU)}, Q(X) = {u ∈ U | uX ⊆ r(RU)}.

Theorem 12.4. The restrictions of the mappings α and β on the ImQ
and ImLS define a projectivity between these lattices, which is a part of
“triangular Galois theory”:

ImQ
α

//

β
oo ImLS

RS
//

LS

oo ImG = ImRS ,

ImQ
G

//

Q
oo ImG.

Symmetrically the other triangular Galois theory is constructed, which
supplements the previous and in common the square is obtained, con-
sisting of four pairs of co-ordinated mappings with the diagonal (G,Q):
two projectivities and three dualities. Some known results of Zhou Zheng-
ping (1983), J.J. Hutchinson (1987), S. Kyuno, M.-S.B. Smith (1989) are
obtained as particular cases.

Compositions of dualities in a nondegenerated Morita context
(R, RMS, SNR, S) are studied in the article [45]. Mappings between the
lattices of submodules L(RM), L(NS), L(SS) and L(SS), which are de-
fined as annihilators are studied. In particular, the following mappings
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are considered:

L(RM)
αM

//

βM

oo L(SS)
r

//

l
oo L(SS),

L(RM)
GM

//

QM

oo L(SS),

where

αM(RK) = {s ∈ S | Ms ⊆ K}, βM(SJ) = {m ∈ M | [N,m] ⊆ J};

r(SJ) = {s ∈ S | Js = 0}, l(JS) = {s ∈ S | sJ = 0};

GM(RK) = {s ∈ S | Ks = 0}, QM(SJ) = {m ∈ M |mJ = 0}.

The pairs (r, l) and (GM , QM) form Galois connections, so they define the
dualities:

Im l
r

//

l
oo Im r, ImQM

GM
//

QM

oo ImGM .

To obtain their composition the equality Im r = Im GM is necessary.
Some weak conditions under which this relation holds are indicated. Then
the composition of these dualities generates a projectivity, which coincides
with the pair (αM , βM):

ImQM

GM
//

QM

oo ImGM = Im r
l

//

r
oo Im l,

ImQM

αM
//

βM

oo Im l.

For a given context, four such triangles are obtained and under suitable
conditions the compositions of dualities can be formed. If the context is
nondegenerated, then all these conditions are satisfied and so the compo-
sitions of dualities can be considered.

Theorem 12.5. If the Morita context (R, RMS, SNR, S) is nondegene-
rated, then we obtain four co-ordinated dualities (r, l), (GM , QM), (r′, l′),
(GN , QN) and two projectivities (αM , βM), (αN , βN), which are composi-
tions of corresponding dualities.

To the same cycle of works can be attributed the article [50], in which
the equivalence of special subcategories is proved for the Morita context
(R, RVS, SWR, S), using the isomorphism L0(R) ∼= L0(S) of Theorem 6.1.
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For a fixed pair (r, s) of corresponding torsions some modifications of
the functors

R-Mod
TW =W⊗R-

//

TV =V⊗S-
oo S-Mod

are defined such that they are of the form Tr
T

W

//

T
V

oo Fs. The

subcategories A = Fr ∩ FI ⊆ R-Mod and B = Fs ∩ FJ ⊆ S-Mod are
considered.

Theorem 12.6. For every pair of corresponding torsions (r, s) the func-
tors T

W
and T

V
define an equivalence between the subcategories of torsion

free accessible modules: A ≈ B.

For the smallest pair (rI , rJ) of corresponding torsions this result
was proved by W.K. Nicholson, J.F. Watters (1988) and F.C. Iglesias,
J.G. Torrecillas (1995).

The article [44] is a survey of some results on radicals in modules.
The book [43] is devoted to torsions in modules and contains some

new results on the following subjects:
Chapter 1. Adjoint functors and radicals;
Chapter 2. Morita contexts and torsions;
Chapter 3. Principal functors and lattices of submodules.

13. Divisible and reduced modules ([41, 46])

In the paper [41] the investigations of torsions and accompanying
constructions in Morita contexts are continued. For a torsion r of R-Mod
with radical filter (Gabriel topology) F(r) the right R-module MR is called
r-divisible if MK = M for every K ∈ F(r). The class Dr of all r-divisible
right R-modules is a torsion class Mod-R. For every torsion r of R-Mod
there exists the greatest torsion s of R-Mod such that Dr = Ds.

For the Morita context (R, RUS, SVR, S) with the trace ideals I and J
the isomorphism L0(R) ∼= L0(S) (Theorem 6.1) of the lattices of torsions
for left R-modules implies a close relation between the corresponding
classes of divisible right R-modules.

Theorem 13.1. For the given Morita context there exists an isotone bijec-
tion between the subcategories of divisible modules Dr (r > rI) of Mod-R
and subcategories of divisible modules Dr′ (r′ > rJ) of Mod-S, where (r, r′)
is a pair of corresponding torsions in the isomorphism L0(R) ∼= L0(S).
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A similar result is obtained for r-reduced modules.

In the article [46] the notions of r-divisible and r-reduced modules are
generalized for idempotent radicals. If r is an idempotent radical ofR-Mod,
then the right R-module DR is called r-divisible if D ⊗ RX = 0 for every

RX ∈ Tr. A module YR is called r-reduced if it has no nontrivial r-divisible
submodule. Let Dr (Rr) be the class of all r-divisible (r-reduced) right
R-modules. Then the pair (Dr,Rr) defines a torsion theory in Mod-R
(i.e. it determines an idempotent radical r∗ of Mod-R).

The connections between the classes Tr, Fr of R-Mod and correspond-
ing classes Dr, Rr of Mod-R are shown. In particular, is proved the
following.

Theorem 13.2. Dr = H−1
Q/Z(Tr), Dr = [HQ/Z(Tr)]

↑

, H−1
Q/Z(Rr) = D

↓

r.

The inverse transition from the class of modules L ⊆ Mod-R to the
idempotent radical r(L) ofR-Mod is defined by the rule: Tr(L)

= [HQ/Z(L)]
↑

.

The class Tr(L)
(as well as r(L)) is described by the relations Tr(L)

= L⊥

and Tr(L)
= H−1

Q/Z(L
↓

). The mappings r 7→ Dr and L 7→ r(L) define
a Galois connection. Closed elements of this connection are characterized.
Furthermore, is true the following theorem.

Theorem 13.3. D ∨
α∈A

rα
=

⋂
α∈A

Drα.

Some curious applications of these results are indicated in the case of
Morita contexts: for the corresponding torsions r and s the equivalences
of accompanying subcategories are shown:

Lr ≈ Ls, Kr ≈ Ks,

where Lr is the class of r-torsion free r-injective modules, and Kr is the
class of r-divisible r-flat modules.

These results are closely related to the investigations of B. Stenström
(1975), B.J. Müller (1974), Zhou Zhengping (1991), T. Kato,
T. Ohtake (1979).

14. Methods of construction of preradicals and their
approximations ([47–49])

In the paper [47] the three-sided relation between the ideals of the
ring R, classes of left R-modules and preradicals of R-Mod is studied.
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Every ideal I of R defines the classes of modules TI , A(I), FI and also
the preradicals r(I), r(J), where:

TI = {RM | IM = M}, A(I) = {RM | IM = 0},

FI = {RM | Im = 0 ⇒ m = 0};

r(I)(M) = IM, r(I)(M) = {m ∈ M | Im = 0}.

Various restrictions on the ideal I imply some special properties of
associated classes of modules and preradicals. In this way some bijections
between ideals, classes of modules and preradicals of diverse types are
obtained. This method is used in the five cases: 1) I is an arbitrary ideal;
2) I = I2; 3) I is a “still” ideal, i.e. with the condition (a): a ∈ Ia ∀ a ∈ I;
4) I is a left direct summand of R; 5) I is a ring direct summand of R.
As an example we expose the case when I = I2.

Theorem 14.1. There exists a bijection between:
1) idempotent ideals of R (I);
2) cotorsions of R-Mod (r(I));
3) jansian torsions of R-Mod (r(I));
4) TTF -classes of R-Mod

(
A(I)

)
;

5) three-fold torsion theories of R
(
(TI ,A(I),FI)

)
;

6) radical filters of R closed under intersection (Er
(I)

).

These results generalize and supplement some known facts on the
construction of preradicals by classes of modules and by ideals: L. Bi-
can, T. Kepka, P. Nemec (1982), Y. Kurata (1972), G. Azumaya (1973),
J.S. Golan (1986), J.P. Jans (1965), etc.

Diverse methods of “improvement” of preradicals are known, i.e. of the
construction of nearest preradicals with the required properties. In the
paper [48] these methods are systematized and supplemented, using
various means: functors, classes of modules, ideals, filters, etc. For example,
for every preradical r it is possible to show the upper and the lower
approximations by torsions or by cotorsions. In particular, is true the
following.

Theorem 14.2. If r is an idempotent radical of R-Mod and E =
{I ∈ L(RR) | R/I ∈ Tr}, then the set of left ideals E = {K ∈ L(RR) |
(K : a) ∈ E ∀ a ∈ R} is a radical filter and the corresponding torsion r is
the greatest torsion contained in r.

The work [49] is a text-book on the theory of modules and contains
an introduction in this theory, using methods of the theory of categories.
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The basic subjects: principal functors; main classes of modules (projec-
tive, injective, flat); generators and cogenerators of R-Mod; homological
classification of rings.

15. Natural classes of modules ([51–54])

In connection with diverse problems of module theory a group of
authors (J. Dauns, 1997, 1999; Y. Zhou, 1996; A.A. Garcia, H. Rincon,
J.R. Montes, 2001, etc.) introduced and studied so-called natural (or satu-
rated) classes of modules, i.e. classes closed under submodules, direct sums
and injective envelopes. A series of articles on this subject was completed
by the book: J. Dauns, Y. Zhou, “Classes of modules”, Chapman and
Hall, 2006.

In the article [51] it is proved that natural classes are closed (see
Section 1), i.e. they possess the description by sets of left ideals of the
ring R (Theorem 1.2). The inner characterization of natural sets of left
ideals (i.e. of the form Γ(K), where K is a natural class) is obtained. Using
the mappings Γ and ∆, defined by the rules:

Γ(K) = {(0 : m) | m ∈ M,M ∈ K},

∆(E) = {RM | (a : m) ∈ E ∀ m ∈ M}

is proved the next theorem.

Theorem 15.1. The operators Γ and ∆ define an isotone bijection
between natural classes K of R-Mod and natural sets E of left ideals of
R. In this case the following relations hold:

Γ(K⊥) = E, ∆(E⊥) = K
⊥.

In this way the operators Γ and ∆ determine the isomorphism of
boolean lattices, which consist in natural classes of R-modules and natural
sets of left ideals of R. Moreover, in this case the operators of comple-
mentation are concordant with Γ and ∆.

Similar questions are discussed in the paper [52], where the lattice
R-cl of all closed classes of R-Mod is studied

(
i.e. the classes K ⊆ R-Mod

such that K = ∆Γ(K)
)
.

Theorem 15.2. The lattice R-cl of closed classes of R-Mod is a frame.

For every class K ∈ R-cl it is proved that its pseudocomplement in
R-cl coincides with the class

K
⊥ = {RM | M has no nontrivial submodules from K}.
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An interesting relation between closed and natural classes of modules
is elucidated.

Theorem 15.3. The skeleton of the lattice R-cl coincides with the lattice
of natural classes R-nat of the category R-Mod, where

Sk(R-cl) = {K⊥ | K ∈ R-cl}.

Similar results for closed and natural sets of left ideals of R are
obtained.

The investigations of natural classes of modules are continued in the
article [53], where the relation between the torsion free classes and natural
classes of R-Mod is studied. Every torsion free class (i.e. of the form Fr

for a torsion r) is natural, so we have the inclusion i : P → R-nat, where
P is the family of all torsion free classes of R-Mod. The inverse mapping
φ : R-nat → P is defined, where φ(K) is the smallest torsion free class
containing K. Various forms of presentation of the class φ(K) are shown,

in particular: φ(K) = K
↑↓

, φ(K) = Cog(K).

For every set of natural classes {Kα | α ∈ A} of R-Mod the relation

(
∨
α∈A

Kα)
↑

=
∧
α∈A

(K
↑

α) is proved, from which follows the next theorem.

Theorem 15.4. The mapping φ preserves the join of natural classes of
modules:

(
∨

α∈A

Kα)
↑↓

=
∨

α∈A

(K
↑↓

α ).

In the paper [54] some results on natural and conatural classes of
R-Mod are translated in the terms of left ideals of R. If K ∈ R-nat, then
E = Γ(K) = {I ∈ L(RR | R/I ∈ K} is the corresponding natural set
of left ideals of R. Diverse descriptions of natural sets of left ideals are
obtained. The lattice R-Nat of natural sets of left ideals of R coincides
with the skeleton of the lattice R-Cl of closed sets. All these facts are
dualized, proving similar results for conatural sets of left ideals of R.

16. Preradicals associated to principal functors ([55–57])

The next cycle of works is devoted to the investigation of preradicals
accompanying principal functors of module categories, i.e. functors of
the form H = HU = HomR(RU, - ), H ′ = HU = HomR( - , RU) and
T = T U = U ⊗ S-, where RUS is an arbitrary bimodule.
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In the article [55] from this point of view the functor

H = HomR(RU, - ) : R-Mod → Ab

is studied for an arbitrary module RU ∈ R-Mod. Associated prerad-
icals and their properties, as well as the conditions of coincidence of
some preradicals are shown. The module RU defines the trace ideal
I =

∑
{Im f | f : RU → RR}, which in its turn determines the classes of

modules IT, IF and A(I). Properties of these classes lead to preradicals
of diverse types: rI , rI , r

(I), r(I), where:

R(rI) = IT, P(rI) = IF, P(r(I)) = A(I), R(r(I)) = A(I).

Numerous relations between the studied classes of modules (and
so between the corresponding preradicals) are elucidated. Some simple
conditions, under which the “near” preradicals coincide are found. In
particular, the following conditions are equivalent:

1) rU = rI ; 2) r̄U = rI ; 3) r̄U = r(I); 4) rU = r(I); 5) IU = U.

In the paper [56] similar questions are studied for the functor

T = U ⊗ S- : S-Mod → Ab,

where US ∈ Mod-S. Classes of modules accompanying this functor are
shown. All constructions indicated earlier for the functor H, have their
analogues for the functor T . In particular, there exist the radical tU in
S-Mod and the nearest idempotent radical t̄U 6 tU , where tU(SM) =
{m ∈ M | U ⊗ Sm = 0} and R(t̄U) = KerT . Conditions under which
tU = t̄U or tU is a torsion are shown.

Further, the ideal J = (0 : US) of S and the corresponding classes of
left S-modules: JT, JF, A(J) as well as the preradicals defined by them
are considered. Properties and connections between these classes and
preradicals are studied. Also the close relation with the case of functor H,
which follows from the adjointness of the functors T and H, is mentioned.

The case of contravariant functor

H ′ = HomR( - , RU) : R-Mod → Ab,

where RU ∈ R-Mod, is studied in the article [57]. The module RU de-
fines the radical rU and the nearest idempotent radical r̄U 6 rU . Some
conditions are indicated when r̄U = rU or rU is a torsion. Further, the
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ideal I = (0 : RU) of R, which defines preradicals rI , rI , r
(I) and r(I)

is considered. Numerous relations between the classes of modules and
preradicals appearing in this situation are shown.

An important remark: there exists a rather full analogy between the
situations for the functors H ′ and T . The reason of this fact is shown:
the functor T = U ⊗ S- determines the same classes of modules as the
functor H ′ = HomS( - , U∗), where SU

∗ = HomZ(ZUS,Q/Z) and Q/Z is
the injective cogenerator of the category of abelian groups Ab.

17. Preradicals and new operations in the lattices
of submodules ([58–61])

The works [58–61] are related with some new operations in the lat-
tices of submodules, defined by standard preradicals. We remind that
standard preradicals αM

N and ωM
N are determined by a pair N ⊆ M , where

N ∈ L(RM), as follows:

αM
N (X) =

∑

f : M→X

f(N), ωM
N (X) =

⋂

f : X→M

f−1(N), X ∈ R-Mod.

Denote by Lch(RM) the lattice of characteristic (fully invariant) sub-
modules of M (i.e. such N ⊆ M that f(N) ⊆ N for every f : M → M).
In the article [58] the relations between the lattice Lch(RM) and some
sublattices of the lattice R-pr of all preradicals of R-Mod are studied.
The mappings

αM : Lch(RM) → R-pr, ωM : Lch(RM) → R-pr,

which transfer N into αM
N and N into ωM

N , are injective, so we obtain the
isomorphisms:

Lch(RM) ∼= ImαM ⊆ R-pr, Lch(RM) ∼= ImωM ⊆ R-pr.

In other form the relation between Lch(RM) and R-pr can be expressed
defining on R-pr the equivalence relation:

r ∼=M s ⇔ r(M) = s(M).

Then R-pr is divided into the classes of equivalence, which have the
form [αM

N , ω
M
N ] and the isomorphism between Lch(RM) and R-pr/ ∼=M

holds.
Using the product and coproduct of preradicals and the standard

preradicals αM
N and ωM

N , for K,N ∈ Lch(RM) in the lattice Lch(RM) four
operations are defined:
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1) α-product K ·N is αM
Kα

M
N (M) =

∑
f : M→N

f(K);

2) ω-product K ⊙N is ωM
K ω

M
N (M) =

⋂
f : N→M

f−1(K);

3) α-coproduct N : K is (αM
N : αM

K )(M);

4) ω-coproduct N :#K is (ωM
N : ωM

K )(M).

Basic properties of these operations are shown, in particular the
distributivity of diverse types. For example, is true the following theorem.

Theorem 17.1. The following relations hold:

(K1 +K2) ·N = (K1 ·N) + (K2 ·N);

(K1 ∩K2) ⊙N = (K1 ⊙N) ∩ (K2 ⊙N);

N : (K1 +K2) = (N : K1) + (N : K2);

N :#(K1 ∩K2) = (N :#K1) ∩ (N :#K2).

If RM = RR (i.e. Lch(RM) is the lattice of ideals of R), then two
operations coincide with multiplication and addition of ideals.

The foregoing ideas are developed in the paper [59], where the standard
preradicals αM

N and ωM
N are used to define four operations in the lattice

L(RM) of all submodules of M . Namely, α-product of K,N ∈ L(RM) is

K ·N = αM
K (N) =

∑

f : M→N

f(K),

and ω-product is

K ⊙N = ωM
K (N) =

⋂

f : N→M

f−1(K).

A series of properties of these operations is shown (as associativity and
distributivity of diverse types).

In a dual form the other two operations are defined, using the co-
product of preradicals. Namely, α-coproduct N : K is defined by the
relation (N : K)/N = αM

K (M/N), and the ω-coproduct N :#K is defined
similarly: (N :#K)/N = ωM

K (M/N). Various forms of presentation of these
operations, as well as a series of their properties are exposed. In the case
M =R R we have:

I · J = IJ, I ⊙ J =
⋂

f : RI→RR

f−1(I),

I : J = JR+ I, I :#J =
(
J : (0 : I)r

)
l
.
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A natural continuation of the previous investigations is the article [60],
in which the inverse operations with respect to α-product and ω-coproduct
are introduced and studied. Namely, for N,K ∈ L(RM) the left quotient
relative to α-product is defined as

N /.K =
∑{

Lα ⊆ M | Lα ·K ⊆ N
}
,

and the right quotient relative to ω-coproduct is defined by the rule:

N :#\K =
⋂

{Lα ⊆ M | N :#Lα ⊇ K}.

The distributivity of the operations of α-product and ω-coproduct ensures
the existence of these quotients for all submodules.

Various possibilities of representation of these quotients, as well as
basic properties of the considered operations are shown. For example, is
true the next theorem.

Theorem 17.2. The following relations hold:

(
⋂

α∈A

Nα) /.K =
⋂

α∈A

(Nα /.K), N :#\ (
∑

α∈A

Kα) =
∑

α∈A

(N :#\Kα).

In the particular case when M =R R we have:

I /. J = (I : J)l = {a ∈ R | aJ ⊆ I},

I :#\ J = J(0 : I)r, where (0 : I)r = {b ∈ R | Ib = 0}.

In the article [61] the inverse operations for ω-product and α-coproduct
are introduced and investigated. In contrast to the previous cases, these
operations are partial.

The left quotient of N by K relative to ω-product N /⊙K is defined as
the smallest submodule L ⊆ M with the property L⊙K ⊇ N . Similarly,
the right quotient N :\K relative to α-coproduct is the greatest submodule
L ⊆ M such that N : L ⊆ K.

The existence of the quotients N /⊙ K and N :\K is equivalent to the
relation N ⊆ K. Diverse forms of representation of these quotients are
shown. Also properties of these operations and relations with the lattice
operations of L(RM) are obtained.

Theorem 17.3. The following relations hold:

(
∑

α∈A

Nα) /⊙ K =
∑

α∈A

(Nα /⊙ K), Nα ⊆ K, α ∈ A;

N :\ (
⋂

α∈A

Kα) =
⋂

α∈A

(N :\Kα), N ⊆ Kα, α ∈ A.
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18. Closure operators and preradicals ([62–66])

The cycle of works [62–66] is devoted to closure operators in module
categories and their relations with preradicals of these categories. Basic
types of closure operators of R-Mod, their properties and connections, as
well as operations with closure operators are investigated. The question
of the interrelations between closure operators and preradicals of R-Mod
has a special interest.

Earlier (in the works [7, 9] and [20]) the fact that every idempotent
radical of R-Mod defines a special closure operator of this category was
remarked and used. The notion of radical closure of R-Mod was defined
and studied.

A more general notion of closure operator of R-Mod is studied in works
of D. Dikranjan, E. Giuli, W. Tholen, etc. A result of these investigations
is the book: D. Dikranjan, W. Tholen “Categorical structures of closure
operators”, Kluwer Acad. Publ., 1995.

In the article [62] the main types of closure operators (weakly hered-
itary and idempotent) are described by dense and closed submodules.
Let CO be the class of all closure operators of R-Mod. For an operator
C ∈ CO a submodule N ∈ L(RM) is called C-dense (C-closed) in M if
CM(N) = M

(
CM(N) = M

)
. We denote:

F
C
1 (M) = {N ⊆ M | CM(N) = M},

F
C
2 (M) = {N ⊆ M | CM(N) = N}.

In this way every operator C ∈ CO defines two functions FC
1 and FC

2 ,
distinguishing in each M ∈ R-Mod the sets of C-dense or C-closed
submodules. Basic properties of these functions are shown. Also, the
possibilities of restoration of C by the functions FC

1 or FC
2 are indicated.

For an abstract function F the definitions of a function of type F1

and a function of type F2 are given, using properties of the functions FC
1

and FC
2 .

Theorem 18.1. There exists an isotone bijection between weakly heredi-
tary closure operators of C ∈ CO and abstract functions of type F1. So
weakly hereditary closure operators are described by dense submodules.

Dual result for idempotent closure operators is obtained.

Theorem 18.2. There exists an antiisotone bijection between idempo-
tent closure operators of CO and abstract functions of the type F2, so
idempotent closure operators are described by closed submodules.
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Further the case, when an operator C ∈ CO is simultaneously weakly
hereditary and idempotent, is considered. Then the operator C can be
reestablished both by FC

1 and FC
2 . Properties of the functions FC

1 and FC
2

are indicated in this case and analogues of previous theorems are proved.
Namely, bijections are obtained between weakly hereditary idempotent
closure operators and functions of type F1 or of type F2 with the property
of transitivity:

(∗∗) If N ⊆ P ⊆ M , N ∈ F(P ) and P ∈ F(M), then N ∈ F(M).

On the basis of previous results in the paper [63] the characterizations
by the functions FC

1 and FC
2 are obtained for some other important classes

of closure operators: hereditary, weakly hereditary maximal, hereditary
maximal, minimal and cohereditary. In each of these cases conditions
on the functions FC

1 or FC
2 , which are necessary and sufficient for the

restoration of the operator C are indicated. As an example, we consider
the case of hereditary closure operators, i.e. such C ∈ CO that in the
situation L ⊆ N ⊆ M the relation CN(L) = CM(L) ∩N holds. Such an
operator is weakly hereditary, so it is described by FC

1 (Theorem 18.1).
For an abstract function F the following condition is considered:

(∗∗∗) If N ⊆ P ⊆ M and N ∈ F(M), then N ∈ F(P ).

Theorem 18.3. There exists an isotone bijection between hereditary
closure operators C ∈ CO and abstract functions of type F1 with the
condition (∗∗∗).

A similar method is used for the characterization of the rest of named
types of closure operators.

The article [64] is a continuation of these researches and contains the
study of the basic four operations in the class CO of closure operators
of R-Mod: meet (∧), join (∨), multiplication (·), comultiplication (#).
Principal properties of these operations and relations between them are
shown. In particular, some properties of distributivity are proved.

Theorem 18.4. The following relations hold:

(
∧

α∈A

Cα) ·D =
∧

α∈A

(Cα ·D), (
∨

α∈A

Cα) ·D =
∨

α∈A

(Cα ·D);

(
∧

α∈A

Cα) #D =
∧

α∈A

(Cα #D), (
∨

α∈A

Cα) #D =
∨

α∈A

(Cα #D).

Some other distributivity relations are true under additional conditions.
For example, is proved the following theorem.



A. I. Kashu 105

Theorem 18.5. a) If the operator C ∈ CO is hereditary, then

C # (
∧

α∈A

Dα) =
∧

α∈A

(C #Dα)

for arbitrary Dα ∈ CO, α ∈ A.
b) If the operator C ∈ CO is minimal, then

C · (
∨

α∈A

Dα) =
∨

α∈A

(C ·Dα)

for arbitrary Dα ∈ CO, α ∈ A.

The question on the preservation of properties of closure operators by
the indicated operations in CO is studied. Some results on this subject are:

1) if Cα, α ∈ A, are weakly hereditary, then
∨
α∈A

Cα is weakly hereditary;

2) if Cα, α ∈ A, are maximal (minimal), then
∨
α∈A

Cα is maximal
(minimal);

3) if Cα, α ∈ A, are hereditary, then
∧
α∈A

Cα is hereditary;

4) if Cα, α ∈ A, are maximal, then
∧
α∈A

Cα is maximal.

Some relations between closure operators and preradicals of R-Mod
are studied in the article [66]. Three mappings are defined between the
classes CO of closure operators and PR of preradicals of R-Mod:

Φ: CO → PR, Ψ1 : PR → CO, Ψ2 : PR → CO,

where

Φ(C) = rC , rC (M) = CM(0);

Ψ1(r) = Cr, [(Cr)M(N)]/N = r(M/N);

Ψ2(r) = Cr, (Cr)M(N) = N + r(M).

Denote by Max(CO) (Min(CO)) the class of all maximal (minimal)
closure operators of R-Mod. The pair of mappings (Φ,Ψ1) determines an
isomorphism Max(CO) ∼= PR, while the pair (Φ,Ψ2) defines an isomor-
phism Min(CO) ∼= PR. Using these isomorphisms, in continuation some
bijections are obtained between preradicals of diverse types (idempotent,
radical, hereditary etc.) and closure operators with special properties. In
particular, is proved the following.
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Theorem 18.6. 1) The pair of mappings (Φ,Ψ1) determines isotone
bijections between:

• idempotent preradicals of PR and maximal weakly hereditary
closure operators of CO;

• pretorsions of PR and maximal hereditary closure operators
of CO.

2) The pair of mappings (Φ,Ψ2) defines isotone bijections between:
• idempotent preradicals of PR and minimal weakly hereditary

closure operators of CO;
• pretorsions of PR and minimal hereditary closure operators

of CO;
• cotorsions of PR and weakly hereditary and cohereditary closure

operators of CO.

The influence of the mappings Φ,Ψ1 and Ψ2 on operations in the
classes CO and PR is studied in the paper [65]. In particular, it is proved
that the mapping Φ preserves the meets and joins:

Φ(
∧

α∈A

Cα) =
∧

α∈A

[Φ(Cα)], Φ(
∨

α∈A

Cα) =
∨

α∈A

[Φ(Cα)].

Furthermore, the mapping Φ transforms the coproducts of CO into
the products of PR: Φ(C #D) = Φ(C) · Φ(D).

The mapping Ψ1 preserves the meets and joins:

Ψ1(
∧

α∈A

rα) =
∧

α∈A

[Ψ1(rα)], Ψ(
∨

α∈A

rα) =
∨

α∈A

[Ψ1(rα)].

Moreover, Ψ1 transforms the products of PR into the coproducts
of CO: Ψ1(r · s) = Ψ1(r) # Ψ1(s), and the coproducts of PR into the
products of CO: Ψ1(r : s) = Ψ1(r) · Ψ1(s).

Some similar results are obtained for the mapping Ψ2.
On the whole the works of this cycle show the expediency and useful-

ness of the combined investigations of preradicals and closure operators
of R-Mod.

19. Instead of conclusion

The present work reflects the aspiration to embrace by one survey the
majority of results of author on radicals and torsions in modules. The
requirement of conciseness made impossible the minimal full exposition
of results, and so we limit ourselves by formulation of questions and of
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small part of results. Furthermore, it is impossible to give the definitions
and preliminary facts, which strongly restrict the possibilities to show the
“entourage” in which the exposed results were obtained. The references in
the main text are reduced to the minimum, otherwise the bibliography
sharply increases.

The effort to overcome these difficulties led us to the presented form of
the review, which can give a general idea of the direction of investigations
and of the type of results.
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The groups whose cyclic subgroups
are either ascendant or almost self-normalizing
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Abstract. The main result of this paper shows a description
of locally finite groups, whose cyclic subgroups are either almost self-
normalizing or ascendant. Also, we obtained some natural corollaries
of the above situation.

Introduction

The subgroups of a group G are connected with some natural families
of subgroups. One of them is the following. Let H be a subgroup of a
group G. We construct an ascending series

〈1〉 = H0 6 H1 6 . . . Hα 6 Hα+1 6 . . . Hγ 6 G,

where H1 = H, H2 = NG(H1) = NG(H), Hα+1 = NG(Hα) for every ordi-
nal α < γ, Hλ =

⋃
µ<λ

Hµ for every limit ordinal λ < γ, and NG(Hγ) = Hγ .

This chain is called the upper normalized chain of H in G. Here the two
natural types of subgroups appear. If Hγ = G, then a subgroup H is
called ascendant in G. If Hγ = H (that is NG(H) = H), then a subgroup
H is called self-normalizing in G. Thus, every subgroup of a group is
naturally connected with the two types of subgroups: an ascendant and a
self-normalizing subgroups. The presence of a large family of ascendant
subgroups has a strong influence on the group structure. For example, if

2010 MSC: 20E15, 20F19, 20F22, 20F50.
Key words and phrases: locally finite group, self-normalizing subgroup, ascen-

dant subgroup, subnormal subgroup, Gruenberg radical, Baer radical.
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every subgroup of a group G is ascendant, then G is locally nilpotent [16].
Moreover, if every cyclic subgroup of a group G is ascendant, then G is
locally nilpotent [6, Theorem 2]. More precisely, the subgroup Gru(G)
of an arbitrary group G, generated by all ascendant cyclic subgroups
of G, is locally nilpotent. This subgroup is called the Gruenberg radical
of G. Every finitely generated subgroup of Gru(G) is ascendant in G and
nilpotent [6, Theorem 2]. A group G is said to be a Gruenberg group, if
G = Gru(G).

L.A. Kurdachenko and H. Smith [13] have considered the groups,
whose subgroups are either subnormal or self-normalizing. A natural
generalization of this paper was an article [12]. In [12] L.A. Kurdachenko
et al. considered the groups, whose finitely generated subgroups are
either ascendant or self-normalizing. From their results it follows that
locally finite groups, whose cyclic subgroups are either ascendant or self-
normalizing, have the same structure. Here we discuss a more general
situation.

We remark that the groups, in which some family of subgroups divides
into two types of subgroups, which often have the opposite properties,
considered by other authors (see, for example, [15], [17]).

Let H be a subgroup of a group G. Then H is called almost self-
normalizing in G, if H has finite index in NG(H).

In this paper we consider the groups whose cyclic subgroups are either
almost self-normalizing or ascendant. The main result is the following

Theorem A. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or ascendant. Suppose that
G 6= Gru(G). Then the following assertions hold:

(i) a factor-group G/Gru(G) is finite;
(ii) G = Q⋋ R, where Q is a normal Sylow σ′-subgroup of G, R is a

Sylow σ-subgroup of G, σ = Π(G/Gru(G));
(iii) R is a Chernikov subgroup;
(iv) Gru(G) = CR(Q) ×Q;
(v) if g 6∈ Gru(G), then CG(g) is finite;
(vi) Gru(G) is nilpotent-by-finite.

We obtained the following additional information about the structure
of a factor-group G/Gru(G).

Corollary A1. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or ascendant. Let G 6= Gru(G),
F = G/Gru(G) and σ = Π(F ). Suppose that the Sylow σ′-subgroup of G
is infinite. Then



L. A. Kurdachenko, A. A. Pypka, N. N. Semko 113

(i) if p ∈ σ and p 6= 2, then Sylow p-subgroup of F is cyclic;
(ii) Sylow 2-subgroup of F is cyclic or a generalized quaternion group;
(iii) every subgroup of order pq of F , p, q ∈ σ, is cyclic.

Let G be a Chernikov group and D be the divisible part of G. Put
Sp(G) = Π(D).

Corollary A2. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or ascendant. Let G 6= Gru(G),
F = G/Gru(G) and σ = Π(F ). Suppose that the Sylow σ′-subgroup of G
is finite and Sp(G) = {p} for some prime p ∈ σ. Then

(i) if q is a prime and q 6∈ {2, p}, then Sylow q-subgroup of F is cyclic;
(ii) if p 6= 2, then Sylow 2-subgroup of F is cyclic or generalized quater-

nion group.

Corollary A3. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or ascendant. Let G 6= Gru(G),
F = G/Gru(G) and σ = Π(F ). Suppose that the Sylow σ′-subgroup of G
is finite and |Sp(G)| > 2. Then

(i) if q ∈ σ is a prime and q 6= 2, then Sylow q-subgroup of F is cyclic;
(ii) if 2 ∈ σ, then Sylow 2-subgroup of F is cyclic or generalized quater-

nion group.

An important special case of the ascendant subgroups are the subnor-
mal subgroups. A subnormal subgroup is exactly an ascendant subgroup
having finite upper normalized chain. From Theorem A we can obtain
the description of locally finite groups whose cyclic subgroups are either
almost self-normalizing or subnormal.

The subgroup B(G), generated by all cyclic subnormal subgroups of G,
is called the Baer radical of G. Every finitely generated subgroup of B(G)
is subnormal in G and nilpotent (see, for example, [14, Theorem 2.5.1]),
so that a subgroup B(G) is locally nilpotent. A group G is said to be a
Baer group, if G = B(G).

Let G be a group and A be an abelian normal subgroup of G. Then
A is said to be G-quasifinite if A is infinite, but every proper G-invariant
subgroup of A is finite.

Theorem B. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or subnormal. Suppose that
G 6= B(G). Then the following assertions hold:

(i) a factor-group G/B(G) is finite;
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(ii) G = Q⋋ R, where Q is a normal Sylow σ′-subgroup of G, R is a
Sylow σ-subgroup of G, σ = Π(G/B(G));

(iii) R is a Chernikov subgroup;
(iv) B(G) = CR(Q) ×Q;
(v) if g 6∈ B(G), then CG(g) is finite;
(vi) B(G) includes a finite G-invariant σ-subgroup K such that

B(G)/K = QK/K × U1/K × . . .× Uk/K,

where Uj/K is a G-quasifinite divisible Chernikov pj-subgroup,
pj ∈ σ, 1 6 j 6 k;

(vii) B(G) is nilpotent.

Trivially, every normal subgroup is a special case of subnormal sub-
group, and we come to

Corollary B1. Let G be an infinite locally finite group whose cyclic
subgroups are either almost self-normalizing or normal. Suppose that G
is a not Dedekind group. Then the following assertions hold:

(i) a factor-group G/B(G) is finite cyclic;
(ii) if g 6∈ B(G), then CG(g) is finite;
(iii) every subgroup of B(G) is G-invariant, in particular, B(G) is a

Dedekind group;
(iv) Sylow 2-subgroup of B(G) is Chernikov, moreover, if this Sylow 2-

subgroup is infinite, then B(G) is abelian and G/B(G) has order 2.

1. Preliminaries and lemmas

Lemma 1. Let G be a group whose cyclic subgroups are either almost
self-normalizing or ascendant (respectively, subnormal). If H is a subgroup
of G, then every cyclic subgroup of H is either almost self-normalizing or
ascendant (respectively, subnormal).

Proof. Let C be a cyclic subgroup of H and suppose that C is not
ascendant (respectively, subnormal) in H. Then C can not be ascendant
(respectively, subnormal) in G. It follows that the index |NG(C) : C| is
finite. An inclusion NH(C) 6 NG(C) shows that the index |NH(C) : C|
is finite.

Lemma 2. Let G be a group whose cyclic subgroups are either almost
self-normalizing or ascendant (respectively, subnormal). If A is an infinite
periodic abelian subgroup of G, then the Gruenberg radical (respectively,
Baer radical) of G includes A.
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Proof. Indeed, for each element x ∈ A we have A 6 CG(x), which follows
that the index |NG(〈x〉) : 〈x〉| is infinite. Thus, x ∈ Gru(G) (respectively,
x ∈ B(G)). Hence A 6 Gru(G) (respectively, A 6 B(G)).

Lemma 3. Let L be a locally nilpotent periodic subgroup of G. If L is
not Chernikov, then the centralizer of every element of L is infinite.

Proof. Suppose first that the set Π(L) is infinite. Let g be an arbitrary
element of L and |g| = pk1

1 · . . . · pks
s , where p1, . . . , ps are primes, pj 6= pm

whenever j 6= m. Since Π(L) is infinite, the set π = Π(L) \ {p1, . . . , ps} is
infinite. Then the Sylow π-subgroup Lπ of L is infinite. The fact, that L
is locally nilpotent, implies the inclusion Lπ 6 CG(g), which follows that
CG(g) is infinite.

Suppose now that the set Π(L) is finite. Since L is not Chernikov,
there exists a prime p such that the Sylow p-subgroup P of L is not
Chernikov. Let x be an arbitrary element of L. If x is a p′-element, then
P 6 CG(x), which follows again that CG(x) is infinite. Assume that x ∈ P .
Since P is not Chernikov, P includes an 〈x〉-invariant abelian subgroup A,
which is not Chernikov [21]. Then its lower layer H = Ω1(A) is an infinite
elementary abelian subgroup. Clearly H is an 〈x〉-invariant subgroup.
Let 1 6= b1 ∈ H. Put K1 = 〈b1〉〈x〉, then K1 is a finite 〈x〉-invariant
subgroup. Since H is elementary abelian, H includes a subgroup B1 such
that H = K1 ×B1. We note that the index |H : B1| is finite. Then the
index |H : By

1 | is also finite for every element y ∈ 〈x〉. Since an element
x has finite order, a family {By

1 |y ∈ 〈x〉} is finite. Then the intersection
C1 =

⋂
y∈〈x〉

By
1 has finite index in H. In particular, C1 is infinite. By

such choice C1 is 〈x〉-invariant and K1 ∩ C1 = 〈1〉. Let 1 6= b2 ∈ C1 and
K2 = 〈b2〉〈x〉, then K2 also is a finite 〈x〉-invariant subgroup such that
K1 ∩K2 = 〈1〉. Since H is elementary abelian, H includes a subgroup B2

such that H = K1K2 × B2. Using the similar arguments and ordinary
induction, we construct the family {Kn|n ∈ N} of finite 〈x〉-invariant
subgroups such that K1 · . . . ·Km∩Km+1 = 〈1〉 for every m ∈ N. It follows
that 〈Kn|n ∈ N〉 = Drn∈NKn.

Since 〈x,Kn〉 is a finite p-subgroup, it is nilpotent. Since Kn is its
normal subgroup,Kn∩ζ(〈x,Kn〉) 6= 〈1〉. Let 1 6= zn ∈ Kn∩ζ(〈x,Kn〉) and
put Z = 〈zn|n ∈ N〉. An equality 〈Kn|n ∈ N〉 = Drn∈NKn implies that Z
is an infinite elementary abelian subgroup. By its choice Z 6 CG(〈x〉). It
follows that CG(x) is infinite.



116 The groups with two types of subgroups

Corollary 1. Let L be an infinite periodic nilpotent subgroup of G. Then
the centralizer of every element of L is infinite.

Proof. If L is a not Chernikov subgroup, then result follows from Lemma 3.
Therefore, suppose that L is a Chernikov subgroup. Since L is nilpotent,
every subgroup of L is subnormal. In particular, L is a Baer group. Then
L is central-by-finite [8, Corollary 1 to Lemma 4]. In particular, CL(x) is
infinite for each element x ∈ L.

Corollary 2. Let G be a group whose cyclic subgroups are either almost
self-normalizing or ascendant (respectively, subnormal). Suppose that L
is a locally nilpotent periodic subgroup of G. If L is not Chernikov, then
the Gruenberg radical (respectively, Baer radical) of G includes L.

Proof. In fact, by Lemma 3 CG(g) is infinite for each element g ∈ L, which
follows that the index |NG(〈g〉) : 〈g〉| is infinite and hence g ∈ Gru(G)
(respectively, g ∈ B(G)).

Corollary 3. Let G be a group whose cyclic subgroups are either almost
self-normalizing or ascendant (respectively, subnormal). Suppose that p is
a prime such that the Sylow p-subgroup P of G is not Chernikov. Then
the Gruenberg radical (respectively, Baer radical) of G includes P . In
particular, P is normal in G.

Corollary 4. Let G be a group whose cyclic subgroups are either almost
self-normalizing or ascendant (respectively, subnormal). Suppose that L is
an infinite periodic nilpotent subgroup of G. Then the Gruenberg radical
(respectively, Baer radical) of G includes L.

Proof. In fact, by Corollary 1 CG(g) is infinite for each element g ∈ L,
which follows that the index |NG(〈g〉) :〈g〉| is infinite and hence g∈Gru(G)
(respectively, g ∈ B(G)).

Let G be a Chernikov group. Denote by D(G) the maximal normal
divisible abelian subgroup of G. A subgroup D(G) is called a divisible
part of G.

Lemma 4. Let G be an infinite locally finite group whose cyclic sub-
groups are either almost self-normalizing or ascendant. Then Sylow p-
subgroup of G/Gru(G) is finite for every prime p. Moreover, for every
p ∈ Π(G/Gru(G)) every Sylow p-subgroup of G is Chernikov.
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Proof. Put B = Gru(G). Let p ∈ Π(G/B) and let P/B be the Sylow
p-subgroup of G/B. Let B 6= xB ∈ P/B. Without loss of generality we
can assume that x is an p-element. Let Bp be the Sylow p-subgroup of B.
Since B is locally nilpotent, Bp is G-invariant. Then a product 〈x〉Bp is
a p-subgroup. Suppose that Bp is not Chernikov. Let C be the Sylow p-
subgroup of G, including 〈x〉Bp. Then C is a not Chernikov subgroup, and
Corollary 3 proves that C 6 B. In this case x ∈ B, what contradicts to
the choice of element x. This contradiction shows that Bp is a Chernikov
subgroup.

Suppose now that P/B is not Chernikov. Then P/B includes an
infinite elementary abelian subgroup A/B [2, Theorem 8]. Without loss
of generality we can assume that A/B is countable. Then A/B has an
ascending series of finite subgroups

A1/B 6 A2/B 6 . . . 6 An/B 6 . . .

such that A/B =
⋃
n∈N

An/B. Since A1/B is finite, A1 includes a finite sub-

group K1 such that A1 = K1B. Choose in K1 Sylow p-subgroup S1. Since
K1 is finite, S1(B ∩K1)/(B ∩K1) is a Sylow p-subgroup of K1/(B ∩K1).
On the other hand, K1/(B ∩K1) ∼= K1B/B is a p-group. It follows that
S1(B ∩K1)/(B ∩K1) = K1/(B ∩K1), or S1(B ∩K1) = K1. In turn out
it follows that A1 = S1B. Choose in A2 a finite subgroup K2 such that
K1 6 K2 and A2 = K2B. Let S2 be the Sylow p-subgroup of K2, includ-
ing S1. Using the above arguments, we can prove that A2 = S2B. Using
similarly arguments and ordinary induction, we construct an ascending
series

S1 6 S2 6 . . . 6 Sn 6 . . .

of finite p-subgroups such that A =
( ⋃
n∈N

Sn
)
B. Put S =

⋃
n∈N

Sn, then

S is a p-subgroup and isomorphism S/(S ∩ B) ∼= SB/B = A/B shows
that S is not Chernikov. Since Bp is a normal p-subgroup, then SBp is
a p-subgroup. Let D be the Sylow p-subgroup of G, including SBp. The
fact that S is not Chernikov, implies that D is not Chernikov. Corollary 3
proves that D 6 B. In this case S 6 B and therefore SB = A 6 B, what
contradicts to the choice of A. This contradiction shows that P/B is a
Chernikov subgroup.

Let Q be the Sylow p-subgroup of B, then B = Bp ×Q. Since Bp and
P/B are Chernikov, P/Q likewise is a Chernikov group. In particular,
it is countable. Then P includes a p-subgroup R such that P = QR
(see, for example, [3, Theorem 2.4.5]). Denote by W the divisible part
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of R. Since W is abelian and infinite, Lemma 2 shows that W 6 B. An
inclusion Q 6 B implies that WQ 6 B. In turn out, it follows that P/B
is finite.

Let G be a group. Recall that a subgroup H of a group G is called
abnormal in G if g ∈ 〈H,Hg〉 for each element g of G.

Lemma 5. Let G be an infinite locally finite group whose cyclic subgroups
are either almost self-normalizing or ascendant. Then the factor-group
G/Gru(G) is finite. Moreover, if π = Π(G) \ Π(G/Gru(G)) then G =
Q⋋R, where Q is a Sylow π-subgroup of G and R is a Chernikov subgroup.

Proof. Put B = Gru(G). Suppose that G/B is infinite. Then G/B in-
cludes an infinite abelian subgroup A/B [10]. Since the Sylow p-subgroups
of G/B are finite for each prime p by Lemma 4, the set Π(A/B) is infinite.
Let p ∈ Π(A/B) and let P/B be the Sylow p-subgroup of A/B. By this
choice P/B is non-identity, i.e. B does not include P . Lemma 4 shows
that P/B is finite. Being almost locally nilpotent, P has a Carter sub-
group C, that is maximal locally nilpotent self-normalizing subgroup. We
remark also that all Carter subgroup of P are conjugate and abnormal
[20, Theorem 2.1 and Corollary 2.2]. Since C is abnormal in P , CB is also
abnormal. Then CB/B is abnormal in P/B. On the other hand, P/B is
abelian, which follows that CB/B = P/B.

Let a be an arbitrary element of A. Then Ca is maximal locally nilpo-
tent self-normalizing subgroup of P . As we noted above, the subgroups
C and Ca are conjugate in P , that is there exists an element x of P such
that Ca = Cx. It follows that ax−1 ∈ NA(C), which follows the equality
A = PNA(C). Take into account an equality P = CB, we obtain that
A = BNA(C). If we suppose that a subgroup C is not Chernikov, then
the fact that C is locally nilpotent together with Corollary 1 imply the in-
clusion C 6 B. But this contradicts to the choice of P . This contradiction
shows that C is a Chernikov subgroup. The isomorphism

A/B ∼= BNA(C)/B ∼= NA(C)/(B ∩NA(C))

shows that NA(C)/(B ∩NA(C)) has infinite set Π(NA(C)/(B ∩NA(C)))
and is abelian. Since C is abnormal in P , NP (C) = C. It follows that

B ∩NA(C) = B ∩ P ∩NA(C) = B ∩NP (C) = B ∩ C.

Together with C/(B ∩ C) ∼= CB/B = P/B and the fact, that P/B
is finite, it follows that NA(C)/C is an abelian group with infinite set
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Π(NA(C)/C). Put NA(C) = K. Since K/CK(C) is a Chernikov group
(see, for example, [3, Theorem 1.5.16]), CK(C)C/C is an abelian group
with infinite set Π(CK(C)C/C). Let S/C be the Sylow σ′-subgroup of
CK(C)C/C, where σ = Π(C). Clearly S/C is countable, so that S = C⋋U
(see, for example, [3, Theorem 2.4.5]), where U is a Sylow σ′-subgroup
of S. An inclusion C 6 CK(C) implies that S = C × U . The fact that U
is an infinite abelian subgroup implies that a subgroup CS(y) is infinite
for every element y ∈ C. In turn out, it implies that a cyclic subgroup
〈y〉 is ascendant in G. Hence y ∈ B. In other words, C 6 B. But in this
case the equality P = CB implies that P = B, which contradicts to the
choice of P . This contradiction proves that G/B is finite.

In particular, a set π is finite. Let Q be a Sylow π′-subgroup of G. The
choice of π shows that Q 6 B, so that Q is normal in G. Using Lemma 4
we obtain that for each prime p ∈ π every Sylow p-subgroup of G is
Chernikov. It follows that B/Q is countable. Take in account that G/B
is finite, we obtain that G/Q is countable. Then G = Q⋋R, where R is
a Sylow π-subgroup of G (see, for example, [3, Theorem 2.4.5]). Clearly
R is a Chernikov subgroup.

Lemma 6. Let G be a group and P be a normal Chernikov divisible
p-subgroup of G such that G/CG(P ) is finite. Then P includes a finite
G-invariant subgroup F such that P/F = U1/F × . . .×Uk/F , where Uj/F
is a G-quasifinite subgroup, 1 6 j 6 k.

Proof. Let

Q = {Q| Q is an infinite G-invariant subgroup of P}.

Since P is Chernikov, it satisfies the minimal condition on subgroups, and
therefore Q has a minimal element, say V1. Clearly V1 is G-quasifinite.
Then V1 must be divisible and hence V1 has a direct complement in
P (see, for example, [4, Theorem 21.2]). It follows that P includes a
G-invariant subgroup R1 such that P = V1R1 and the intersection V1 ∩
R1 is finite (see, for example, [11, Corollary 5.11]). Put F1 = V1 ∩ R1,
then P/F1 = V1/F1 × R1/F1. Clearly V1/F1 is G-quasifinite. Now we
choose in R1/F1 a G-invariant G-quasifinite subgroup V2/F1. Using the
above arguments, we have found a G-invariant subgroup R2/F1 such that
R1/F1 = (V2/F1)(R2/F1) and the intersection V2/F1 ∩R2/F1 = F2/F1 is
finite. By such choice we have

P/F2 = (V1F2/F2) × V2/F2 ×R2/F2.
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The both factors V1F2/F2 and V2/F2 are G-quasifinite. Using the similar
arguments, after finitely many steps we prove the required result.

Lemma 7. Let G be a locally finite group whose cyclic subgroups are
either almost self-normalizing or ascendant. Suppose that G = Q ⋋ F ,
where Q = Gru(G), Π(Q) ∩ Π(F ) = ∅ and F is a finite subgroup. If Q
is infinite, then

(i) Q is nilpotent-by-finite;
(ii) CF (Q) = 〈1〉;
(iii) if g 6∈ Q, then CG(g) is finite;
(iv) if p ∈ Π(F ) and p 6= 2, then Sylow p-subgroup of F is cyclic;
(v) Sylow 2-subgroup of F is cyclic or generalized quaternion group;
(vi) every subgroup of order pq of F , p, q ∈ Π(F ), is cyclic.

Proof. Choose an arbitrary element g 6∈ Q and suppose that CG(g) is
infinite. Since g has finite order, the index |CG(g) : 〈g〉| is infinite. In turn
out, it implies 〈g〉 has infinite index in its normalizer, which show that
〈g〉 is ascendant in G. This contradiction shows that CG(g) is finite.

Let y ∈ CF (Q), then Q 6 CG(y), in particular, CG(y) is infinite. As
we have seen above in this case y ∈ Gru(G) = Q, i.e. y ∈ Q ∩ F = 〈1〉.

Let p ∈ Π(F ) and g be an element of F , having order p. By above
proved CQ(g) is finite. Then Q is nilpotent-by-finite [19, Theorem 1.2].

Suppose first that Q is not Chernikov. Then Q includes an F -invariant
abelian subgroup A, which is not Chernikov [21]. Let y be an arbitrary
element of F . The equality Π(Q) ∩ Π(F ) = ∅ implies that A = CA(y) ×
[A, y] [1, Proposition 2.12]. By above proved CA(y) is finite, so that [A, y]
has finite index in A. It is valid for every element y ∈ F . Therefore, the
finiteness of F implies that a subgroup C =

⋂
y∈F

[A, y] has finite index in A.

By its choice CC(y) = 〈1〉 for every element y ∈ F . Put E =
⋂
y∈F

Cy, then

E has finite index in A (in particular, E is infinite), E is F -invariant and
CE(y) = 〈1〉 for every element y ∈ F . Since F is finite, we can choose in
E minimal F -invariant subgroup V . Then CV (y) = 〈1〉 for every element
y ∈ F . Therefore, F satisfies the conditions (iv)-(vi) by [9, Satz V.8.15].

Suppose now that Q is a Chernikov subgroup. Denote by D the
divisible part of Q. The equality Π(Q) ∩ Π(F ) = ∅ implies again that
D = CD(y) × [D, y] [1, Proposition 2.12] for every element y ∈ F . If
we suppose that CD(y) 6= 〈1〉, then CD(y) must be infinite, and we
obtain a contradiction with condition (iii). This contradiction shows that
CD(y) = 〈1〉 for every element y ∈ F . Again choose in D a minimal
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F -invariant subgroup W . Then CW (y) = 〈1〉 for every element y ∈ F .
Therefore, F satisfies the conditions (iv)-(vi) by [9, Satz V.8.15].

Lemma 8. Let G be a Chernikov group and P be a divisible part of G.
Suppose that P is a p-subgroup and CG(g) is finite for each p′-element g.
Then the following assertions hold:

(i) if q is a prime and q 6∈ {2, p}, then Sylow q-subgroup of G/Gru(G)
is cyclic;

(ii) if p 6= 2, then Sylow 2-subgroup of G/Gru(G) is cyclic or generalized
quaternion group.

Proof. Put C = Op(G). Our conditions yields that Gru(G) = C. Let q
be a prime, q 6= p, and Q/C be a Sylow q-subgroup of G/C. Since C is
a p-subgroup, Q = C ⋋R, where R is a Sylow q-subgroup of Q (see, for
example, [3, Theorem 2.4.5]). Choose in R an arbitrary abelian subgroup
A. Let

S = {S| S is an infinite A-invariant subgroup of P}.

Since P is Chernikov, it satisfies the minimal condition on subgroups, and
therefore S has a minimal element, say V . Clearly V is A-quasifinite. In
particular, it follows that V is a divisible abelian subgroup. Since A is a
p′-subgroup, V = CV (y) × [V, y] for each element y ∈ A [1, Proposition
2.12]. The fact, that A is abelian, implies that the subgroups CA(y) and
[V, y] are A-invariant. Therefore, if we assume that CA(y) 6= 〈1〉, then
CA(y) must be infinite, and we obtain a contradiction. This contradiction
shows that CA(y) = 〈1〉 for each element y ∈ A. Using Lemma 3.1 of
paper [7] we obtain that a subgroup A is cyclic. In particular, ζ(R) is
cyclic. Let 〈d〉 = Ω1(ζ(R)). Suppose that x is an element of R, having
order q. If 〈d, x〉 6= 〈d〉, then 〈d, x〉 is an elementary abelian subgroup of
order q2. But in this case it is not cyclic, and we obtain a contradiction
with above proved. This contradiction shows that 〈d, x〉 = 〈d〉. In other
words, R has only one subgroup of order q. Then R (and hence Q/C)
is cyclic, whenever q 6= 2, and Q/C is cyclic or generalized quaternion
group, whenever q = 2 (see, for example, [9, Satz III.8.2]).

Lemma 9. Let G be an infinite periodic group whose cyclic subgroups are
either almost self-normalizing or ascendant. If g 6∈ Gru(G), then CG(g)
is finite.

Proof. Choose an arbitrary element g 6∈ Gru(G) and suppose that CG(g)
is infinite. Since g has finite order, the index |CG(g) : 〈g〉| is infinite. In
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turn out, it implies that 〈g〉 has infinite index in its normalizer, which
show that 〈g〉 is ascendant in G. This contradiction shows that CG(g) is
finite.

Lemma 10. Let G be an infinite periodic group whose cyclic subgroups
are either almost self-normalizing or ascendant. If K is a finite normal
subgroup of G, then every cyclic subgroup of G/K is either almost self-
normalizing or ascendant. More precisely, for each element g 6∈ Gru(G)
the centralizer CG/K(gK) is finite.

Proof. At once we note that K 6 Gru(G). In fact, since K is finite, every
element g of K has only finitely many conjugates in G. Then CG(g) has
finite index in G, in particular, CG(g) is infinite. As we have seen above,
in this case the index |NG(〈g〉) : 〈g〉| is infinite, which show that 〈g〉 is
ascendant in G.

Let g be an arbitrary element of G \ Gru(G) and suppose that the
index |NG/K(〈gK〉) : 〈gK〉| is infinite. Put V/K = NG/K(〈gK〉) and X =
〈g,K〉. By its choice X is a normal subgroup of infinite subgroup V . Since
g has finite order, a subgroup X is finite. It follows that CV (X) has finite
index in V , in particular, it is infinite. An inclusion CV (X) 6 CV (g) shows
that CG(g) is infinite and we obtain a contradiction. This contradiction
shows that a cyclic subgroup 〈gK〉 has finite index in its normalizer. It
follows that NG/K(〈gK〉) is finite and hence CG/K(gK) is finite.

If g ∈ Gru(G), then a cyclic subgroup 〈g〉 is ascendant in G. Therefore,
〈gK〉 is ascendant in G/K. In other words, every cyclic subgroup of G/K
is either almost self-normalizing or ascendant.

Now we can describe the general structure of locally finite groups,
whose cyclic subgroups are either almost self-normalizing or ascendant.

2. The proofs of the main results

Proof of Theorem A. Put B = Gru(G) and let Q be a Sylow π-subgroup
of G, π = Π(G) \σ. Lemma 5 shows that G/B is finite and a group G has
a semidirect decomposition: G = Q⋋R, where R is a Chernikov Sylow
σ-subgroup of G.

(v) follows from Lemma 9.
Let y ∈ CR(Q), then Q 6 CG(y), in particular, CG(y) is infinite. As

we have seen above in this case y ∈ Gru(G).
Suppose that Q is infinite and consider a factor-group G/C, where

C = CR(Q) is a Sylow σ-subgroup of B. We have G/C = QC/C ⋋R/C.
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Every cyclic subgroup ofQC/C is ascendant in G/C. Let zC 6∈ QC/C and
suppose that CG/C(zC) is infinite. Then CQC/C(zC) = Z/C is infinite.
We have Z = D×C, where D is a Sylow π-subgroup of Z. The fact, that
Z/C is infinite, implies that D is infinite. For every element d ∈ D we
have [z, d] ∈ C. On the other hand, D 6 Q and Q is a normal subgroup
of G, therefore [z, d] ∈ Q, that is [z, d] ∈ C ∩ Q = 〈1〉. This shows that
D 6 CG(z), in particular CG(z) is infinite. However it contradicts to
(v). This contradiction shows that CG/C(zC) is finite for every element
zC 6∈ QC/C. It is not hard to prove that in this case a subgroup 〈zC〉 has
finite index in its normalizer. In other words, every cyclic subgroup of G/C
is ascendant or almost self-normalizing. Furthermore,QC/C = Gru(G/C)
and we can use Lemma 7. By Lemma 7 QC/C and hence Q is nilpotent-
by-finite.

If Q is finite, then Gru(G) is a Chernikov subgroup, in particular, it
is abelian-by-finite.

Now we can obtain some additional information about the structure
of factor-group G/Gru(G).

Proof of Corollary A1. Put B = Gru(G), then B = P ×R, where P is
a Sylow p-subgroup of B and R is a Sylow p′-subgroup of B. We have
G = Q⋋R, where R is a Chernikov Sylow π-subgroup of G, π = Π(G)\σ.
Consider a factor-group G/C, where C = CR(Q) = R ∩B is a Sylow σ-
subgroup of B. We have G/C = QC/C ⋋R/C. As in a proof of Theorem
A we can show that every cyclic subgroup of QC/C is ascendant in G/C
and every cyclic subgroup of G/C, which does not lie in QC/C, is almost
self-normalizing. Furthermore, QC/C = Gru(G/C), hence we can apply
Lemma 7 and prove this result.

Proof of Corollary A2. Put B = Gru(G). Then B = P × R, where P
is a Sylow p-subgroup of B and R is a Sylow p′-subgroup of B. By our
conditions R is finite. Consider a factor-group G/R. Suppose that the
Sylow p′-subgroup S/R of Gru(G/R) is non-identity. Let R 6= xR ∈ S/R.
Since Sylow p-subgroup of Gru(G/R) includes BR/R, x 6∈ B. Lemma 10
shows that CG/R(xR) is finite. On the other hand, since Gru(G/R) is
locally nilpotent, PR/R 6 CG/R(xR) and we obtain a contradiction. This
contradiction shows that Gru(G/R) is a p-subgroup. If xR 6∈ Gru(G/R)
and xR is a p′-element, then x 6∈ B and CG(x) is finite by Lemma 9.
Using Lemma 10 we obtain that CG/R(xR) is finite. The application of
Lemma 8 yields that Sylow q-subgroup of (G/R)/Gru(G/R) is cyclic
whenever q 6∈ {2, p}, and Sylow 2-subgroup of (G/R)/Gru(G/R) is cyclic
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or generalized quaternion group, if p 6= 2. Remain to note that the Sylow q-
subgroups of F are isomorphic to Sylow q-subgroups of (G/R)/Gru(G/R),
because Gru(G/R) is a p-subgroup.

Proof of Corollary A3. Let p, r ∈ Sp(G), B = Gru(G). Then B = P ×
R×S, where P is a Sylow p-subgroup of B, R is a Sylow r-subgroup of B,
S is a Sylow {p, r}′-subgroup of B. Consider a factor-group G/D, where
D = R × S. Let D 6= xD and assume that xD is a p′-element. In this
case xD 6∈ PD/D = B/D. Let Z/D = CB/D(xD). We have Z = C ×D,
where C is a Sylow p-subgroup of Z. By choice of C we have [x,C] 6 D.
On the other hand, C 6 P and since P is G-invariant, then [x,C] 6 P .
Thus [x,C] 6 D ∩ P = 〈1〉, which shows that CB/D(xD) = CB(x)D/D.
The fact that x 6∈ B together with Lemma 9 shows that CB(x) is finite, so
that CB/D(xD) is finite. Since G/B is finite, CG/D(xD) is likewise finite.

If we suppose now that Gru(G/D) is a not p-subgroup, then it con-
tains some p′-element yD. Since Gru(G/D) is locally nilpotent, B/D 6

CG/D(xD), in particular, CG/D(xD) is infinite, which contradicts to above
proved. This contradiction proves that Gru(G/D) is a p-subgroup.

The application of Lemma 8 yields that the Sylow q-subgroup of
the factor-group (G/D)/Gru(G/D) is cyclic whenever q 6∈ {2, p}, and
Sylow 2-subgroup of (G/D)/Gru(G/D) is cyclic or generalized quaternion
group, if p 6= 2. Since Gru(G/D) is a p-subgroup, the Sylow q-subgroups
of F are isomorphic to Sylow q-subgroups of (G/D)/Gru(G/D).

Consider now a factor-group G/PS. Using the above arguments, we
obtain that the Sylow p-subgroup of F is cyclic whenever p 6= 2, and Sylow
p-subgroup of F is cyclic or generalized quaternion group, if p = 2.

Proof of Theorem B. Put B = B(G). Repeating almost word to word the
proof of Theorem A, we will prove assertions (i)-(v). If Q is infinite, then
using arguments of a proof of Lemma 7, we obtain that Q is nilpotent-by-
finite. Let W be a nilpotent normal subgroup of Q, having finite index.
Then Q = WH for some finite subgroup H. An inclusion H 6 B(G)
implies that H is subnormal in G. Then WH is a nilpotent subgroup
[8, Lemma 4]. A subgroup R ∩B is Chernikov, and being a Baer group,
it is central-by-finite [8, Corollary 1 to Lemma 4]. In particular, R ∩B is
nilpotent. Moreover, let D be a divisible part of R∩B. Then D 6 ζ(R∩B).
Let T be a finite subgroup such that R ∩B = TD. Clearly T is normal
in R ∩ B, and hence in B. Since G/B is finite, TG = U is also finite.
Then (R ∩ B)/U = UD/U is divisible. Therefore, using Lemma 6 we
obtain (vi).
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Proof of Corollary B1. Let L be a locally nilpotent radical of G. Since
B(G) 6 L, G/L is finite by Theorem B. In particular, L is infinite.

Suppose first that L is not Chernikov. Then CL(g) is infinite by
Lemma 3. It follows that every cyclic subgroup of L is G-invariant. Then
every subgroup of L is G-invariant. In particular, L = B(G). Furthermore,
L is a Dedekind group. Then either L is abelian, or L = Q×E×R, where
Q is a quaternion group, E is elementary abelian 2-subgroup and R is
an abelian 2′-subgroup (see, for example, [14, Theorem 6.1.1]). We note
here, that E must be finite. In fact, every non-identity cyclic subgroup
of E is G-invariant, and being a subgroup of order 2, lies in the center
of G. Hence if we suppose that E is infinite, then ζ(G) is infinite. But
in this case CG(g) is infinite for each element g ∈ G, so that every cyclic
subgroup of G is normal in G, and G must be Dedekind.

Let H be an infinite subgroup of L. If x ∈ CG(H), then H 6 CG(x),
so that CG(x) is infinite and x ∈ B(G). Hence CG(H) 6 L, in particular,
CG(L) 6 L. The fact, that every subgroup of L is G-invariant, implies
that G/CG(L) is abelian (see, for example, [18, Theorem 1.5.1]).

If Sylow 2-subgroupD ofL is infinite, then by above provedL is abelian.
If we suppose that Ω1(D) is infinite, then using the above arguments,
we obtain that G is a Dedekind group. This implies that Ω1(D) is finite.
Then D is a Chernikov group. Being infinite, D includes a quasicyclic
2-subgroup W . As we have seen above, W is G-invariant and CG(W ) 6 L.
Furthermore, G/CG(W ) is isomorphic to a periodic subgroup of Aut(W ).
We recall that Aut(W ) is isomorphic to the multiplicative group of a ring
of integer 2-adic numbers (see, for example, [5, Section 113, Example 3]).
Recall also, that a periodic subgroup of the multiplicative group of a ring
of integer 2-adic numbers has order 2 (see, for example, [5, Section 128,
Example 2]). Thus in this case the factor-group G/L has order 2.

Suppose now that there exists an odd prime p such that Sylow p-
subgroup P of L is infinite. By above proved P is abelian. Assume that
Ω1(P ) is infinite. Then again we have an inclusion CG(Ω1(P )) 6 L. Since
every subgroup of Ω1(P ) is G-invariant, G/CG(Ω1(P )) is a cyclic group,
whose order divides p−1. Hence G/L is a cyclic group, whose order divides
p− 1. Suppose now that Ω1(P ) is finite. Then P is a Chernikov group.
In this case the orders of elements of P are not bounded. Since every
subgroup of P is G-invariant, G/P is isomorphic to a periodic subgroup
of the multiplicative group of a ring of integer p-adic numbers (see, for
example, [18, Theorem 1.5.6]). We recall that a periodic subgroup of the
multiplicative group of a ring of integer p-adic numbers is cyclic and its
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order divides p− 1 (see, for example, [5, Section 128, Example 2]). Thus
in this case the factor-group G/L is cyclic and its order divides p− 1.

Suppose now that the Sylow p-subgroups of L are finite for all primes p.
Since L is not Chernikov subgroup, Π(L) is infinite. Let σ = Π(G/L), then
σ is finite by Theorem B. It follows that Sylow σ-subgroup K of L is finite.
Theorem B shows that CG(g) is finite for each g 6∈ L. Lemma 10 implies
that CG/K(gK) is finite for each g 6∈ L. Obviously L/K is normal Sylow
σ′-subgroup of G/K, so that G/K = L/K ⋋ S/K, where S/K is a finite
Sylow σ-subgroup of G/K. Since Π(L/K) is infinite, we can find in L/K
a finite σ′-subgroup R/K such that R/K ∩ CG/K(gK) = 〈1〉 for every
element gK ∈ S/K (recall that every subgroup of L/K is G-invariant).
Taking into account the fact, that S/K is abelian (S/K ∼= G/L) and
Satz V.8.15 of a book [9], we obtain that every Sylow subgroup of S/K
is cyclic, and therefore S/K is cyclic.

Consider now the case when L is a Chernikov subgroup. By Theorem B
the Baer radical B(G) is nilpotent. Corollary 1 shows that every element
of B(G) has infinite centralizers. Then every cyclic subgroup of B(G)
is G-invariant, and therefore every subgroup of B(G) is G-invariant. As
above we can shows that B(G) includes a centralizer of each its infinite
subgroup. Since G/B(G) is finite, B(G) is infinite. Being Chernikov,
B(G) includes a quasicyclic p-subgroup for some prime p. Using the above
arguments, we obtain that G/B(G) is cyclic and its order divides p− 1.
Furthermore, if p = 2, then B(G) is abelian and G/B(G) has order 2.
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of submodules of a module
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Abstract. Let M be a unitary left R-module where R is a
ring with identity. The co-intersection graph of proper submodules
of M , denoted by Ω(M), is an undirected simple graph whose the
vertex set V (Ω) is a set of all non-trivial submodules of M and
there is an edge between two distinct vertices N and K if and
only if N + K 6= M . In this paper we investigate connections
between the graph-theoretic properties of Ω(M) and some algebraic
properties of modules . We characterize all of modules for which the
co-intersection graph of submodules is connected. Also the diameter
and the girth of Ω(M) are determined. We study the clique number
and the chromatic number of Ω(M).

1. Introduction

The investigation of the interplay between the algebraic structures-
theoretic properties and the graph-theoretic properties has been studied
by several authors. As a pioneer, J. Bosak [4] in 1964 defined the graph of
semigroups. Inspired by his work, B. Csakany and G. Pollak [7] in 1969,
studied the graph of subgroups of a finite group. The Intersection graphs
of finite abelian groups studied by B. Zelinka [11] in 1975. Recently,
in 2009, the intersection graph of ideals of a ring, was considered by
I. Chakrabarty et. al. in [5]. In 2012, on a graph of ideals researched
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Key words and phrases: co-intersection graph, clique number, chromatic num-

ber.
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by A. Amini et. al. in [2] and Also, intersection graph of submodules of
a module introduced by S. Akbari et. al. in [1]. Motivated by previous
studies on the intersection graph of algebraic structures, in this paper we
define the co-intersection graph of submodules of a module. Our main
goal is to study the connection between the algebraic properties of a
module and the graph theoretic properties of the graph associated to it.

Throughout this paper R is a ring with identity and M is a unitary
left R-module. We mean from a non-trivial submodule of M is a nonzero
proper left submodule of M .

The co-intersection graph of an R-module M , denoted by Ω(M), is
defined the undirected simple graph with the vertices set V (Ω) whose
vertices are in one to one correspondence with all non-trivial submodules
of M and two distinct vertices are adjacent if and only if the sum of the
corresponding submodules of M is not-equal M .

A submodule N of an R-module M is called superfluous orsmall
in M (we write N ≪ M), if for every submodule X ⊆ M , the equality
N +X = M implies X = M , i.e., a submodule N of M is called small
in M , if N + L 6= M for every proper submodule L of M . The radical of
R-module M written Rad(M), is sum of all small submodules of M .

A non-zero R-module M is called hollow, if every proper submodule
of M is small in M .

A non-zero R-module M is called local, if has a largest submodule,
i.e., a proper submodule which contains all other proper submodules.

An R-module M is said to be A-projective if for every epimorphism
g : A → B and homomorphism f : M → B, there exists a homomorphism
h : M → A, such that gh = f . A module P is projective if P is A-
projective for every R-module A. If P is P -projective, then P is also
called self-(or quasi-)projective.

A non-zero R-module M is said to be simple, if it has no non-trivial
submodule. A nonzero R-module M is called indecomposable, if it is not a
direct sum of two non-zero submodules. For an R-module M , the length
of M is the length of composition series of M , denoted by lR(M).

An R-module M has finite length if lR(M) < ∞, i.e., M is Noetherian
and Artinian. The ring of all endomorphisms of an R-module M is denoted
by EndR(M).

Let Ω=(V (Ω),E(Ω)) be a graph with vertex set V (Ω) and edge set E(Ω)
where an edge is an unordered pair of distinct vertices of Ω. Graph Ω
is finite, if Card(V (Ω)) < ∞, otherwise Ω is infinite. A subgraph of a
graph Ω is a graph Γ such that V (Γ) ⊆ V (Ω) and E(Γ) ⊆ E(Ω). By order
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of Ω, we mean the number of vertices of Ω and we denoted it by |Ω|. If
X and Y are two adjacent vertices of Ω, then we write X ↔ Y .

The degree of a vertex υ in a graph Ω, denoted by deg(υ), is the number
of edges incident with υ. A vertex v is called isolated if deg(v) = 0. Let
U and V be two distinct vertices of Ω. An U , V -path is a path with
starting vertex U and ending vertex V . For distinct vertices U and V ,
d(U, V ) is the least length of an U , V -path. If Ω has no such a path, then
d(U, V ) = ∞. The diameter of Ω, denoted by diam(Ω) is the supremum
of the set {d(U, V ): U and V are distinct vertices of Ω}.

A cycle in a graph is a path of length at least 3 through distinct
vertices which begins and ends at the same vertex. We mean of (X,Y, Z)
is a cycle of length 3. The girth of a graph is the length of its shortest
cycle. A graph with no-cycle has infinite girth.

By a null graph, we mean a graph with no edges. A graph is said to be
connected if there is a path between every pair of vertices of the graph.

A tree is a connected graph which does not contain a cycle.

A star graph is a tree consisting of one vertex adjacent to all the
others.

A complete graph is a graph in which every pair of distinct vertices are
adjacent. The complete graph with n distinct vertices, denoted by Kn.

By a clique in a graph Ω, we mean a complete subgraph of Ω and the
number of vertices in a largest clique of Ω, is called the clique number
of Ω and is denoted by ω(Ω).

An independent set in a graph is a set of pairwise non-adjacent vertices.
An independence number of Ω, written α(Ω), is the maximum size of an
independent set.

For a graph Ω, let χ(Ω), denote the chromatic number of Ω, i.e., the
minimum number of colors which can be assigned to the vertices of Ω
such that every two adjacent vertices have different colors.

2. Connectivity, diameter and girth of Ω(M)

In this section, we characterize all modules for which the co-intersection
graph of submodules is not connected. Also the diameter and the girth
of Ω(M) are determined. Finally we study some modules whose co-
intersection graphs are complete.

Theorem 2.1. Let M be an R-module. Then the graph Ω(M) is not
connected if and only if M is a direct sum of two simple R-modules.
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Proof. Assume that Ω(M) is not connected. Suppose that Ω1 and Ω2 are
two components of Ω(M). Let X and Y be two submodules of M such
that X ∈ Ω1 and Y ∈ Ω2. Since there is no X,Y -path, then M = X + Y .
Now, if X ∩ Y 6= (0), then by

X ∩ Y +X = X 6= M and X ∩ Y + Y = Y 6= M

implies that there is a X,Y -path by X ∩ Y , to form X ↔ X ∩ Y ↔ Y ,
a contradiction. Hence, X ∩ Y = (0) and M = X ⊕ Y . Now, we show
that X and Y are minimal submodules of M . To see this, let Z be a
submodule of M such that (0) 6= Z ⊆ X then Z +X = X 6= M . Hence
Z and X are adjacent vertices, which implies that Z ∈ Ω1. Hence there
is no Z,Y -path and by arguing as above, we have M = Z + Y , since Z
and Y are not adjacent vertices. But since

X = X ∩M = X ∩ (Z + Y ) = Z +X ∩ Y = Z

by Modularity condition, X is a minimal submodule of M .
A similar argument shows that Y is also a minimal submodule of M

and in fact every non-trivial submodule of M is a minimal submodule,
which yields that every non-trivial submodule is also maximal. But,
minimality of X and Y implies that, they are simple R-modules and since
M = X ⊕ Y , we are done.

Conversely, suppose that Ω(M) is connected. Let M = X ⊕ Y , where
X and Y are simple R-modules. Let M1 = X × {0} and M2 = {0} × Y .
Then M1 and M2 are minimal submodules of M . Moreover, M1 and
M2 are simple R-modules. But, M = M1 ⊕ M2 and M1

∼= M/M2 and
M2

∼= M/M1. Consequently, M1 and M2 are maximal submodules of M .
Therefore, M1 and M2 are two maximal and minimal submodules of M .
We show that M1 is an isolated vertex in Ω(M). To see this, let N be
a vertex in Ω(M), with N +M1 6= M . Then, maximality of M1 implies
that N +M1 = M1, and hence N ⊆ M1. Then, minimality of M1 implies
that M1 = N . Hence, M1 is an isolated vertex in Ω(M). Thus, Ω(M) is
not connected, a contradiction. This completes the proof.

Example 2.2. Let Zpq be a Z-module, such that p and q are two distinct
prime numbers. Then Ω(Zpq) is not connected. Because, Zp and Zq are
simple Z-modules and by Theorem 2.1, Ω(Zp ⊕ Zq) is not connected.
Since Zpq ∼= Zp⊕Zq, Ω(Zpq) is not connected. But, we consider Zp1p2p3 as
Z-module, such that pi is a prime number, for i = 1, 2, 3. We know M1 =
p1Zp1p2p3 , M2 = p2Zp1p2p3 and M3 = p3Zp1p2p3 are the only maximal
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submodules of Zp1p2p3 . Also, K = p1p2Zp1p2p3 , L = p1p3Zp1p2p3 and
N = p2p3Zp1p2p3 are the other submodules of Zp1p2p3 . Hence, Ω(Zp1p2p3)
is connected (see Fig. 1).

M2 N M3

K L

M1

Figure 1. Ω(Zp1p2p3
).

Corollary 2.3. Let M be an R-module. If Ω(M) is connected, then the
following hold:

(1) every pair of maximal submodules of M , have non-trivial intersection,
and there exists a path between them;

(2) every pair of minimal submodules of M , have non-trivial sum, and
there is an edge between them.

Proof. (1) Let M1 and M2 be two maximal submodules of M . Clearly,
M1 ∩M2 6= M . Let M1 ∩M2 = (0). Since M = M1 +M2, M = M1 ⊕M2.
So M/M1

∼= M2 and M/M2
∼= M1, hence M1 and M2 are two simple

R-modules. Now, by Theorem 2.1, Ω(M) is not connected, which is a
contradiction by hypothesis. Hence M1 ∩ M2 6= (0), and there exists a
path to form M1 ↔ M1 ∩M2 ↔ M2 between them.

(2) Let M1 and M2 be two minimal submodules of M such that
M = M1 + M2. If M1 ∩ M2 = (0), then M = M1 ⊕ M2, such that M1

and M2 are two simple R-modules, then by Theorem 2.1, Ω(M) is not
connected, which is a contradiction by hypothesis. Also if M1 ∩M2 6= (0),
since (0) $ M1 ∩ M2 ⊆ Mi $ M , for i = 1, 2, by minimality of M1

and M2 implies that M1 ∩M2 = M1 = M2, which is a contradiction by
hypothesis M1 6= M2. Therefore, M 6= M1 + M2, and there is an edge
between them.
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Corollary 2.4. Let M be an R-module. If |Ω(M)| > 2, and Ω(M) is not
connected, then the following hold:

(1) Ω(M) is a null graph;
(2) lR(M) = 2.

Proof. (1) Suppose that Ω(M) is not connected, then by Theorem 2.1,
M = M1 ⊕M2, such that M1 and M2 are two simple R-modules. So any
non-trivial submodule of M is simple. In fact any non-trivial submodule
of M is minimal and consequently a maximal submodule. Hence for each
two distinct non-trivial submodules K and L of M , we have M = K +L,
thus there is no edge between two distinct vertices K and L of the graph
Ω(M). Therefore, Ω(M) is a null graph.

(2) It is clear by Theorem 2.1.

Theorem 2.5. Let M be an R-module. If Ω(M) is connected, then
diam(Ω(M)) 6 3.

Proof. Let A and B be two non-trivial distinct submodules of M . If
A+B 6= M then A and B are adjacent vertices of Ω(M), so d(A,B) = 1.
Suppose that A + B = M . If A ∩ B 6= (0), then there exists a path
A ↔ A ∩B ↔ B of length 2, so d(A,B) = 2. Now, if A ∩B = (0), then
M = A⊕B, and since Ω(M) is connected, by Corollary 2.3(1), implies
that at least one of A and B should be non-maximal. Assume that B is not
maximal. Hence there exists a submodule X of M such that B $ X $M ,
and B + X = X 6= M . Now, if A + X 6= M , then there exists a path
A ↔ X ↔ B of length 2, then d(A,B) = 2. But, if A + X = M , then
by Modularity condition, X = X ∩ (A ⊕ B) = (X ∩ A) ⊕ B. Now, if
X ∩ A = (0), then X = B, a contradiction with existence X. Also, if
X ∩A 6= (0), then there exists a path A ↔ X ∩A ↔ X ↔ B of length 3,
so d(A,B) 6 3. Therefore, diam(Ω(M)) 6 3.

Remark 2.6. Let R be an integral domain. Then Ω(R) is a connected
graph with diam(Ω(R)) = 2.

Proof. Suppose that I and J are two ideals of integral domain R. Now,
if I + J 6= R, then I and J are adjacent vertices, then d(I, J) = 1. But,
if I + J = R, there exist two possible cases I ∩ J = (0) or I ∩ J 6= (0).
The first case implies that R = I ⊕ J , then there is idempotent e in R,
such that I = Re and J = R(1 − e). Since integral domain R has no
zero divisor, then e = 0 or e = 1, thus I = (0) and J = R or I = R and
J = (0), this is a contradiction. In second case, since IJ = I ∩ J 6= (0)
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and I + IJ = I 6= R, J + IJ = J 6= R, then there exists a path to form
I ↔ IJ ↔ J , then d(I, J) = 2. Consequently, Ω(R) is a connected graph
and diam(Ω(R)) = 2.

Theorem 2.7. Let M be an R-module, and Ω(M) a graph, which contains
a cycle. Then girth(Ω(M)) = 3.

Proof. On the contrary, assume that girth(Ω(M)) > 4. This implies
that every pair of distinct non-trivial submodules M1 and M2 of M with
M1+M2 6= M should be comparable. Because, if X and Y are two distinct
non-trivial submodules of M with X + Y 6= M such that X *Y and
Y * X, then X $ X+Y and Y $ X+Y . As X+Y +X = X+Y 6= M and
Y +X +Y = X +Y 6= M , hence Ω(M) has a cycle to form (X,X +Y, Y )
of length 3, a contradiction. Now, since girth(Ω(M)) > 4, Ω(M) contains
a path of length 3, say A ↔ B ↔ C ↔ D. Since every two submodules
in this path are comparable and every chain of non-trivial submodules
of length 2 induces a cycle of length 3 in Ω(M), the only two possible
cases are A ⊆ B, C ⊆ B or B ⊆ A, B ⊆ C, D ⊆ C. The first case
yields A + B = B 6= M , C + B = B 6= M , A + C ⊆ B 6= M , then
(A,B,C) is a cycle of length 3 in Ω(M), a contradiction. In the second
case, we have B +A = A 6= M , B + C = C 6= M , B +D ⊆ C 6= M and
C +D = C 6= M , then (B,C,D) is a cycle of length 3 in Ω(M), which
again this is a contradiction. Consequently, girth(Ω(M)) = 3, and the
proof is complete.

Example 2.8. Since Z is an integral domain, then by Remark 2.6, Ω(Z) is
a connected graph and contains a cycle (2Z, 4Z, 6Z), then by Theorem 2.7,
girth(Ω(Z)) = 3.

Theorem 2.9. Let M be a Noetherian R-module. Then, Ω(M) is complete
if and only if M contains a unique maximal submodule.

Proof. Suppose thatM is a Noetherian R-module, then M has at least one
maximal submodule. Moreover every nonzero submodule of M contained
in a maximal submodule. Therefore, if M possesses a unique maximal
submodule, say U , then U contains every nonzero submodule of M . As-
sume that K and L are two distinct vertices of Ω(M). Then K ⊆ U and
L ⊆ U , hence K + L ⊆ U 6= M . Therefore, Ω(M) is complete.

Conversely, suppose that Ω(M) is complete. Let X and Y be two
distinct maximal submodules of M . Then X + Y 6= M , since X ⊆ X + Y
and Y ⊆ X + Y , by maximality of X and Y , we have X + Y = X = Y , a
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contradiction. Consequently, M contains a unique maximal submodule,
and the proof is complete.

Theorem 2.10. Let M be an Artinian R-module. Then Ω(M) is con-
nected if and only if M contains a unique minimal submodule.

Proof. Suppose that M is an Artinian R-module, then M has at least
one minimal submodule. Moreover, every nonzero submodule of M con-
tains a minimal submodule. Therefore, if M possesses a unique minimal
submodule, say L, then L contained in every nonzero submodule of M .
Assume that A and B are two distinct vertices of Ω(M). Then L ⊆ A
and L ⊆ B, hence L+A = A 6= M and L+B = B 6= M . Then there is
A,B-path, to form A ↔ L ↔ B. Therefore, Ω(M) is connected.

Conversely, suppose that Ω(M) is connected. Let N1 and N2 be
two distinct minimal submodules of M . Since (0) ⊆ N1 ∩ N2 ⊆ Ni $
M , for i = 1, 2, by minimality of N1 and N2, if N1 ∩ N2 6= (0), then
N1 ∩ N2 = N1 = N2, a contradiction. If N1 ∩ N2 = (0), then the only
two possible cases are N1 +N2 = M or N1 +N2 6= M . If N1 +N2 = M ,
then M = N1 ⊕ N2 such that N1 and N2 are two simple R-modules.
Then by Theorem 2.1, Ω(M) is not connected, a contradiction. But, if
N1 +N2 6= M ,N1 = N1/(N1 ∩N2) ∼= (N1 +N2)/N2 and N1 is simple, then
N2 is maximal submodule of M . Also, similarly N1 is maximal submodule
of M . Since, (0) $ Ni ⊆ N1 +N2 $M , for i = 1, 2, by maximality of N1

and N2, we have N1 +N2 = N1 = N2, which again this is a contradiction.
Consequently, M contains a unique minimal submodule, and the proof is
complete.

Proposition 2.11. Let M be an R-module, with the graph Ω(M). Then
M is a hollow if and only if Ω(M) is a complete graph.

Proof. Suppose that K1 and K2 are two distinct vertices of Ω(M). Since
M is a hollow R-module, then K1 ≪ M and K2 ≪ M . Then by [3,
Proposition 5.17(2)] K1 + K2 ≪ M . Thus, K1 + K2 6= M . Therefore,
Ω(M) is a complete graph.

Conversely, assume that Ω(M) is a complete graph. Let N is a non-
trivial submodule of M . Since Ω(M) is complete, N is adjacent to every
other vertex of Ω(M). Then N +X 6= M , for every proper submodule X
of M , thus N ≪ M . Hence, M is a hollow R-module.

Corollary 2.12. Let M be an R-module and N be a non-trivial submodule
of M . If |Ω(M)| = n, then N is a non-trivial small submodule of M if
and only if deg(N) = n− 1, n ∈ N.
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Proof. It is clear.

Example 2.13. We consider Z12 as Z12- module. The non-trivial sub-
modules of Z12 are M1 = {0, 6}, M2 = {0, 4, 8}, M3 = {0, 3, 6, 9},
M4 = {0, 2, 4, 6, 8, 10} such that M1 = {0, 6} is the only non-trivial small
submodule of Z12 and |Ω(Z12)| = 4. Then, by Corollary 2.12, deg(M1) = 3
(see Fig. 2).

M1 M2

M3M4

Figure 2. Ω(Z12).

Example 2.14. For every prime number p and for all n ∈ N with n > 2,
the co-intersection graph of Z-module Zpn , is a complete graph. Because,
Z-module Zpn is local, then it is hollow. Hence, by Proposition 2.11,
Ω(Zpn) is complete. Also, since the number of non-trivial submodules of
Z-module Zpn is equal n− 1. Therefore, Ω(Zpn) is a complete graph with
n− 1 vertices, i.e., Ω(Zpn)=Kn−1 (see Fig. 3 for p = 2 and n = 5).

M1 M2

M3M4

Figure 3. Ω(Z32).

Example 2.15. For every prime number p, the co-intersection graph of
Z-module Zp∞ , is a complete graph. Because, by [10, 41.23, Exercise (6)],
for every prime number p, the Z-module Zp∞ is hollow. Therefore, by
Proposition 2.11, Ω(Zp∞) is complete.
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Corollary 2.16. Let M be an R-module. Then Ω(M) is complete, if one
of the following holds:

(1) if M is an indecomposable R-module, such that every pair of non-
trivial submodules of M , have zero intersection;

(2) if M is a local R-module;
(3) if M is a self-(or quasi-) projective R-module and EndR(M) is a

local ring.

Proof. (1) It is clear by definition.

(2) Since local R-modules are hollow, it follows from Proposition 2.11.

(3) Since, M is a self- (or quasi-) projective R-module and EndR(M)
is a local ring, M is hollow by [9, Proposition 2.6]. Then it follows from
Proposition 2.11.

3. Clique number, chromatic number and some finiteness
conditions

Let M be an R-module. In this section, we obtain some results on the
clique and the chromatic number of Ω(M). We also study the condition
under which the chromatic number of Ω(M) is finite. Finally, it is proved
that χ(Ω(M)) is finite, provided ω(Ω(M)) is finite.

Lemma 3.1. Let M be an R-module and ω(Ω(M)) < ∞. Then the
following hold:

(1) lR(M) < ∞;
(2) ω(Ω(M)) = 1 if and only if either |Ω(M)| = 1 or |Ω(M)| > 2 and M

is a direct sum of two simple R-modules(i.e., Ω(M) is null);
(3) if ω(Ω(M)) > 1, then the number of minimal submodules of M is

finite.

Proof. (1) Let M0 ⊂ M1 ⊂ · · · ⊂ Mi ⊂ Mi+1 ⊂ . . . , be an infinite strictly
increasing sequence of submodules of M . For i < j, Mi +Mj = Mj 6= M ,
so similarly for infinite strictly decreasing sequence of submodules of M .
Hence, any infinite strictly increasing or decreasing sequence of submodules
of M induces a clique in Ω(M) which contradicts the finiteness ω(Ω).
This implies that for infinite strictly (increasing and decreasing) sequence
of submodules of M , Mn = Mn+i for i = 1, 2, 3, . . . . Thus, M should be
Noetherian and Artinian. Therefore, lR(M) < ∞.

(2) Suppose that ω(Ω) = 1 and |Ω(M)| > 2. This implies that Ω(M)
is not connected. Hence, by Theorem 2.1, M is a direct sum of two simple
R-modules.
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Conversely, it is clear by Theorem 2.1.

(3) Since ω(Ω) > 1, by Part (2), M is not a direct sum of two simple
R-modules. Then, by Theorem 2.1, Ω(M) is not connected. Therefore, by
Corollary 2.3(2), every pair of minimal submodules of M , have non-trivial
sum. Suppose that Ω⋆(M) is a subgraph of Ω(M) with the vertex set
V ⋆={L 6 M |L is minimal submodule ofM}. Then Ω⋆(M) is a clique
in M , and Card(V ⋆) = ω(Ω⋆(M)) 6 ω(Ω(M)) < ∞. Hence, then the
number of minimal submodules of M is finite.

Remark 3.2. Let M be an R-module with the length lR(M) and N be
a submodule of M and △(Ω) = max{deg(vi)|vi ∈ V (Ω)}, then:

(1) Clearly,ω(Ω(N)) 6 ω(Ω(M)) and ω(Ω(M/N)) 6 ω(Ω(M)). Hence,
ω(Ω(M)) < ∞, implies that ω(Ω(N)) < ∞ and ω(Ω(M/N)) < ∞.

(2) Clearly, lR(M) 6 ω(Ω(M))+1. Also if Ω(M) is a connected graph,
then ω(Ω(M)) 6 χ(Ω(M)) 6 △(Ω) + 1 by Theorem 10.3(1) of [6, p. 289].
Hence, △(Ω) < ∞, implies that χ(Ω(M)) < ∞, ω(Ω(M)) < ∞, and
lR(M) < ∞.

Theorem 3.3. Let M be an R-module and |Ω(M)| > 2. Then the fol-
lowing conditions are equivalent:

(1) Ω(M) is a star graph;
(2) Ω(M) is a tree;
(3) χ(Ω(M) = 2;
(4) lR(M) = 3, M has a unique minimal submodule L such that every

non-trivial submodule contains L is maximal submodule of M .

Proof. (1) ⇒ (2) ⇒ (3) It follows from definitions.

(3) ⇒ (4), Let χ(Ω(M) = 2. Then Ω(M) is not null and by Corol-
lary 2.4(1), Ω(M) is connected. By Remark 3.2(2), ω(Ω(M)) 6 χ(Ω(M)),
hence ω(Ω(M)) < ∞ and by Lemma 3.1(1), lR(M) < ∞. Then M is
Artinian. Hence M contains a minimal submodule L. We show that L is
unique. Let there exist two minimal submodules L1 and L2 of M . Then
by Corollary 2.3(2), L1 + L2 6= M . Since (L1 + L2) + L1 = L1 + L2 6= M
and (L1 + L2) + L2 = L1 + L2 6= M , then (L1, L1 + L2, L2) is a cycle of
length 3 in Ω(M), which contradicts χ(Ω(M) = 2. Hence, L is a unique
minimal submodule of M . Suppose that L contained in every non-trivial
submodule of M . If K is a non-trivial submodule of M such that L $ K,
we show that K is a maximal submodule of M . Let L $ K $ X $ M ,
since L+K = K, K +X = X and L+X = X, (L,K,X) is a cycle of



L. A. Mahdavi, Y. Talebi 139

length 3, which is a contradiction. Consequently, K is a maximal submod-
ule contains L, and (0) $ L $ K $M , is a composition series of M with
length 3. Therefore, lR(M) = 3.

(4) ⇒ (1) Suppose that lR(M) = 3 and M has a unique minimal
submodule L, such that every non-trivial submodule Li, (i ∈ I) of M
contains L, is a maximal submodule ofM . Then, (0) $ L $ Li $M , for all
i ∈ I, are composition series ofM with length 3, such that Li+L = Li 6= M
and Li + Lj = M for i 6= j, Therefore, Ω(M) is a star graph. The proof
is complete.

Lemma 3.4. Let M be an R-module and N a vertex of the graph Ω(M).
If deg(N) < ∞, then lR(M) < ∞.

Proof. Suppose that N contains an infinite strictly increasing sequence
of submodules N0 ⊂ N1 ⊂ N2 ⊂ · · · . Then Ni + N = N 6= M , for
all i ∈ I, which contradicts deg(N) < ∞. Similarly, if N contains an
infinite strictly decreasing sequence of submodules, which again yields
a contradiction. Also assume that M/N contains an infinite strictly
increasing sequence of submodules M0/N ⊂ M1/N ⊂ M2/N ⊂ · · · . Since
N ⊂ M0 ⊂ M1 ⊂ M2 ⊂ · · · . Then Mi + N = Mi 6= M , for all i ∈ I, a
contradiction. Similarly, if M/N contains an infinite strictly decreasing
sequence of submodules, which again yields a contradiction. Hence, N
and M/N can not contain an infinite strictly increasing or decreasing
sequence of submodules. Thus, they are Noetherian R-module as well as
Artinian R-module. Hence, M is Noetherian R-module as well as Artinian
R-module. Therefore, lR(M) < ∞.

Lemma 3.5. Let M be an R-module and N a minimal submodule of M .
Assume that L is a non-trivial submodule of M such that L + N = M .
Then, L is a maximal submodule of M .

Proof. Let U be a submodule of M such that (0) 6= L ⊆ U $ M .
Then L + U = U and (0) ⊆ L ∩ N ⊆ U ∩ N ⊆ N . Since N is a
minimal submodule of M , L ∩ N = N or U ∩ N = (0). If L ∩ N = N
then N ⊆ L thus N + U ⊆ L + U = U and M = L + N ⊆ N + U ,
implies that M = U , which is a contradiction. Hence U ∩N = (0) and
U = U ∩ (L+N) = L+ U ∩N = L by Modularity condition. Therefore,
L is a maximal submodule of M .

Theorem 3.6. Let M be an R-module with the graph Ω(M) and N is a
minimal submodule of M , such that deg(N) < ∞. If Ω(M) is connected,
then the following hold:
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(1) the number of minimal submodules of M is finite;
(2) χ(Ω(M)) < ∞;
(3) if Rad(M) 6= (0), then Ω(M) has a vertex which is adjacent to every

other vertex.

Proof. (1) Let Σ = {K 6M | K be a minimal submodule ofM}. Clearly,
Σ 6= ∅. Since Ω(M) is connected, then by Corollary 2.3(2), for all K ∈ Σ,
K +N 6= M , for N and every K ∈ Σ are minimal submodules of M and
adjacent vertices of Ω(M) with deg(N) < ∞. Hence, Card(Σ) < ∞, thus
the number of minimal submodules of M is finite.

(2) Let {Ui}i∈I be the family of non-trivial submodules which are not
adjacent to N . Thus, Ui +N = M , for all i ∈ I. Hence by Lemma 3.5, Ui
is maximal submodule of M , for all i ∈ I. Since Ui + Uj = M , for i 6= j,
distinct vertices Ui and Uj are not two adjacent vertices of Ω(M). Hence,
one can color all {Ui}i∈I by a color, and other vertices, which are a finite
number of adjacent vertices N , by a new color to obtain a proper vertex
coloring of Ω(M). Therefore, χ(Ω(M)) < ∞.

(3) In order to establish this part, consider Rad(M). Since N is a
vertex of Ω(M) and deg(N) < ∞, by Lemma 3.4, lR(M) < ∞ and thus M
is Noetherian. Then by [3, Proposition 10.9],M is finitely generated and by
[3, Theorem 10.4(1)], Rad(M) ≪ M . Now, we know that Rad(M) 6= M ,
otherwise, M = (0), which is a contradiction. Hence, Rad(M) is a non-
trivial submodule of M and for each non-trivial submodule K of M , we
have K + Rad(M) 6= M . Consequently, Ω(M) has the vertex Rad(M),
which is adjacent to every other vertex.

Corollary 3.7. Let M be an R-module with the graph Ω(M). Then the
following hold:

(1) if M has no maximal or no minimal submodule, then Ω(M) is
infinite;

(2) if M contains a minimal submodule and every minimal submodule
of M has finite degree, then Ω(M) is either null or finite.

Proof. (1) If M has no maximal submodule, since (0) $M and (0) is not
maximal, there exists a submodule M0 of M , such that (0) $M0 $M ,
and M0 is not maximal, there exists a submodule M1 of M , such that
(0) $M0 $M1 $M . Consequently, there exists (0) $M1 $M1 $ · · · $
M , and for i < j, Mi + Mj = Mj 6= M . Thus M contains an infinite
strictly increasing sequence of submodules. Therefore, Ω(M) is infinite.
If M has no minimal submodule, since M % (0) and M is not minimal,
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there exists a submodule N0, such that M % N0 % (0), and N0 is not
minimal, there exists a submodule N1, such that M % N0 % N1 % (0).
Consequently, there exists M % N0 % N1 % · · · % (0), and for i < j,
Ni + Nj = Ni 6= M . Thus M contains an infinite strictly decreasing
sequence of submodules. Therefore, Ω(M) is infinite.

(2) Suppose that Ω(M) is not null and by contrary assume that
Ω(M) is infinite. Since Ω(M) is not null, by Corollary 2.4(1), Ω(M) is
connected and since every minimal submodule of M has finite degree, by
Lemma 3.4, lR(M) < ∞. Hence, M is Artinian and by Theorem 3.6(1),
the number of minimal submodules of M is finite. Since Ω(M) is infinite,
and V (Ω(M)) = {Ni|i ∈ I}, there exists a minimal submodule N which
N ⊆ Ni, for each i ∈ I, then N + Ni = Ni 6= M , for each i ∈ I. This
contradicts deg(N) < ∞. Hence, Ω(M) is a finite graph.

Theorem 3.8. Let M be an R-module such that Ω(M) is infinite and
ω(Ω(M)) < ∞. Then the following hold:

(1) the number of maximal submodules of M is infinite;
(2) the number of non-maximal submodules of M is finite;
(3) χ(Ω(M)) < ∞;
(4) α(Ω(M)) = ∞.

Proof. (1) On the contrary, assume that the number of maximal submod-
ules of M is finite. Since Ω(M) is infinite, Ω(M) has an infinite clique
which contradicts the finiteness of ω(Ω(M)).

(2) Suppose that ω(Ω(M)) < ∞, then by Lemma 3.1(1), lR(M) < ∞.
Also for each U 6M , lR(M/U) 6 lR(M), lR(M/U) < ∞. We claim that
the number of non-maximal submodules of M is finite. To see this, assume
that

Tn = {X �M |lR(M/X) = n} and n0 = max{n| Card(Tn) = ∞}.

Since T1 = {X � M |lR(M/X) = 1}, then M/X is a simple R-module,
thus X is a maximal submodule of M . Hence, T1 = {X � M |X 6max

M}. By Part(1), T1 is infinite, then there exists n0 and n0 > 1. Since
lR(M/X) < lR(M) and by Remark 3.2(2), lR(M) 6 ω(Ω(M))+1. Clearly,
1 6 n0 6 ω(Ω(M)). However, since lR(M) < ∞, Theorem 5 of [8, p. 19],
implies that every proper submodule of length n0 is contained in a sub-
module of length n0 + 1. Moreover, by the definition of n0, the number of
submodules of length n0 + 1 is finite. Hence there exists a submodule N
of M such that lR(M/N) = n0 + 1 and N contains an infinite number
of submodules {Ni}i∈I of M , where lR(M/Ni)) = n0, for all i ∈ I. Now,
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ω(Ω(M)) < ∞ implies that, there exist submodules K and L of M , with
K,L ⊆ N and lR(M/K) = lR(M/L) = n0, such that K + L = M . Since
K ∩ L ⊆ N and M/(K ∩ L) ∼= M/K ⊕M/L,

n0 + 1 = lR(M/N) > lR(M/(K ∩ L)) = lR(M/K ⊕M/L)

= lR(M/K) + lR(M/L) = 2n0.

Then n0 = 1. Thus, only T1 is infinite. Consequently, the number of
non-maximal submodules of M is finite.

(3) In order to establish this Part, if ω(Ω(M)) = 1, there is nothing
to prove. Let ω(Ω(M)) > 1. Since, the sum of two distinct maximal
submodules is equal M , they are not two adjacent vertices of Ω(M). Now,
by Part (1), the number of maximal submodules of M is infinite. Hence,
one can color all maximal submodules by a color, and other vertices, which
are finite number, by a new color, to obtain a proper vertex coloring of
Ω(M). Therefore, χ(Ω(M)) < ∞.

(4) Suppose that S = {N 6M |N 6max M}. Since each two elements
of S are not two adjacent vertices of Ω(M), then S is an independent set of
the graph Ω(M). By Part (1), Card(S) = ∞. Hence, α(Ω(M)) = ∞.

4. Conclusions and future work

In this work we investigated many fundamental properties of the graph
Ω(M) such as connectivity, the diameter, the girth, the clique number,
the chromatic number and obtain some interesting results with finiteness
conditions on them. However, in future work, shall search the supplement
of this graph and research on deeper properties of them.
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Parafunctions of triangular matrices
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Abstract. Using the machinavy of paradeterminants and
parapermanents developed in [2] we get new relations for some
number-theoretical functions natural argument that were studied
in [3].

Introduction

Partition polynomials together with corresponding linear recurrent
equations appear in different areas of mathematics. Therefore, it is im-
portant to develop the general theory of partition polynomials, which
would unify the results obtained in this area of mathematics. One of these
general approaches to studying partition polynomials and its correspond-
ing linear recurrent equations is their study with the help of triangular
matrices (tables) machinery [1, 2].

The present paper continues the study of properties and interrelations
of three number-theoretical functions of a natural argument, which was
started in [3]. These functions are the functions bm(n), ξm(n), ([3], p.68-
69.) respectively generalizing the number p(n) of unordered partitions of a
positive integer n into positive integer summands and the sum of divisors
of a positive integer σ(n), as well as the function dm(n), which for m = 2
equals (−1)t(n), where t(n) is the n-th term of the Prouhet-Thue-Morse

2010 MSC: 12E10.
Key words and phrases: partition polynomials, triangular matrices, paradeter-

minant, parapermanent, m-ary partition.
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sequence [4]. In [3] the authors apply the methods of combinatorial analysis
(generatrix method) and linear algebra. As for us, in order to study these
functions, we use the general theory of partition polynomials developed
with the help of triangular matrix calculus machinery developed by the
first autor. At that, we received new relations between these functions and
all the proofs are considerably simplified. As the result we get a seweral
new relations between functions bm(n), ξm(n) and dm(n) and express
them via paradeterminants and parapermanents.

1. Preliminaries

This section includes some necessary notions and their properties,
which will be needed in the next section.

1.1. Some notions and results concerning triangular matrices

In this section we provide basic notions and results about parade-
terminants and parapermanents that will be used for the proving of the
main results of the paper.

Let K be some number field.

Definition 1 ([1, 2]). A triangular table

A =




a11

a21 a22
...

...
. . .

an1 an2 · · · ann



n

(1)

of numbers from a number field K is called a triangular matrix, an element
a11 is an upper element of this triangular matrix, and a number n is its
order.

Definition 2 ([1, 2]). If A is the triangular matrix (1), then its parade-
terminant and parapermanent are the following numbers, respectively:

ddet(A) =
n∑

r=1

∑

p1+...+pr=n

(−1)n−r
r∏

s=1

{ap1+...+ps,p1+...+ps−1+1}, (2)

pper(A) =
n∑

r=1

∑

p1+...+pr=n

r∏

s=1

{ap1+...+ps,p1+...+ps−1+1},
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where the summation is over the set of natural solutions of the equality
p1 + . . .+ pr = n and

bij = {aij} =
i∏

k=j

aik, 1 6 j 6 i 6 n.

For a parapermanent and paradeterminant of a matrix we will use
notations shown in (15) and (16) respectively.

Definition 3 ([1,2]). To each element aij of the given triangular matrix (1)
we correspond a triangular matrix with this element in the bottom left
corner, which we call a corner of the given triangular matrix and denote
by Rij(A).

It is obvious that the corner Rij(A) is a triangular matrix of order
(i − j + 1). The corner Rij(A) includes only those elements ars of the
triangular matrix (1), the indices of which satisfy the relations j 6 s 6
r 6 i.

Sometimes we extend the range of indeces in (1) from 1,. . . ,n to
0,1,. . . ,n+1 and agree that

ddet(R01(A)) = ddet(Rn,n+1(A)) = pper(R01(A))

= pper(Rn,n+1(A)) = 1. (3)

When finding values of the paradeterminant and the parapermanent
of triangular matrices, it is convenient to use algebraic complements.

Definition 4 ([1, 2]). Algebraic complements Dij , Pij to a factorial prod-
uct {aij} of a key element aij of the matrix (1) are, respectively, numbers

Dij = (−1)i+j · ddet(Rj−1,1) · ddet(Rn,i+1), (4)

Pij = pper(Rj−1,1) · pper(Rn,i+1), (5)

where Rj−1,1 and Rn,i+1 are corners of the triangular matrix (1).

Theorem 1 ([1,2]). If A is the triangular matrix (1), then the parafunc-
tions of this matrix can be decomposed by the elements of the last row.
With that, the following equalities hold:
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ddet(A) =
n∑

s=1

{ans}Dns =
n∑

s=1

(−1)n+s {ans} · ddet(Rs−1,1), (6)

pper(A) =
n∑

s=1

{ans}Pns =
n∑

s=1

{ans} · pper(Rs−1,1), (7)

where

bij = {aij} =
i∏

k=j

aik, 1 6 j 6 i 6 n.

Theorem 2 (Relation between parapermanent and paradeterminant[1, 2]).
If A is the triangular matrix (1), then the following relation holds

pper (aij)16j6i6n = ddet
(
(−1)δij+1aij

)
16j6i6n

. (8)

Corollary 1. For any triangular matrix (bij)16j6i6n, the following equal-
ity holds

ddet(bij)16j6i6n = pper((−1)δij+1bij)16j6i6n.

Theorem 3 ([5]). The following is true

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a1 0 . . . 0 0 0

a21 a22 a2 . . . 0 0 0

a31 a32 a33 . . . 0 0 0
... . . . . . . . . . . . . . . .

...

an−2,1 an−2,2 an−2,3 . . . an−2,n−2 an−2 0

an−1,1 an−1,2 an−1,3 . . . an−1,n−2 an−1,n−1 an−1

an1 an2 an3 . . . an,n−2 an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

〈
a11

a1
a21

a22

a22

a1
a31

a32

a2
a32

a33

a33

... . . . . . .
. . .

a1

an−2,1

an−2,2

a2

an−2,2

an−2,3

a3

an−2,3

an−2,4

. . . an−2,n−2

a1

an−1,1

an−1,2

a2

an−1,2

an−1,3

a3

an−1,3

an−1,4

. . . an−2

an−1,n−2

an−1,n−1

an−1,n−1

a1
an1

an2

a2
an2

an3

a3
an3

an4

. . . an−2

an,n−2

an,n−1

an−1

an,n−1

ann

ann

〉
(9)
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1.2. Some data from the general theory
of partition polynomials

We will need also the following three results.

Theorem 4 ([2], Theorem 2.5.3). The following three equalities are
equipotent:

An =

〈 x(1)
x(2)
x(1) x(1)

... . . .
. . .

·x(n−1)
x(n−2)

x(n−2)
x(n−3) . . . x(1)

x(n)
x(n−1)

x(n−1)
x(n−2) . . . x(2)

x(1) x(1)

〉
,

An = x1An−1 − x2An−2 + . . .+ (−1)n−1xnA0, A0 = 1,

An =
∑

λ1+2λ2+...+nλn=n

(−1)n−k k!

λ1! · . . . · λn!
xλ1

1 · . . . xλn
n , k = λ1 + . . .+ λn.

Theorem 5 ([7]). Let polynomials yn(x1, x2, . . . , xn), n = 0, 1, . . ., satisfy
the recurrence relation

yn = x1yn−1 − x2yn−2 + . . .+ (−1)n−2xn−1y1 + (−1)n−1anxny0, (10)

where y0 = 1. Then the relations

yn = ddet




a1x1

a2
x2
x1

x1

... . . .
. . .

an
xn
xn−1

. . . x2
x1

x1



, (11)

yn =
∑

λ1+2λ2+...+nλn=n

(−1)n−k
( n∑

i=1

λiai
) (k − 1)!

λ1!λ2!·. . .·λn!
xλ1

1 xλ2
2 · . . . · xλn

n , (12)

where k = λ1 + λ2 + . . .+ λn, hold.

Theorem 6 ([2], Theorem 3.6.1). The following formulae of inversion
of partition polynomials written as parafunctions of triangular matrices
are valid:
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1) bi =

〈
τsr

as−r+1

as−r

〉

16r6s6i

, (13)

ai =

〈
τ−1
s,s−r+1

bs−r+1

bs−r

〉

16r6s6i

, i = 1, 2, . . . ; (14)

2) bi =

[
τsr

as−r+1

as−r

]

16r6s6i

,

ai = (−1)i−1
〈
τ−1
s,s−r+1

bs−r+1

bs−r

〉

16r6s6i

, i = 1, 2, . . . ,

where ai, bi are arbitrary real variables, τrs are rational numbers.

2. Parafunctions of triangular matrices and m-ary parti-
tions of numbers

Our first theorem show how functions bm(n), ξm(n), dm(n), studied
in [3] can be expressed via paradeterminant and parapermanent.

Theorem 7. The following equalities hold:

bm(n) =




ξm(1)
ξm(2)
ξm(1)

1
2ξm(1)

... . . .
. . .

ξm(n−1)
ξm(n−2)

ξm(n−2)
ξm(n−3) . . . 1

n−1ξm(1)
ξm(n)
ξm(n−1)

ξm(n−1)
ξm(n−2) . . . ξm(2)

ξm(1)
1
nξm(1)




, (15)

dm(n) = (−1)n

〈 ξm(1)
ξm(2)
ξm(1)

1
2ξm(1)

... . . .
. . .

ξm(n−1)
ξm(n−2)

ξm(n−2)
ξm(n−3) . . . 1

n−1ξm(1)
ξm(n)
ξm(n−1)

ξm(n−1)
ξm(n−2) . . . ξm(2)

ξm(1)
1
nξm(1)

〉
, (16)

ξm(n) = (−1)n−1

〈 bm(1)

2 · bm(2)
bm(1) bm(1)

... . . .
. . .

(n−1)· bm(n−1)
bm(n−2)

bm(n−2)
bm(n−3) . . . bm(1)

n· bm(n)
bm(n−1)

bm(n−1)
bm(n−2) . . . bm(2)

bm(1) bm(1)

〉
, (17)
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ξm(n) = (−1)n

〈 dm(1)

2 · dm(2)
dm(1) dm(1)

... . . .
. . .

(n−1)· dm(n−1)
dm(n−2)

dm(n−2)
dm(n−3) . . . dm(1)

n· dm(n)
dm(n−1)

dm(n−1)
dm(n−2) . . .

dm(2)
dm(1) dm(1)

〉
, (18)

bm(n) = (−1)n

〈 dm(1)
dm(2)
dm(1) dm(1)

... . . .
. . .

dm(n−1)
dm(n−2)

dm(n−2)
dm(n−3) . . . dm(1)

dm(n)
dm(n−1)

dm(n−1)
dm(n−2) . . . dm(2)

dm(1) dm(1)

〉
, (19)

dm(n) = (−1)n

〈 bm(1)
bm(2)
bm(1) bm(1)

... . . .
. . .

· bm(n−1)
bm(n−2)

bm(n−2)
bm(n−3) . . . bm(1)

bm(n)
bm(n−1)

bm(n−1)
bm(n−2) . . . bm(2)

bm(1) bm(1)

〉
. (20)

Proof. Relations (15), (16) follows from recurrent relations of Theorem 3
(from [3], p. 70). Indeed, each of these equalities is a result of expansion of
the paradeterminants on the right side of (15) or (16) by elements of the
last raw. Relations (17), (18) can be obtained by inversion of (15), (16)
using Theorem 6; (19), (20) follows directly from Theorem 2 in [3], p. 69,
and the above Theorem 3 on the relation between paradeterminants and
determinants.

The following theorem gives recurrent relations between functions
bm(n), ξm(n), dm(n).

Theorem 8. The following equalities hold:

ξm(n) = −
(
bm(1)ξm(n− 1) + bm(2)ξm(n− 2)

+ . . .+ bm(n− 1)ξm(1) − nbm(n)ξm(0)
)
, (21)

ξm(n) = −
(
dm(1)ξm(n− 1) + dm(2)ξm(n− 2)

+ . . .+ dm(n− 1)ξm(1) + ndm(n)ξm(0)
)
, (22)
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bm(n) = −
(
dm(1)bm(n− 1) + dm(2)bm(n− 2)

+ . . .+ dm(n− 1)bm(1) + dm(n)bm(0)
)
, (23)

dm(n) = −
(
bm(1)dm(n− 1) + bm(2)dm(n− 2)

+ . . .+ bm(n− 1)dm(1) + bm(n)dm(0)
)
, (24)

where bm(0) = dm(0) = ξm(0) = 1.

Proof. To prove (21) multiply both sides of (17) by (−1)n−1 and expand
paradeterminant on the right side of the obtained equality by elements of
the last row. As the result, we get

(−1)n−1ξm(n) = bm(1)(−1)n−2ξm(n− 1) − bm(2)(−1)n−3ξm(n− 2)

+ . . .+ (−1)n−2bm(n− 1)(−1)0ξm(n− (n− 1))

+ (−1)n−1bm(n)(−1)−1ξm(n− n)

and hence (21). Similarly, one can prove the relation (22) using (18).
Relations (23), (24) can be obtained from (19) and (20) respectively. Let
us prove, for example, (23). Multiply both sides of (19) by (−1)n and
expand paradeterminant on the right side of obtained equality by elements
of the last row. Then

(−1)nbm(n) = dm(1)(−1)n−1bm(n− 1) − dm(2)(−1)n−2bm(n− 2)

+ . . .+ (−1)n−2dm(n− 1)(−1)1)bm(n− (n− 1))

+ (−1)n−1dm(n)(−1)0bm(n− n),

and the required relation follow immediately.

In the next theorem, we describe partition polynomials as defined
in [6] presenting m-ary numbers bm(n), ξm(n), dm(n).

Theorem 9. The following equalities hold:

dm(n) =
∑

λ1+2λ2+...+nλn=n

(−1)k
ξλ1
m (1) · . . . · ξλn

m

λ1! · . . . · λn!1λ1 · . . . · nλn
, (25)

ξm(n) =
∑

λ1+2λ2+...+nλn=n

(−1)k−1 n(k − 1)!

λ1! · . . . · λn!
· bλ1
m (1) · . . . · bλn

m (n), (26)

ξm(n) =
∑

λ1+2λ2+...+nλn=n

(−1)k
n(k − 1)!

λ1! · . . . · λn!
· dλ1

m (1) · . . . · dλn
m (n), (27)
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bm(n) =
∑

λ1+2λ2+...+nλn=n

(−1)k
k!

λ1! · . . . · λn!
· dλ1

m (1) · . . . · dλn
m (n), (28)

dm(n) =
∑

λ1+2λ2+...+nλn=n

(−1)k
k!

λ1! · . . . · λn!
· bλ1
m (1) · . . . · bλn

m (n), (29)

where k = λ1 + λ2 + . . .+ λn.

Proof. Partition polynomial corresponding to parapermanent (15), were
described by Kachi and Tzermias [3, Theorem 1, p. 68]. Paradeterminant of
the same matrix corresponds to the partition polynomial that differs from
the previous one only by sign (−1)n−k. Thus (25) holds. The relations
for partition polynomials (26), (27) and (28), (29) follow directly from
theorems 5 and 4 respectively.
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On nilpotent Lie algebras of derivations
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Abstract. Let K be a field of characteristic zero and A
an associative commutative K-algebra that is an integral domain.
Denote by R the quotient field of A and by W (A) = RDerA the
Lie algebra of derivations on R that are products of elements of R
and derivations on A. Nilpotent Lie subalgebras of the Lie algebra
W (A) of rank n over R with the center of rank n− 1 are studied. It
is proved that such a Lie algebra L is isomorphic to a subalgebra of
the Lie algebra un(F ) of triangular polynomial derivations where
F is the field of constants for L.

Introduction

Let K be an algebraically closed field of characteristic zero, and A be an
associative commutative algebra over K with identity, without zero divisors.
A K-linear mapping D : A −→ A is called K-derivation of A if D satisfies
the Leibniz’s rule: D(ab) = D(a)b+ aD(b) for all a, b ∈ A. The set DerA
of all K-derivations on A forms a Lie algebra over K with respect to the
operation [D1, D2] = D1D2 −D2D1, D1, D2 ∈ DerA. Denote by R the
quotient field of the integral domain A. Each derivation D of A is uniquely
extended to a derivation of R by the rule: D(a/b) = (D(a)b− aD(b))/b2.
Denote by DerR the Lie algebra (over K) of all K-derivations on R.

2010 MSC: Primary 17B66; Secondary 17B30, 13N15.
Key words and phrases: derivation, Lie algebra, nilpotent Lie subalgebra, tri-

angular derivation, polynomial algebra.
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Define the mapping rD : R −→ R by (rD)(s) = r ·D(s) for all r, s ∈ R.
It is easy to see that rD is a derivation of R. The R-linear hull of the
set {rD|r ∈ R,D ∈ DerA} forms the vector space RDerA over R, which
is a Lie subalgebra of DerR. Observe that RDerA is a Lie algebra over
K but not always over R, and DerA is embedded in a natural way into
RDerA. Many authors study the Lie algebra of derivations DerA and
its subalgebras, see [2–7].

This paper deals with nilpotent Lie subalgebras of the Lie algebra
RDerA. Let L be a Lie subalgebra of RDerA. The subfield F = F (L)
of R consisting of all a ∈ R such that D(a) = 0 for all D ∈ L is called
the field of constants for L. Let us denote by RL the R-linear hull of L
and, analogously, by FL the linear hull of L over its field of constants
F = F (L). The rank of L over R is defined as the dimension of the vector
space RL over R, i.e. rankR L = dimRRL.

The main results of the paper:
• (Theorem 1) If L is a nilpotent Lie subalgebra of the Lie algebra
RDerA of rank n over R such that its center Z(L) is of rank n− 1
over R and F is the field of constants for L, then the Lie algebra
FL is contained in the Lie subalgebra of RDerA of the form

F

〈
D1, aD1,

a2

2!
D1, . . . ,

as

s!
D1, D2, aD2, . . . ,

as

s!
D2, . . . ,

Dn−1, . . . ,
as

s!
Dn−1, Dn

〉
,

where D1, D2, . . . , Dn ∈ FL are such that [Di, Dj ] = 0, i, j =
1, . . . , n, and a ∈ R is such that D1(a) = D2(a) = · · · = Dn−1(a) =
0 and Dn(a) = 1.

• (Theorem 2) The Lie algebra FL is isomorphic to some subalgebra
of the Lie algebra un(F ) of triangular polynomial derivations.

Recall that the Lie algebra un(K) of triangular polynomial derivations
consists of all derivations of the form

D = f1(x2, . . . , xn)
∂

∂x1
+ f2(x3, . . . , xn)

∂

∂x2
+ · · ·

+ fn−1(xn)
∂

∂xn−1
+ fn

∂

∂xn
,

where fi ∈ K[xi+1, . . . , xn], i = 1, . . . , n − 1, and fn ∈ K. It is a Lie
subalgebra of the Lie algebra Wn(K) of all K-derivations on the polyno-
mial algebra K[x1, . . . , xn]. Such subalgebras are studied in [2, 3]. As Lie
algebras, they are locally nilpotent but not nilpotent.
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We use the standard notations. The Lie algebra RDerA is denoted by
W (A), as in [7]. The linear hull of elements D1, D2, . . . , Dn over the field K
is denoted by K〈D1, D2, . . . , Dn〉. If L is a Lie subalgebra of a Lie algebra
M , then the normalizer ofL inM is the setNM (L) = {x ∈ M | [x, L] ⊆ L}.
Obviously, NM (L) is the largest subalgebra of M in which L is an ideal.

1. Nilpotent Lie subalgebras of R Der A with the center
of large rank

We use Lemmas 1-5 proved in [7].

Lemma 1 ([7, Lemma 1]). Let D1, D2 ∈ W (A) and a, b ∈ R. Then
(a) [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1.
(b) If a, b ∈ KerD1 ∩ KerD2, then [aD1, bD2] = ab[D1, D2].

Lemma 2 ([7, Lemma 2]). Let L be a nonzero Lie subalgebra of the Lie
algebra W (A), and F be the field of constants for L. Then FL is a Lie
algebra over F , and if L is abelian, nilpotent or solvable, then the Lie
algebra FL has the same property.

Lemma 3 ([7, Theorem 1]). Let L be a nilpotent Lie subalgebra of finite
rank over R of the Lie algebra W (A), and F be the field of constants for
L. Then FL is finite dimensional over F .

Lemma 4 ([7, Lemma 4]). Let L be a Lie subalgebra of the Lie algebra
W (A), and I be an ideal of L. Then the vector space RI ∩ L over K is
an ideal of L.

Lemma 5 ([7, Lemma 5]). Let L be a nilpotent Lie subalgebra of rank
n > 0 over R of the Lie algebra W (A). Then:

(a) L contains a series of ideals

0 = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In = L

such that rankR Ik = k for each k = 1, . . . , n.
(b) L possesses a basis D1, . . . , Dn over R such that Ik = (RD1 + · · · +

RDk) ∩ L, k = 1, . . . , n, and [L,Dk] ⊂ Ik−1.
(c) dimF FL/FIn−1 = 1.

Lemma 6. Let L be a nilpotent Lie subalgebra of the Lie algebra W (A),
and F be the field of constants for L. If L is of rank n > 0 over R and
its center Z(L) is of rank n− 1 over R, then L contains an abelian ideal
I such that dimF FL/FI = 1.
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Proof. Since the center Z(L) is of rank n− 1 over R, we can take linearly
independent over R elements D1, D2, . . . , Dn−1 ∈ Z(L). Let us consider

I = RZ(L) ∩ L = (RD1 + · · · +RDn−1) ∩ L.

In view of Lemma 4, I is an ideal of the Lie algebra L. Let us show that
I is an abelian ideal.

We first show that for an arbitrary element D = r1D1 + r2D2 +

· · · + rn−1Dn−1 ∈ I, its coefficients r1, r2, . . . , rn−1 ∈
n−1⋂
i=1

KerDi. For each

Di ∈ Z(L), i = 1, . . . , n− 1, let us consider

[Di, D] = [Di, r1D1 + r2D2 + · · · + rn−1Dn−1] =
n−1∑

j=1

[Di, rjDj ].

By Lemma 1, [Di, rjDj ] = rj [Di, Dj ] + Di(rj)Dj = Di(rj)Dj . Since
Di ∈ Z(L), we get

[Di, D] =
n−1∑

j=1

Di(rj)Dj = 0.

This implies that Di(r1) = Di(r2) = · · · = Di(rn−1) = 0 because
D1, D2, . . . , Dn−1 ∈ L are linearly independent over R. Therefore, rj ∈
n−1⋂
i=1

KerDi for j = 1, . . . , n− 1.

Now we take arbitrary D,D′ ∈ I and show that [D,D′] = 0. Let
D = a1D1+a2D2+· · ·+an−1Dn−1 andD′ = b1D1+b2D2+· · ·+bn−1Dn−1.
Then

[D,D′] =
n−1∑

i,j=1

(aibj [Di, Dj ] + aiDi(bj)Dj − bjDj(ai)Di) = 0

since ai, bj ∈
n−1⋂
i=1

KerDi for all i, j = 1, . . . , n − 1, and I is an abelian

ideal.
It is easy to see that FI is an abelian ideal of the Lie algebra FL over

F and dimF FL/FI = 1 in view of Lemma 5(c).

Remark 1. It follows from the proof of Lemma 6 that for an arbitrary

D = a1D1 + a2D2 + · · · + an−1Dn−1 ∈ FI, the inclusions ai ∈
n−1⋂
k=1

KerDk

hold for i = 1, . . . , n− 1.
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Lemma 7. Let L be a Lie subalgebra of rank n over R of the Lie algebra
W (A), {D1, D2, . . . , Dn} be a basis of L over R, and F be the field of
constants for L. Let there exists a ∈ R such that D1(a) = D2(a) = · · · =
Dn−1(a) = 0 and Dn(a) = 1. Then if b ∈ R satisfies the conditions
D1(b) = D2(b) = · · · = Dn−1(b) = 0 and Dn(b) ∈ F 〈1, a, . . . , a

s

s! 〉 for

some integer s > 0, then b ∈ F 〈1, a, . . . , a
s

s! ,
as+1

(s+1)!〉.

Proof. Since Dn(b) ∈ F 〈1, a, . . . , a
s

s! 〉, the equality Dn(b) =
s∑
i=0

βi
ai

i! holds

for some βi ∈ F , i = 0, . . . , s. Take an element c =
s∑
i=0

βi
ai+1

(i+1)! from R.

It is easy to check that D1(c) = D2(c) = · · · = Dn−1(c) = 0, because
D1(a) = D2(a) = · · · = Dn−1(a) = 0 by the conditions of the lemma.

Since Dn(a) = 1, the equality Dn(c) =
s∑
i=0

βi
ai

i! = Dn(b) holds, and so

Dk(b− c) = 0 for all k = 1, . . . , n. This implies that b− c ∈ F , hence for
some γ ∈ F , we obtain

b = γ + c = γ +
s∑

i=0

βi
ai+1

(i+ 1)!
.

Thus,

b ∈ F

〈
1, a, . . . ,

as

s!
,
as+1

(s+ 1)!

〉
,

and the proof is complete.

Theorem 1. Let L be a nilpotent Lie subalgebra of the Lie algebra W (A),
and let F = F (L) be the field of constants for L. If L is of rank n and its
center Z(L) is of rank n−1 over R, then there exist D1, D2, . . . , Dn ∈ FL,
a ∈ R, and an integer s > 0 such that FL is contained in the Lie subalgebra
of W (A) of the form

F

〈
D1, aD1,

a2

2!
D1, . . . ,

as

s!
D1, D2, aD2, . . . ,

as

s!
D2, . . . ,

Dn−1, . . . ,
as

s!
Dn−1, Dn

〉
,

where [Di, Dj ] = 0 for i, j = 1, . . . , n, Dn(a) = 1, and D1(a) = D2(a) =
· · · = Dn−1(a) = 0.
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Proof. It is easy to see that the vector space over F of the form

F

〈
D1, aD1,

a2

2!
D1, . . . ,

as

s!
D1, D2, aD2, . . . ,

as

s!
D2, . . . ,

Dn−1, . . . ,
as

s!
Dn−1, Dn

〉

is a Lie algebra over F . We denote it by L̃.
By Lemma 6, the Lie algebra L contains an abelian ideal I such that

FI is of codimension 1 in FL over F . The ideal I contains an R-basis
{D1, D2, . . . , Dn−1} of the center Z(L). Let us take an arbitrary element
Dn ∈ L that is not in Z(L). Then {D1, D2, . . . , Dn−1, Dn} is an R-basis
of L and FL = FI + FDn, where FI is an abelian ideal of FL.

Let us consider the action of the inner derivation adDn on the vector
space FI. It is easy to see that dimF Ker(adDn) = n− 1. Indeed, let

D = r1D1 + r2D2 + · · · + rn−1Dn−1 ∈ Ker(adDn).

Then

[Dn, D] =
n−1∑

i=1

[Dn, riDi] =
n−1∑

i=1

Dn(ri)Di = 0

whence Dn(ri) = 0 for all i = 1, . . . , n− 1.
By Remark 1, r1, r2, . . . , rn−1 ∈ F . Thus, Ker(adDn) =

F 〈D1, D2, . . . , Dn−1〉 and dimF Ker(adDn) = n− 1.
The Jordan matrix of the nilpotent operator adDn over F has n−

1 Jordan blocks. Denote by J1, J2, . . . , Jn−1 the corresponding Jordan
chains. Without loss of generality, we may take D1 ∈ J1, D2 ∈ J2, . . . ,
Dn−1 ∈ Jn−1 to be the first elements in the corresponding Jordan bases.

If dimF F 〈J1〉 = dimF F 〈J2〉 = · · · = dimF F 〈Jn−1〉 = 1, then FL =
F 〈D1, D2, . . . , Dn〉 and FL is an abelian Lie algebra. It is the algebra
from the conditions of the theorem if s = 0.

Let
dimF F 〈J1〉 > dimF F 〈J2〉 > · · · > dimF F 〈Jn−1〉

and dimF F 〈J1〉 = s + 1, s > 1. Write the elements of the basis J1 as
follows:

J1 =
{
D1,

n−1∑

i=1

a1iDi,
n−1∑

i=1

a2iDi, . . . ,
n−1∑

i=1

asiDi

}
.

By the definition of a Jordan basis,

D1 = [Dn,
n−1∑

i=1

a1iDi] =
n−1∑

i=1

Dn(a1i)Di
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whence Dn(a11) = 1 and Dn(a1i) = 0 for all i 6= 1.

By Remark 1,
n−1∑
i=1

a1iDi ∈ FI implies a1i ∈
n−1⋂
k=1

KerDk, i = 1, . . . , n−

1, and thus a12, a13, . . . , a1,n−1 ∈ F, and a11 6∈ F . Let us write a11 = a.
Then a11, a12, . . . , a1,n−1 ∈ F 〈1, a〉.

We shall show that a21, a22, . . . , a2,n−1 ∈ F 〈1, a, a
2

2! 〉. By the definition
of a Jordan basis,

[Dn,
n−1∑

i=1

a2iDi] =
n−1∑

i=1

Dn(a2i)Di =
n−1∑

i=1

a1iDi

whence Dn(a2i) = a1i ∈ F 〈1, a〉 for i = 1, . . . , n− 1. Then, by Lemma 7,

a2i ∈
n−1⋂
k=1

KerDk implies a2i ∈ F 〈1, a, a
2

2! 〉, i = 1, . . . , n− 1. Assume that

ami ∈ F 〈1, a, . . . , a
m

m! 〉 for all m = 1, . . . , s− 1 and i = 1, . . . , n− 1. Then

[Dn,
n−1∑

i=1

am+1,iDi] =
n−1∑

i=1

amiDi

whence Dn(am+1,i) = ami for i = 1, . . . , n − 1. The coefficients am+1,i

satisfy the conditions of Lemma 7, so that am+1,i ∈ F 〈1, a, . . . , am+1

(m+1)!〉.
Reasoning by induction, we get that all coefficients aji, i = 1, . . . , n− 1,
j = 1, . . . , s, of the elements from the basis J1 belong to F 〈1, a, . . . , a

s

s! 〉,
and thus F 〈J1〉 ⊆ L̃.

Consider the basis

J2 =
{
D2,

n−1∑

i=1

b1iDi,
n−1∑

i=1

b2iDi, . . . ,
n−1∑

i=1

btiDi

}
,

where 1 6 t + 1 6 s and dimF F 〈J2〉 = t + 1. By the definition of a

Jordan basis, [Dn,
n−1∑
i=1

b1iDi] =
n−1∑
i=1

Dn(b1i)Di = D2, and thus Dn(b12) =

1 and Dn(b1i) = 0 for all i 6= 2. Set b12 = b 6∈ F and considerDn(b−a) = 0.

It follows from Remark 1 that a, b ∈
n−1⋂
i=1

KerDi, so b− a = δ ∈ F . The

latter means that b ∈ F 〈1, a〉. Moreover, b1i ∈ F for i 6= 2 in view of
Remark 1. Thus, b11, b12, . . . , b1,n−1 ∈ F 〈1, a〉. Reasoning as for J1 and

using Lemma 7, one can show that b2i ∈ F 〈1, a, a
2

2! 〉 and prove by induction

that bji ∈ F 〈1, a, . . . , a
t

t! 〉 for all j = 1, . . . , t and i = 1, . . . , n − 1. Since

t 6 s, we have F 〈J2〉 ⊆ L̃.
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In the same way, one can show that the subspaces F 〈J3〉, F 〈J4〉, . . . ,
F 〈Jn−1〉 lie in L̃. Therefore, the Lie algebra FL is contained in the Lie
subalgebra L̃ of W (A).

Theorem 2. Let L be a nilpotent Lie subalgebra of the Lie algebra W (A),
and let F = F (L) be its field of constants. If L is of rank n > 3 and its
center Z(L) is of rank n− 1 over R, then the Lie algebra FL over F is
isomorphic to a finite dimensional subalgebra of the Lie algebra un(F ) of
triangular polynomial derivations.

Proof. By Theorem 1, the Lie algebra FL is contained in the Lie subal-
gebra L̃ of W (A), which is of the form F 〈D1, aD1,

a2

2!D1, . . . ,
as

s!D1, D2,
aD2, . . . ,

as

s!D2, . . . , Dn−1, . . . ,
as

s!Dn−1, Dn〉, where [Di, Dj ] = 0 for i, j =
1, . . . , n, Dn(a) = 1 and D1(a) = D2(a) = · · · = Dn−1(a) = 0. The Lie
algebra L̃ is isomorphic (as a Lie algebra over F ) to the subalgebra

F

〈
∂

∂x1
, xn

∂

∂x1
,
x2
n

2!

∂

∂x1
, . . . ,

xsn
s!

∂

∂x1
, . . . ,

∂

∂xn−1
, xn

∂

∂xn−1
, . . . ,

xsn
s!

∂

∂xn−1
,
∂

∂xn

〉

of the Lie algebra un(F ) of triangular polynomial derivations over F .

2. Example of a maximal nilpotent Lie subalgebra of the
Lie algebra W̃n(K)

Lemma 8 ([8, Lemma 4]). Let K be an algebraically closed field of
characteristic zero. For a rational function φ ∈ K(t), write φ′ = dφ

dt . If

φ ∈ K(t) \ K, then does not exist a function ψ ∈ K(t) such that ψ′ = φ′

φ .

Let us denote by K[X] = K[x1, x2, . . . , xn] the polynomial algebra, by
K(X) = K(x1, x2, . . . , xn) the field of rational functions in n variables
over K, and by W̃n(K) the Lie algebra of derivations on the field K(X).
We think that the first part of the following statement is known.

Proposition 1. The subalgebra L = K〈x1
∂
∂x1

, x2
∂
∂x2

, . . . , xn
∂
∂xn

〉 of the

Lie subalgebra of W̃n(K) is isomorphic to a Lie subalgebra of the Lie
algebra un(K) of triangular polynomial derivations, but is not conjugated
with any Lie subalgebra of this Lie algebra by an automorphism of the Lie
algebra W̃n(K).
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Proof. Let us show that L is a maximal nilpotent Lie subalgebra of
W̃n(K). Obviously, L is abelian, and so it is nilpotent. Let us show that
L coincides with its normalizer in W̃n(K), which will imply that L is
maximal nilpotent (in view of the well-known fact from the theory of Lie
algebras that a proper Lie subalgebra of a nilpotent Lie algebra does not
coincide with its normalizer, see [1, p.58]).

Let D be an arbitrary element of the normalizer N = N
W̃n(K)

(L).

Then [D,xi
∂
∂xi

] ∈ L for each i = 1, . . . , n. D can be uniquely written as

D =
n∑
j=1

fj
∂
∂xj

, where f1, . . . , fn ∈ K(X). Using the following equations

[
xi

∂

∂xi
,
n∑

j=1

fj
∂

∂xj

]
=

n∑

j=1

[
xi

∂

∂xi
, fj

∂

∂xj

]
=

=
n∑

j=1
j 6=i

xi
∂fj
∂xi

∂

∂xj
+
(
xi
∂fi
∂xi

− fi
) ∂

∂xi
,

we obtain that

xi
∂fj
∂xi

= αjxj , i 6= j, and xi
∂fi
∂xi

− fi = αixi (1)

for αi, αj ∈ K, i, j = 1, . . . , n. We rewrite the first equation in (1) in the

form
∂fj

∂xi
=

αjxj

xi
and consider fj as a rational function in xi over the field

K(x1, . . . , xi−1, xi+1, . . . , xn). By Lemma 8 with φ = φ(xi) = xi, we have

αj = 0. Thus,
∂fj

∂xi
= 0 for all i 6= j. This means that fj ∈ K(xj) for each

j = 1, . . . , n.

Write fi = ui
vi

, where ui, vi ∈ K[xi] are relatively prime and vi 6= 0.
Then the second equation in (1) is rewritten as

xi
u′
ivi − uiv

′
i − αiv

2
i

v2
i

=
ui
vi
,

where ′ denotes the derivative with respect to the variable xi. But then
xi(u

′
ivi − uiv

′
i − αiv

2
i )vi = uiv

2
i , whence we have that the polynomial vi

must divide v′
i. It is possible only if vi ∈ K∗, i.e. fi is a polynomial in

xi with coefficients in K. Since xi(f
′
i − αi) = fi, we have that fi is a

polynomial of degree 1. It is easy to see that fi = γixi with γi ∈ K for all
i = 1, . . . , n. Thus D ∈ L, that is, L = N and L is a maximal nilpotent
Lie subalgebra of W̃n(K).
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If L is conjugated by an automorphism of the Lie algebra W̃n(K) with
some Lie subalgebra of un(K), then L is contained in a nilpotent Lie
subalgebra of un(K). Therefore, L is not coincide with its normalizer in
W̃n(K), which contradicts the fact proved above. However, the subalgebra
K〈 ∂

∂x1
, . . . , ∂

∂xn
〉 of the Lie algebra un(K) is obviously isomorphic to L.
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