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On the le-semigroups whose semigroup

of bi-ideal elements is a normal band

A. K. Bhuniya, M. Kumbhakar

Communicated by V. Mazorchuk

Abstract. It is well known that the semigroup B(S) of all
bi-ideal elements of an le-semigroup S is a band if and only if S is
both regular and intra-regular. Here we show that B(S) is a band if
and only if it is a normal band and give a complete characterization
of the le-semigroups S for which the associated semigroup B(S) is
in each of the seven nontrivial subvarieties of normal bands. We
also show that the set Bm(S) of all minimal bi-ideal elements of
S forms a rectangular band and that Bm(S) is a bi-ideal of the
semigroup B(S).

1. Introduction

In the ideal theory of commutative rings, it was observed by W. Krull
[15] that several results do not depend on the fact that the ideals are
composed of elements. The same is true for the ideal theory of semigroups
also. Consequently, these results can be formulated in a more general
setting of lattice-ordered semigroups where an element represents an
ideal of the ring or semigroup as an undivided entity. There are series of
articles dealing with lattice-ordered semigroups, generalizing theorems
from commutative ideal theory [1], [3], [5] and from the ideal theory of
semigroups [12], [13], [21], [22]. Presently, lattice ordered semigroups are
providing us a general setting not only for ‘abstract ideal theory’, but also
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semigroup, locally testable, normal band, regular.
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for order-preserving transformations of a finite chain, power semigroups
of an arbitrary semigroup, and for many other areas of algebra where the
objects form similar kinds of lattice-ordered semigroups.

In the present paper we study le-semigroups globally; our aim here
is to find out to what extent properties of the subsemigroup B(S) of
all bi-ideal elements of an le-semigroup S affect the structure of the le-
semigroup as a whole. In 1952, R.A. Good and D.R. Hughes [6] introduced
the notion of bi-ideals of a semigroup; these have been generalized again
and again to rings, semirings, ternary semirings, Γ-semigroups, etc [4],
[8]–[11], [14], [23]. It has also been proved that this notion is very useful
for characterizing different types of regularity of rings, semirings, and
semigroups [2], [16]– [19]. In [12], N. Kehayopulu defined bi-ideal elements
of an le-semigroup as a generalization of bi-ideals. Here we introduce the
notion of minimal bi-ideal elements and show that the product of any
two bi-ideal elements is a bi-ideal element, and that the product of any
two minimal bi-ideal elements is a minimal bi-ideal element. Thus the set
B(S) of all bi-ideal elements and the set Bm(S) of all minimal bi-ideal
elements are subsemigroups of S. It is well known that S is both regular
and intra-regular if and only if b2 = b for every bi-ideal element b of S,
equivalently B(S) is a band. Here we show that B(S) is a locally testable
semigroup and hence a normal band (since a band is locally testable if
and only if it is a normal band) if S is both regular and intra-regular.
The variety of normal bands has exactly eight subvarieties. Here we have
characterized the le-semigroups S such that B(S) is in each of these
subvarieties of normal bands.

This introduction is followed by preliminaries. In Section 3, we char-
acterize the le-semigroups S such that B(S) is in each of the subvarieties
of normal bands. In the last section, we show that the semigroup Bm(S)
of all minimal bi-ideal elements of S is a bi-ideal of the semigroup B(S)
whereas the set Lm(S) of all minimal left ideal elements is a left ideal of
the semigroup L(S) of all left ideal elements of S.

2. Preliminaries and foundations

An le-semigroup S is an algebra (S, ·,∨,∧, e) such that (S, ·) is a
semigroup, (S,∨,∧, e) is a lattice with a greatest element which is denoted
by e, and for all a, b, c ∈ S,

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.
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For different examples and relevance, both classical and modern, of
the le-semigroups we refer to [21]. Throughout the paper S will stand for
an le-semigroup (S, ·,∨,∧, e).

The usual order relation 6 on the set S is defined by: for a, b ∈ S

a 6 b if a ∨ b = b.

Since the multiplication is distributive over the lattice join, it follows that
the order 6 is compatible with the multiplication in S, that is, for all
a, b, c ∈ S,

a 6 b =⇒ ac 6 bc and ca 6 cb.

Let A be a nonempty subset of S. We denote (A] = {x ∈ S | x 6

a for some a ∈ A}. A nonempty subset L is called a left (right) ideal of
S if SL ⊆ L (LS ⊆ L) and (L] ⊆ L. A subset I is called an ideal if it is
both a left and a right ideal of S. For a ∈ S, the left ideal generated by a
is given by

(a]l = {x ∈ S | x 6 sa for some s ∈ S ∪ {1}}.

An element a ∈ S is called regular if a 6 aea; and intra-regular if
a 6 ea2e. If every element of S is regular (intra-regular) then the le-
semigroup S is defined to be regular (intra-regular). We also say that a is

(i) a subsemigroup element if a2 6 a;

(ii) a left ideal element if ea 6 a;

(iii) a right ideal element if ae 6 a;

(iv) a bi-ideal element if it is a subsemigroup element and aea 6 a.

From the above definitions it is evident that every left and right
ideal element is also a subsemigroup element. The definition of bi-ideal
elements that we have given here is a little bit different from that of
bi-ideal elements considered by Kehayopulu [12], Pasku and Petro [22].
According to these authors, a bi-ideal element b needs not satisfy b2 6 b,
i.e. needs not be a subsemigroup element, and is actually an abstraction
of the generalized bi-ideals (of a semigroup) and not of the bi-ideals.

Let a ∈ S. Then b = a ∨ a2 ∨ aea is the least bi-ideal element in S
such that a 6 b. We call a ∨ a2 ∨ aea the bi-ideal element generated by a,
and denote this by β(a). Thus a ∈ S is a bi-ideal element if and only if
β(a) = a.

Now we recall some notions of semigroups (without order). A semi-
group F is called regular if for every a ∈ F there is x ∈ F such
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that a = axa. By a band we mean a semigroup B such that b2 = b
for all b ∈ B. A band S is normal if for all a, b, c ∈ S, abca = acba. A
subsemigroup B of a semigroup F is called a bi-ideal of F if BFB ⊆ B.

In the diagram below, we use the following symbols to denote the
different subvarieties of normal bands.

Normal band NB abcd = acbd,
Rectangular band ReB aba = a,
Left normal band LNB abc = acb,
Right normal band RNB abc = bac,
Left zero band LZB ab = a,
Right zero band RZB ab = b,
Semilattice Sl ab = ba,
Trivial semigroup T a = b.
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A semigroup is called locally finite if every finitely generated subsemi-
group is finite. A locally testable semigroup [24] is a semigroup which is
locally finite and in which fSf is a semilattice for all idempotent f ∈ S.
Nambooripad [20] proved that a regular semigroup S is locally testable if
and only if fSf is a semilattice for all idempotent f ∈ S.

We refer the reader to [7] for the fundamentals of semigroup theory.
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3. Subsemigroup of all bi-ideal elements

We denote the set of all left, right, and bi-ideal elements of S by
L(S),R(S), and B(S), respectively. Then L(S),R(S), and B(S) are all
nonempty, since e is a left ideal, a right ideal, and a bi-ideal element of S.
Now for any two bi-ideal elements a and b of S, (ab)2 = (aba)b 6 ab and
abeab = (abea)b 6 ab, since a is a bi-ideal element of S, which shows that
the product of any two bi-ideal elements is a bi-ideal element. Thus B(S)
is a subsemigroup of S. Similarly both L(S) and R(S) are subsemigroups
of S.

Now we show that the regularity of an le-semigroup is equivalent to
the regularity of the semigroup B(S). This, we think, is well known. But
as we have seen the sufficient part nowhere, for the sake of completeness,
we include a proof.

Proposition 3.1. Let S be an le-semigroup. Then S is regular if and
only if the semigroup B(S) of all bi-ideal elements is regular.

Proof. First assume that S is regular and that b ∈ B(S). Since b is a
bi-ideal element, beb 6 b. On the other hand, b 6 beb by the regularity of
S. Thus we have b = beb which shows that b is a regular element in B(S),
since e is also a bi-ideal element of S.

Conversely, suppose that B(S) is a regular semigroup. Consider a ∈ S.
Then β(a) = a ∨ a2 ∨ aea ∈ B(S) and so there is b ∈ B(S) such that
a∨a2∨aea = (a∨a2∨aea)b(a∨a2∨aea) 6 (a∨a2∨aea)e(a∨a2∨aea) 6 aea.
This implies that a 6 aea. Thus S is a regular le-semigroup.

If S is a regular le-semigroup, then for every a ∈ S, a 6 aea implies
that a2 6 aaea 6 aea. Hence the bi-ideal element β(a) generated by
a reduces to the form β(a) = aea. Thus in a regular le-semigroup the
notions of bi-ideal elements as we have defined and that defined by N.
Kehayopulu [12] are the same. Therefore in a regular le-semigroup S,
an element b ∈ S is a bi-ideal element if and only if b = ca for some
right ideal element c and left ideal element a [12, Lemma 2]. This can be
reframed as:

Theorem 3.2. Let S be an le-semigroup. Then R(S)L(S) ⊆ B(S). If
moreover, S is a regular le-semigroup, then B(S) = R(S)L(S).

We also omit the proof of the following result, since this can be proved
easily:
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Proposition 3.3. Let S be a regular le-semigroup. Then R(S) and L(S)
are bands.

The following important result can be proved similarly to that in [13]
for the quasi-ideal elements.

Theorem 3.4. An le-semigroup S is both regular and intra-regular if
and only if B(S) is a band.

Now we show that B(S) is in fact a normal band if S is both a regular
and intra-regular le-semigroup.

Theorem 3.5. Let S be an le-semigroup. Then S is both regular and
intra-regular if and only if B(S) is a normal band.

Proof. Let a, b, c ∈ B(S). Then (bab)(bcb) = ba(bbcb) 6 ba(beb) 6 bab.
Similarly, (bab)(bcb) 6 bcb. Thus (bab)(bcb) 6 (bab) ∧ (bcb). Now let
u = (bab) ∧ (bcb). Then u 6 bab and u 6 bcb. Since S is both regular and
intra-regular, so B(S) is a band. Now ueu = (bab ∧ bcb)e(bab ∧ bcb) =
babebab ∧ babebcb ∧ bcbebab ∧ bcbebcb 6 bab ∧ babebcb ∧ bcbebab ∧ bcb 6

bab∧bcb = u shows that u ∈ B(S) which implies that u = u2 6 (bab)(bcb).
Thus (bab) ∧ (bcb) 6 (bab)(bcb) and hence (bab)(bcb) = (bab) ∧ (bcb).

Then bB(S)b = {bab | a ∈ B(S)} is a semilattice for every b ∈
B(S). Thus B(S) is a locally testable semigroup. Since a locally testable
semigroup is a band if and only if it is a normal band [24, Theorem 5], so
B(S) is a normal band.

The converse follows from the Theorem 3.4.

An ordered semigroup S is said to be left (right) duo if every left
(right) ideal of S is a right (left) ideal of S; and S is said to be duo if S
is both left and right duo.

Lemma 3.6. An le-semigroup S is left duo if and only if ae 6 ea for all
a ∈ S.

Proof. First assume that S is left duo and let a ∈ S. Then the left ideal
(a]l = {x ∈ S | x 6 sa for some s ∈ S} generated by a is a right ideal
also. Then ae ∈ (a]l implies that there is some s ∈ S such that ae 6 sa
and this implies that ae 6 ea.

Conversely let L be a left ideal of S and a ∈ L. Then for every s ∈ S,
as 6 ae 6 ea ∈ L implies that as ∈ L. Thus L is a right ideal of S and
hence S is left duo.
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Immediately we have:

Proposition 3.7. An le-semigroup S is duo if and only if ae = ea for
all a ∈ S.

Let S be a regular left duo le-semigroup. Then for every a ∈ S,
a 6 aea 6 (ae)aea 6 ea2ea shows that S is intra-regular. Hence B(S) is
a band. In fact we have:

Theorem 3.8. An le-semigroup S is regular left duo if and only if B(S)
is a left normal band.

Proof. First assume that S is regular left duo. Then B(S) is a band.
Let a, b, c ∈ B(S). Then abc = (abc)(abc) = aabcabc 6 a(ae)cabc 6

a(ea)cabc 6 acabc = aca(bc)(bc) 6 acab(cb)e 6 acabecb 6 acb. Similarly
acb 6 abc. Thus abc = acb and hence B(S) is a left normal band.

Conversely, assume that B(S) is a left normal band. Then S is regular.
Also for every a ∈ S, both ea and aea are bi-ideal elements of S, and
hence ae = (ae)(ae)(ae) = (aea)(ea)e = (aea)e(ea) [since B(S) is a
normal band] = (aeae2)a 6 ea which shows that S is left duo.

The left-right dual of this theorem is as follows:

Theorem 3.9. An le-semigroup S is regular right duo if and only if B(S)
is a right normal band.

A band is a semilattice if and only if it is both a left and a right
normal band. Hence it follows immediately that:

Theorem 3.10. An le-semigroup S is regular duo if and only if B(S) is
a semilattice.

Theorem 3.11. Let S be an le-semigroup. Then B(S) is a rectangular
band if and only if S is regular and eae = ebe for all a, b ∈ S.

Proof. First assume that B(S) is a rectangular band and that a, b ∈ S.
Since B(S) is a band, so S is regular and hence β(a) = aea and β(b) = beb.
Then β(a) = β(a)β(b)β(a) implies that a 6 aea = (aea)(beb)(aea) 6 ebe.
Then eae 6 e2be2 6 ebe. Similarly β(b) = β(b)β(a)β(b) implies that
ebe 6 eae. Thus eae = ebe for all a, b ∈ S.

Conversely let a ∈ S. Since S is regular, so a 6 aea 6 aeaea 6 aea2ea,
by the given condition. Thus a 6 ea2e, and hence S is intra-regular.
Therefore B(S) is a band, by Theorem 3.4. Now let a, b be two bi-ideal
elements of S. Since a is a bi-ideal element and S is already known to
be regular, then aea = a, and so a = aea = aeaea = aeabaea = aba; and
hence B(S) is a rectangular band.
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Theorem 3.12. Let S be an le-semigroup. Then B(S) is a left zero band
if and only if S is regular and ae 6 eb for all a, b ∈ S.

Proof. First assume that B(S) is a left zero band and a, b ∈ S. Since B(S)
is band, so S is regular and hence β(ae) = ae2ae and β(b) = beb. Then
β(ae) = β(ae)β(b) implies that ae 6 ae2ae = (ae2ae)(beb) 6 eb. Thus
ae 6 eb for all a, b ∈ S.

Conversely let a ∈ S. Since S is regular, so a 6 aea 6 aeaea 6 ae2a2a,
by the given condition. Thus a 6 ea2e, and hence S is intra-regular.
Therefore B(S) is a band, by Theorem 3.4. Now let a, b be two bi-ideal
elements of S. Since S is regular, a = aea, so that ab 6 ae = ae(ae) 6

ae2a 6 aea = a and a = aeaea 6 ae(ae) 6 ae(eab) 6 (aea)b = ab. Thus
a = ab and hence B(S) is a left zero band.

The left-right dual of this theorem is as follows:

Theorem 3.13. Let S be an le-semigroup. Then B(S) is a right zero
band if and only if S is regular and ea 6 be for all a, b ∈ S.

4. Subsemigroup of all minimal bi-ideal elements

In this section we introduce minimal bi-ideal elements and minimal
left ideal elements, and show that the set of all minimal bi-ideal elements
of S is a subsemigroup of B(S).

Definition 4.1. Let S be an le-semigroup. A bi-ideal element b is said
to be minimal if for every bi-ideal element a of S,

a 6 b implies that a = b.

Minimal left (right) ideal elements are defined similarly.

We denote the set of all minimal bi-ideal, left ideal, and right ideal
elements of S by Bm(S),Lm(S), and Rm(S), respectively.

Now we show that Bm(S) is a subsemigroup of B(S). For this consider
a, b ∈ Bm(S). Then ab is a bi-ideal element. To check the minimality, let
c be a bi-ideal element such that c 6 ab. Then ca and bc are bi-ideal
elements such that ca 6 aba 6 a. Then by minimality of a we have ca = a.
Similarly, bc = b. Then ab = cabc 6 cec 6 c and hence c = ab. Thus
ab ∈ Bm(S).

Similarly, it can be proved that both Lm(S) and Rm(S) are subsemi-
groups of B(S).

We also have:
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Theorem 4.2. If S is an le-semigroup then Bm(S) = Rm(S)Lm(S).

Proof. First consider a ∈ Rm(S) and c ∈ Lm(S), and denote b = ac.
Then b is a bi-ideal element, by Theorem 3.2. To show the minimality of
b, let p 6 b be a bi-ideal element of S. Then pe is a right ideal element of
S and pe 6 be = ace 6 ae 6 a implies by the minimality of a as a right
ideal element that pe = a. Similarly we have ep = c, since c is a minimal
left ideal element. Then p 6 b = ac = peep 6 p implies that p = b; and so
b becomes a minimal bi-ideal element. Thus Rm(S)Lm(S) ⊆ Bm(S).

Now consider b ∈ Bm(S). Then be and eb are a right ideal element and
a left ideal element, respectively. Let a 6 be be a right ideal element of S.
Then ab is a bi-ideal element of S such that ab 6 beb 6 b, and so ab = b,
since b is a minimal bi-ideal element. Then a 6 be = abe 6 ae 6 a implies
that a = be. Thus be is a minimal right ideal element of S. Similarly eb is a
minimal left ideal element of S. Then beeb is a bi-ideal element, by Theorem
3.2. Now beeb 6 b implies that b = beeb; and so b ∈ Rm(S)Lm(S). Thus
Bm(S) ⊆ Rm(S)Lm(S). Hence Bm(S) = Rm(S)Lm(S).

Theorem 4.3. a) Let S be an le-semigroup such that the set Lm(S) of
all minimal left ideal elements is non-empty. Then Lm(S) is a left ideal
of the semigroup L(S). Moreover, Lm(S) is a right zero band.
b) Let S be an le-semigroup such that the set Rm(S) of all minimal right
ideal elements is non-empty. Then Rm(S) is a right ideal of the semigroup
R(S). Moreover, Rm(S) is a left zero band.

Proof. a) Let l ∈ L(S) and a ∈ Lm(S). Then la is a left ideal element
such that la 6 ea 6 a. This implies that la = a, since a is a minimal
left ideal element. Hence la ∈ Lm(S) and so L(S)Lm(S) ⊆ Lm(S). Thus
Lm(S) is a left ideal of L(S).

Now la = a for every l ∈ L(S) and a ∈ Lm(S) implies that ab = b for
every a, b ∈ Lm(S); and hence Lm(S) is a right zero band.
b) Follows as the left-right dual of a).

Now we characterize the semigroup Bm(S) of all minimal bi-ideal
elements of S.

Theorem 4.4. Let S be an le-semigroup such that the set Bm(S) of all
minimal bi-ideal elements is non-empty. Then Bm(S) is a bi-ideal of the
semigroup B(S). Moreover, Bm(S) is a rectangular band.

Proof. We have already shown that Bm(S) is a subsemigroup of B(S).
Now consider a, c ∈ Bm(S) and b ∈ B(S). Then abc is a bi-ideal element
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of S. To show the minimality of abc, let d 6 abc be a bi-ideal element of S.
Then da is a bi-ideal element of S and da 6 abca 6 a implies that a = da,
since a is a minimal bi-ideal element. Similarly minimality of c implies
that c = cd. Then abc = dabcd 6 d and so d = abc which shows that abc
is a minimal bi-ideal element of S. Thus Bm(S)B(S)Bm(S) ⊆ Bm(S) and
hence Bm(S) is a bi-ideal of B(S).

If b ∈ Bm(S), then b is a subsemigroup element of S and so b2 6 b.
Now minimality of b implies that b2 = b. Thus Bm(S) is a band. Let
a, b ∈ Bm(S). Then aba is a bi-ideal element such that aba 6 aea 6 a
which implies that aba = a, since a is a minimal bi-ideal element of S.
Thus Bm(S) is a rectangular band.
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On strongly almost m-ω1-pω+n-projective

abelian p-groups

P. Danchev

Communicated by L. A. Kurdachenko

Abstract. For any non-negative integers m and n we define
the class of strongly almost m-ω1-pω+n-projective groups which
properly encompasses the classes of strongly m-ω1-pω+n-projective
groups and strongly almost ω1-pω+n-projective groups, defined by
the author in Demonstr. Math. (2014) and Hacettepe J. Math. Stat.
(2015), respectively. Certain results about this new group class are
proved as well as it is shown that it shares many analogous basic
properties as those of the aforementioned two group classes.

1. Introduction and terminology

Let all groups considered in this paper be p-primary abelian, for some
arbitrary fixed prime p. Besides, everywhere in the text, m and n are
arbitrary integers greater than or equal to {0}. Our notions and notations
are in the most part standard and follow those from the classical books
[9], [10] and [12]. The not well-known of them will be explained below in
detail.

A class of groups that plays a major role in torsion abelian group
theory is the one consisting of all almost direct sums of cyclic groups,
introduced in [11] as follows.

2010 MSC: 20K10.
Key words and phrases: almost pω+n-projective groups, almost ω1-pω+n-

projective groups, strongly almost ω1-pω+n-projective groups, countable subgroups,
nice subgroups, Ulm subgroups, Ulm factors.
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The separable group G is called an almost direct sum of cyclic groups
if there is a collection C consisting of nice subgroups of G, satisfying the
following three conditions:

(1) {0} ∈ C;

(2) C is closed with respect to ascending unions, i.e., if Hi ∈ C with
Hi ⊆ Hj whenever i 6 j (i, j ∈ I) then ∪i∈IHi ∈ C;

(3) If K is a countable subgroup of G, then there is L ∈ C (that is,
a nice subgroup L of G) such that K ⊆ L and L is countable.

Furthermore, an important class of p-torsion groups is the class of
all almost pω+n-projective groups, where n > 0 is an integer, defined
in [1] and [2] like this: The group G is called almost pω+n-projective if
there exists a pn-bounded subgroup P 6 G such that G/P is an almost
direct sum of cyclic groups (note that P is necessarily nice in G because
the quotient G/P is separable). It is demonstrated there that this is
tantamount to the fact that G is isomorphic to S/B, where S is an almost
direct sum of cyclic groups and B is pn-bounded.

Using the specific nature of countable subgroups, we generalized in [2]
the last concept to the following: A group G is said to be almost ω1-
pω+n-projective if there is a countable subgroup C 6 G such that G/C is
almost pω+n-projective. Notice that such a subgroup C can be chosen to
satisfy the inequalities pω+nG ⊆ C ⊆ pωG, and thus resultantly C is of
necessity nice in G.

On the other vein, we showed in [2] also that almost ω1-pω+n-projective
groups can be characterized in a different way as follows: The group G is
almost ω1-pω+n-projective if there exists a pn-bounded subgroup H 6 G
such that G/H is the sum of a countable group and an almost direct sum
of cyclic groups. As observed, such a subgroup H need not always be nice
in G, and so in [7] was given the following definition: A group G is called
strongly almost ω1-pω+n-projective if there is a pn-bounded nice subgroup
N 6 G with G/N a sum of a countable group and an almost direct sum
of cyclic groups. Note that almost pω+n-projective groups are obviously
strongly almost ω1-pω+n-projective. Some principal results concerning
certain generalizations of strongly almost ω1-pω+n-projective groups were
established in [4], [5], [6] and [8], respectively.

On the other hand, in order to extend some classical sorts of groups,
e.g. pω+n-projective groups and ω1-pω+n-projective groups, in [3] were
introduced a few classes of groups by using a single parameter m. So, the
objective of the present article is to develop that idea to some new concepts
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which use the term “almost”, and also to find suitable relationships
between them and the mentioned above group classes.

Definition 1.1. The group G is said to be almost m-ω1-pω+n-projective if
there is a pm-bounded subgroup A of G such that G/A is strongly almost
ω1-pω+n-projective.

In particular, if A is nice in G, then G is called strongly almost m-ω1-
pω+n-projective.

If m = 0 we obtain strongly almost ω1-pω+n-projective groups, while
we obtain strongly almost ω1-pω+m-projective groups when n = 0.

Definition 1.2. The group G is said to be weakly almost m-ω1-pω+n-
projective if there is a pm-bounded nice subgroup X of G such that G/X
is almost ω1-pω+n-projective.

Substituting m = 0 we yield almost ω1-pω+n-projective groups, while
if n = 0 we yield strongly almost ω1-pω+m-projective groups. In fact,
the first fact is trivial, while for the second one we have the following
arguments: in view of Lemma 2.16 of [1] an almost ω1-pω-projective group
is actually a sum of a countable group and an almost direct sum of cyclic
groups. Hence the definition of a strongly almost ω1-pω+m-projective
group is directly applicable, and we are set.

Definition 1.3. The group G is said to be decomposably almost m-ω1-
pω+n-projective if there is a pm-bounded subgroup S ofG with the property
that G/S is a sum of a countable group and an almost pω+n-projective
group.

In particular, if S is nice in G, then G is called nice decomposably
almost m-ω1-pω+n-projective. In addition, if the sum above is direct, we
shall say that G is (nice) direct decomposably almost m-ω1-pω+n-projective.

If m = 0 we identify the sums of countable groups and almost pω+n-
projective groups. If n = 0 we unify all almost ω1-pω+m-projective groups.

As for the second part, choosing m = 0 we will again obtain the sums
of countable groups and almost pω+n-projective groups, but choosing
n = 0 we will obtain strongly almost ω1-pω+m-projective groups.

Definition 1.4. The group G is called nicely almost m-pω+n-projective
if there is a pm-bounded nice subgroup Y of G such that G/Y is almost
pω+n-projective.

Putting m = 0 we get almost pω+n-projective groups, and putting
n = 0 we get almost pω+m-projective groups. Likewise, nicely almost
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m-pω+n-projective groups are both nice decomposably almost m-ω1-
pω+n-projective and almost pω+m+n-projective. Actually, almost pω+m+n-
projective groups are groups for which there is (not necessarily nice) a
pm-bounded subgroup M and, respectively, a pn-bounded subgroup N ,
such that G/M is almost pω+n-projective, respectively, G/N is almost
pω+m-projective.

Generally, the following self containments are fulfilled (this manifestly
visualizes some immediate relationships between the new group classes):

• {strongly almost ω1-pω+n-projective groups} ⊆ {decomposably al-
most n-ω1-pω+n-projective groups}.

• {strongly almost m-ω1-pω+n-projective groups} ⊆ {weakly almost
m-ω1-pω+n-projective groups}.

• {nice decomposably almost m-ω1-pω+n-projective groups}⊆{weakly
almost m-ω1-pω+n-projective groups}.

• {nicely almost m-ω1-pω+n-projective groups} ⊆ {nice decomposably
almost m-ω1-pω+n-projective groups}.

2. Some more relationships

In this section we will prove certain basic relation properties of the
groups from the above definitions. Throughout the rest of the paper, we
once again recollect that m and n are arbitrary fixed naturals or zero.

We start with the following:

Theorem 2.1. For any group G there exists a pm-bounded subgroup K
such that G/K is almost ω1-pω+n-projective if and only if G is almost
ω1-pω+m+n-projective.

Proof. We shall first show that G is as in the necessity of the theorem
⇐⇒ there exists C 6 G such that pmC is countable with pmC ⊆ pωG
and G/C is almost pω+n-projective ⇐⇒ there exists L 6 G with pm+nL
countable and G/L is an almost direct sum of cyclic groups.

Since the second equivalence follows directly by the methods used in
the proof of Theorem 2.21 from [2] or by an immediate application of
the corresponding definitions, we will be concentrated on the first one. In
fact, if pm+nL is countable, then L = R⊕ T , where R is countable and
pm+nT = {0}. Thus

G/L = G/(R⊕ T ) ∼= [G/(R⊕ pnT )]/[(R⊕ T )/(R⊕ pnT )]
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being an almost direct sum of cyclic groups implies that G/(R⊕ pnT ) is
almost pω+n-projective with C = R⊕ pnT , so pmC = pmR is countable,
as asked for.

“⇒”. Suppose by assumption that there is a pm-bounded subgroup
K 6 G such that G/K is almost ω1-pω+n-projective. Owing to Theorem
2.25 of [2], there exists a countable (nice) subgroup C/K of G/K such that
(G/K)/(C/K) ∼= G/C is almost pω+n-projective and C/K ⊆ pω(G/K) =
[∩i<ω(piG+K)]/K. Therefore, C 6 G, C = K + L for some countable
L 6 C and C ⊆ ∩i<ω(piG + K). These conditions together imply that
pmC ⊆ L is countable and pmC ⊆ ∩i<ωp

i+mG = pωG, as required.

“⇐”. Write C = X ⊕ V , where X is countable and V is pm-bounded.
Hence G/C = G/(X⊕V ) ∼= [G/V ]/(X⊕V )/V is almost pω+n-projective,
where (X ⊕ V )/V ∼= X is countable. Thus, in accordance with [2], G/V
is almost ω1-pω+n-projective, as desired. Moreover, (X ⊕ V )/V can be
chosen so that

pm[(X ⊕ V )/V ] = (pmX ⊕ V )/V

= (pmC ⊕ V )/V ⊆ (pωG+ V )/V ⊆ pω(G/V ).

This proves the preliminary claim.

Now, we have all the information necessary to prove the full assertion.
To that aim we just will show that G is almost ω1-pω+m+n-projective
⇐⇒ there is S 6 G such that pm+nS is countable and G/S is an almost
direct sum of cyclic groups, which is precisely the stated above equivalence
(compare with points (1) and (4) in Theorem 2.21 from [2]).

Necessity. Appealing to [2], G is almost ω1-pω+m+n-projective if there is a
countable subgroup K with G/K being almost pω+m+n-projective. Thus,
again in view of [2], there exists S 6 G containing K such that G/S is
an almost direct sum of cyclic groups and pm+nS ⊆ K. The last yields
that pm+nS is countable, as required.

Sufficiency. Suppose now that there exists S 6 G such that pm+nS is
countable and G/S is an almost direct sum of cyclic groups. Therefore, the
quotient G/S ∼= (G/pm+nS)/(S/pm+nS) being an almost direct sum of
cyclic groups implies with the aid of [2] that G/pm+nS is almost pω+m+n-
projective. And since pm+nS is countable, again the application of [2]
leads to G is almost ω1-pω+m+n-projective, as desired.

Remark 1. Note that the condition pmC ⊆ pωG stated in the proof of
Theorem 2.1 was at all redundant and therefore not further used. One
of the important consequences of Theorem 2.1 is that (weakly) almost
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m-ω1-pω+n-projective groups are almost ω1-pω+m+n-projective. Likewise,
the central role of Theorem 2.1 is to demonstrate unambiguously that
the concepts in Definitions 1.1 and 1.2 are nontrivial.

Imitating Theorem 2.1, it is quite natural to ask whether or not
strongly almost m-ω1-pω+n-projective groups are exactly the strongly
almost ω1-pω+m+n-projective ones. Referring to the following statement,
this seems to be true.

Proposition 2.2. If G is a strongly almost m-ω1-pω+n-projective group,
then G is strongly almost ω1-pω+m+n-projective.

Proof. Assume that there exists a pm-bounded nice subgroup T of G
such that G/T is strongly almost ω1-pω+n-projective. Thus there is
a nice subgroup A/T of G/T with the property that pnA ⊆ T and
(G/T )/(A/T ) ∼= G/A is the sum of a countable group and an almost di-
rect sum of cyclic groups. Hence pn+mA = {0} and A is nice in G (cf. [9]),
which conditions ensure that G is strongly almost ω1-pω+m+n-projective,
as claimed.

As noted above, a question of some majority is of whether or not the
converse holds, that is, whether or not every strongly almost ω1-pω+m+n-
projective group is strongly almost m-ω1-pω+n-projective.

An other question of some interest, which immediately arises, is also
whether or not almost pω+m+n-projective groups are strongly almostm-ω1-
pω+n-projective (and, in particular, weakly almost m-ω1-pω+n-projective).
This is inspired by the fact that, taking m = 0, almost pω+n-projective
groups are themselves strongly almost ω1-pω+n-projective (cf. [7]).

In this way, we have the following weaker relationship:

Proposition 2.3. If G is an almost pω+m+n-projective group, then G is
a (direct) decomposably almost m-ω1-pω+n-projective group.

Proof. Let P 6 G such that G/P is an almost direct sum of cyclic groups
and pm+nP = {0}. Since G/P ∼= [G/pnP ]/[P/pnP ], we deduce that
G/pnP is almost pω+n-projective and hence it is a sum of a countable
group and an almost pω+n-projective group. But pm(pnP ) = {0} and so
G is decomposably almost m-ω1-pω+n-projective, as promised.

Remark 2. The converse implication is, however, not true as simple
examples show. Nevertheless, decomposably almost m-ω1-pω+n-projective
groups are eventually intermediate situated between almost pω+m+n-
projective groups and almost m-ω1-pω+n-projective groups.
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For separable groups (i.e., groups without elements of infinite height)
all of the above notions are tantamount; we do not consider here concrete
examples to show that these concepts are independent for lengths beyond
ω, but we refer the interested reader to [4], [5] or [6] for more details when
the group length is > ω.

Theorem 2.4. Suppose G is a group such that pωG = {0}. Then all of
the next points are equivalent:

(a) G is almost ω1-pω+m+n-projective;

(b) G is almost m-ω1-pω+n-projective;

(c) G is strongly almost m-ω1-pω+n-projective;

(d) G is weakly almost m-ω1-pω+n-projective;

(e) G is decomposably almost m-ω1-pω+n-projective;

(f) G is nice decomposably almost m-ω1-pω+n-projective;

(g) G is nicely almost m-pω+n-projective;

(h) G is almost pω+m+n-projective.

Proof. Apparently, all of the points (b)-(h) imply (a) and, in virtue of [2],
we obtain that point (a) holds provided (h) is fulfilled. Moreover, it is easy
to see that clause (g) implies all other ones. So, what remains to show
is the implication (h) ⇒ (g). To this purpose, [2] helps us to write that
G/Z is an almost direct sum of cyclic groups for some subgroup Z 6 G
which is bounded by pm+n. Thus (G/Z[pm])/(Z/Z[pm]) ∼= G/Z being an
almost direct sum of cyclic groups guarantees again by [2] that G/Z[pm]
is almost pω+n-projective since Z/Z[pm] ∼= pmZ is obviously bounded
by pn. But Z[pm] = Z ∩ G[pm] and both Z and G[pm] are nice in G
because G/Z is pω-bounded and G/G[pm] ∼= pmG ⊆ G is pω-bounded too.
So, resulting, Z[pm] must be nice in G (see, e.g., [9]), and since Z[pm] is
pm-bounded, we consequently get the desired fact that G is nicely almost
m-pω+n-projective.

We now proceed with two useful necessary and sufficient conditions
which are needed for applicable purposes in the next section.

Proposition 2.5. The group G is strongly almost m-ω1-pω+n-projective
if and only if there exists a pm-bounded nice subgroup T of G such that
G/(T + pω+nG) is almost pω+n-projective and pω+n(G/T ) is countable.
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Proof. It follows directly from [2] because the isomorphism

[G/T ]/pω+n(G/T ) ∼= G/(T + pω+nG)

is fulfilled.

Proposition 2.6. The group G is weakly almost m-ω1-pω+n-projective
if and only if there exists a pm-bounded nice subgroup X of G such that
G/(X+pω+nG) is almost ω1-pω+n-projective and pω+n(G/X) is countable.

Proof. It follows immediately from [2] since the isomorphism

[G/X]/pω+n(G/X) ∼= G/(X + pω+nG)

holds.

3. Ulm subgroups and Ulm factors

In [7] it was proved that if the group G is strongly almost ω1-pω+n-
projective, then so is G/pαG for any ordinal α. Here we will give a simpler
proof to the same fact devoted to almost ω1-pω+n-projective groups (see
Proposition 2.13 (b) from [2], too).

Proposition 3.1. If G is an almost ω1-pω+n-projective group, then
G/pαG is an almost ω1-pω+n-projective group for every ordinal α.

Proof. For finite ordinals α, the assertion is self-evident. So, we will assume
that α is infinite. By virtue of Theorem 2.21 (2) in [2], let G/A be the sum
of a countable group and an almost direct sum of cyclic groups for some
A 6 G with pnA = {0}. Thus, by utilizing the methods in [1] and [2], we
deduce that pα(G/A), being contained in a countable summand of G/A,
remains countable and [G/A]/pα(G/A) is again a sum of a countable
group and an almost direct sum of cyclic groups. If T ⊆ pα(G/A), the
same is still true for (G/A)/T ; we specially take T = (pαG+A)/A.

But the following isomorphisms hold:

[G/A]/(pαG+A)/A ∼= G/(pαG+A) ∼= [G/pαG]/(pαG+A)/pαG.

Observing that pn((pαG+A)/pαG) = {0}, we are finished.

Remark 4. Reciprocally, we showed in Theorem 2.16 of [2] that a group
G is almost ω1-pω+n-projective if and only if pω+nG is countable and
G/pω+nG is almost ω1-pω+n-projective.
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Our further work in this section will be focussed on the behavior of
the new group classes about Ulm subgroups and Ulm factors. Our main
results presented below settle this matter in some aspect.

The following claim on niceness is pivotal. Its proof, although not
difficult, is rather technical, so that we leave it to the interested readers.

Lemma 3.2. Suppose N is a nice subgroup of a group A and M ⊆ pλA
for some infinite ordinal λ where pλA is bounded. Then (N +M)/M is
nice in A/M .

Lemma 3.3. Suppose that A is a group with a subgroup B such that
A/B is bounded. Thenthe following are true:

(a) If N is nice in B, then N is nice in A.

(b) If M is nice in A, then M ∩B is nice in B.

Proof. Appealing to [9], note that a subgroup V of a group W is nice if,
for any limit ordinal δ, the equality ∩α<δ(V + pαW ) = V + pδW .

(a) Since pjA ⊆ B for some j ∈ N and hence pωA = pωB, it suffices
to check the equality only for the ordinal ω. In fact,

∩i<ω(N + piA) = ∩j6i<ω(N + piA) ⊆ ∩k<ω(N + pkB)

= N + pωB ⊆ N + pωA,

as required.

(b) We subsequently deduce that

∩α<δ(M ∩B + pαB) ⊆ ∩α<δ(M + pαA) ∩B = (M + pδA) ∩B

= (M + pδB) ∩B = M ∩B + pδB,

as required, where the last equality follows by the modular law.

We now proceed by proving with the next crucial statement, needed
for our further application.

Proposition 3.4. Let A be a group and λ > ω an ordinal.

(i) If A is strongly almost ω1-pω+n-projective and Z ⊆ pλA, where pλA
is bounded, then A/Z is strongly almost ω1-pω+n-projective.

(ii) If X ⊆ pω+nA, pω+nA is countable and A/X is strongly almost ω1-
pω+n-projective, then A is also strongly almost ω1-pω+n-projective.
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Proof. (i) Let Q be a nice subgroup of A with pnQ = {0} and suppose
A/Q is the sum of a countable group and an almost direct sum of cyclic
groups, say A/Q = K + S. It is easily seen that Q′ = (Q + Z)/Z is
pn-bounded and in accordance with Lemma 3.2 it is nice in A′ = A/Z
as well. In addition, A′/Q′ ∼= A/(Q + Z) ∼= [A/Q]/[(Q + Z)/Q] and
(Q + Z)/Q ⊆ (Q + pλA)/Q = pλ(A/Q). Since K ∩ S ⊆ S is countable,
there exists a countable nice subgroup C of S such that K ∩ S ⊆ C.
Consequently, (A/Q)/C = [(K+C)/C]⊕[S/C]. Since S/C is pω-bounded,
we derive that

(pλ(A/Q) + C)/C ⊆ pλ((A/Q)/C) = pλ((K + C)/C)

is countable, whence so is pλ(A/Q). Furthermore, in virtue of Lemma
2.16 from [1], we observe that A/Q is actually almost ω1-pω-projective.
Since pλ(A/Q) is countable, we obtain the same for (Q+ Z)/Q and thus
in accordance with Theorem 2.23 of [2], we conclude that A′/Q′ is also
ω1-pω-projective, as required.

(ii) With the aid of [7] we observe that the quotient

[A/X]/pω+n(A/X) = [A/X]/[pω+nA/X] ∼= A/pω+nA

is almost pω+n-projective. We next again employ [7] to derive that A is
strongly almost ω1-pω+n-projective, as asserted.

The next statement is pivotal.

Lemma 3.5. Suppose that A is a group with a subgroup B such that
A/B is bounded. Then

(i) A is almost pω+n-projective if and only if B is almost pω+n-projective.

(ii) A is strongly almost ω1-pω+n-projective if and only if B is strongly
almost ω1-pω+n-projective.

(iii) A is (strongly) almost m-ω1-pω+n-projective if and only if B (strongly)
almost m-ω1-pω+n-projective.

Proof. (i) It is straightforward.

(ii) Since ptA ⊆ B for some t ∈ N, we obtain that pωA = pωB
and thus pω+nA = pω+nB. Moreover, in virtue of (i), B/pω+nB =
B/pω+nA is almost pω+n-projective uniquely when A/pω+nA is almost
pω+n-projective, because the factor-group (A/pω+nA)/(B/pω+nA) ∼= A/B
remains bounded. We finally apply [7] to conclude the claim.
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(iii) “⇒”. Let A/H be strongly almost ω1-pω+n-projective for some
H 6 A[pm] (which is nice in A). Since [A/H]/[(B+H)/H] ∼= A/(B+H)
remains bounded as an epimorphic image of A/B, we deduce with the
help of (ii) that (B + H)/H ∼= B/(B ∩H) is strongly almost ω1-pω+n-
projective. In addition, B ∩H 6 B[pm] (which is nice in B), and we are
finished.

“⇐”. Let B/L be strongly ω1-pω+n-projective factor-group for some
L 6 B[pm] (which is nice in B). Since [A/L]/[B/L] ∼= A/B is bounded,
point (ii) is applicable to infer that A/L is strongly almost ω1-pω+n-
projective. But L 6 A[pm] (which is nice in A), and we are done.

The niceness in both directions follows immediately from Lemma 3.3.

We have now at our disposal all the ingredients needed to prove
the following basic assertion on both Ulm subgroups and Ulm factors
pertaining to the other remaining group classes.

Proposition 3.6. If the group G is either

(a) strongly almost m-ω1-pω+n-projective or

(b) weakly almost m-ω1-pω+n-projective or

(c) nice direct decomposably almost m-ω1-pω+n-projective or

(d) nicely almost m-pω+n-projective,

then the same are both pαG and G/pαG for any ordinal α.

Proof. (a) Suppose that G/T is strongly almost ω1-pω+n-projective for
some nice pm-bounded subgroup T of G. Thus

pαG/(pαG ∩ T ) ∼= (pαG+ T )/T = pα(G/T )

is also strongly almost ω1-pω+n-projective in view of [7], with pαG ∩ T
being pm-bounded and nice in pαG (cf. [9]). Hence pαG is strongly almost
m-ω1-pω+n-projective as well.

To show the second part, we consequently apply again [7] to infer that

(G/T )/pα(G/T ) = (G/T )/(pαG+ T )/T ∼= G/(pαG+ T )
∼= (G/pαG)/(pαG+ T )/pαG

is also strongly almost ω1-pω+n-projective. Moreover, it is plainly ob-
served that (pαG+ T )/pαG is bounded by pm because so is T , and that
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(pαG+ T )/pαG is nice in G/pαG since it is well known that pαG+ T is
nice in G - see, for example, [9].

(b) Suppose G/X is almost ω1-pω+n-projective for some nice X 6 G
with pmX = {0}. Observe that the following relations are valid:

pαG/(pαG ∩X) ∼= (pαG+X)/X ⊆ G/X.

But a subgroup of an almost ω1-pω+n-projective group is again almost
ω1-pω+n-projective (cf. [2]). Thus pαG/(pαG ∩ X) is almost ω1-pω+n-
projective as well. Moreover, pαG ∩ X is obviously pm-bounded and
also, in accordance with [9], it is nice in pαG. So, pαG is weakly almost
m-ω1-pω+n-projective.

Furthermore,

(G/X)/pα(G/X) = (G/X)/(pαG+X)/X ∼= G/(pαG+X)
∼= (G/pαG)/(pαG+X)/pαG

is almost ω1-pω+n-projective too, owing to Proposition 3.1.
Besides, it is obviously seen that

pm((pαG+X)/pαG) = (pα+mG+ pαG)/pαG = {0},

and in the case of niceness that (pαG+X)/pαG is nice in G/pαG because
it is well known that pαG+X is nice in G, see [9], for instance.

(c) Accordingly, write G/H = B ⊕R where B is countable and R is
almost pω+n-projective for some pm-bounded nice subgroup H of G. But

pαG/(pαG ∩H) ∼= (pαG+H)/H = pα(G/H) = pαB ⊕ pαR,

where pαB is obviously countable and pαR is by [2] almost pω+n-projective.
Since pαG ∩H is pm-bounded and nice in pαG (see [9]), we derive that
pαG is nice direct decomposably almost m-ω1-pω+m-projective, as stated.

Concerning the other part, the direct sum

(B/pαB)⊕ (R/pαR) ∼= [G/H]/pα(G/H)
∼= G/(pαG+H) ∼= [G/pαG]/(pαG+H)/pαG

is again a direct sum of a countable group and an almost pω+n-projective
group, because of the obvious facts that B/pαB is countable and R/pαR
is almost pω+n-projective, where the later one exploits [2]. In this vein, it
is self-evident that (pαG+H)/pαG is bounded by pm and, in conjunction
with [9], that (pαG+H)/pαG is nice in G/pαG, as required.
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(d) Given a pm-bounded nice subgroup Y ofG such thatG/Y is almost
pω+n-projective. Hence, in view of [2], pαG/(pαG∩Y ) ∼= (pαG+Y )/Y ⊆
G/Y is almost pω+n-projective as well, with pαG ∩ Y being pm-bounded
and nice in pαG (cf. [9]).

On the other hand,

(G/pαG)/(Y + pαG)/pαG ∼= G/(Y + pαG)
∼= (G/Y )/(Y + pαG)/Y = (G/Y )/pα(G/Y )

is almost pω+n-projective by exploiting [2]. Since (Y + pαG)/pαG ∼=
Y/(Y ∩ pαG) is pm-bounded and nice in G/pαG (see [9]), the assertion
follows.

Under some extra restrictions on α, we can say even a little more:

Proposition 3.7. If G is a nice direct decomposably almost m-ω1-pω+n-
projective group, then G/pα+mG is nicely almost m-pω+n-projective for
every ordinal α 6 ω + n. In particular, G/pω+m+nG is nicely almost
m-pω+n-projective.

Proof. By Definition 1.3, we write thatG/H = B⊕R where B is countable
and R is almost pω+n-projective for some pm-bounded nice subgroup H
of G. An appeal to the proof of Proposition 3.6 (c) gives that

[G/H]/pα(G/H) ∼= G/(pαG+H) ∼= [G/pα+mG]/(pαG+H)/pα+mG.

is almost pω+n-projective with

pm((pαG+ S)/pα+mG) = pα+mG/pα+mG = {0},

so that the claim follows. The final part is an immediate consequence by
taking α = ω + n.

The following somewhat supplies Proposition 3.5 listed above.

Proposition 3.8. If G is a direct decomposably almost m-ω1-pω+n-
projective group, then pαG is direct decomposably almost m-ω1-pω+n-
projective for all ordinals α. In particular, if α > ω, then pαG is almost
ω1-pω+m-projective.

In addition, if G is a nice direct decomposably almost m-ω1-pω+n-
projective group and α > ω, then pαG is strongly almost ω1-pω+m-
projective.
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Proof. Using Definition 1.3, let S 6 G[pm] such that G/S = B⊕R where
B is countable and R is almost pω+n-projective. If α > ω, then one sees
that pαG/(pαG ∩ S) ∼= (pαG + S)/S ⊆ pα(G/S) = K ⊕ P where K is
countable and P is pn-bounded. Hence pαG/(pαG ∩ S) is also such a
direct sum of a countable group and a pn-bounded group (which itself is
a direct sum of cyclic groups) with pm-bounded intersection S ∩ pαG, so
that pαG is almost ω1-pω+m-projective.

If now α < ω is finite, then in virtue of [2] the quotient

pαG/(pαG ∩ S) ∼= (pαG+ S)/S = pα(G/S) = pαB ⊕ pαR

is again a direct sum of the countable group pαB and the almost pω+n-
projective group pαR, as needed. That is why, in both cases, pαG is direct
decomposably almost m-ω1-pω+n-projective.

The final part follows easily since S being nice in G yields that S∩pαG
is nice in pαG (cf. [9]).

We now strengthen the idea in the proof of Proposition 3.1 by the
following statement; however we cannot yet establish that, for all ordinals
α, the Ulm factor G/pαG possesses the direct decomposable almost m-
ω1-pω+n-projective property provided that the same holds for G.

Proposition 3.9. If G is a direct decomposably almost m-ω1-pω+n-
projective group, then G/pαG is direct decomposably almost m-ω1-pω+n-
projective for all ordinals α > ω + n.

Proof. Utilizing Definition 1.3, write that G/S = B ⊕ R where B is
countable and R is almost pω+n-projective for some pm-bounded subgroup
S of G.

Standardly, the following isomorphisms are true:

(G/pαG)/[(S + pαG)/pαG] ∼= G/(S + pαG) ∼= (G/S)/[(S + pαG)/S].

Moreover, (S + pαG)/S ⊆ pα(G/S) = pαB. Therefore, setting T =
(S + pαG)/S, we deduce that

(G/S)/T = (B ⊕R)/T ∼= (B/T )⊕R

is again a direct sum of a countable group and an almost pω+n-projective
group. And since pm((pαG+ S)/pαG) = {0}, we are finished.
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Remark 5. When α = ω, we know by [2] or by Theorem 2.4 that G/pωG
must be almost pω+m+n-projective and thus in virtue of Proposition 2.3
it is direct decomposably almost m-ω1-pω+n-projective. However, the
unsettled situation is when ω < α < ω + n.

Now, we are ready to establish the following:

Theorem 3.10 (First Reduction Criterion). The group G is (strongly)
almost m-ω1-pω+n-projective if and only if the following two conditions
are fulfilled:

(1) pω+m+nG is countable;

(2) G/pω+m+nG is (strongly) almost m-ω1-pω+n-projective.

Proof. “⇒”. As observed before, G is almost ω1-pω+m+n-projective, so
point (1) follows automatically appealing to [2]. Concerning point (2), it
follows immediately from Proposition 3.6(a).

“⇐”. Assume now that clauses (1) and (2) are valid. For convenience
put k = m+n. By definition, let L/pω+kG 6 G/pω+kG be a pm-bounded
subgroup such that (G/pω+kG)/(L/pω+kG) ∼= G/L is strongly almost ω1-
pω+n-projective. Thus pmL ⊆ pω+kG. Since G/L is pω+k+m-bounded, we
see that pω+n(G/L) is bounded (by p2m), and applying Proposition 3.4 (i)
to G/L, we deduce that

(G/L)/(pω+nG+ L)/L ∼= G/(pω+nG+ L)

is strongly almost ω1-pω+n-projective, because (pω+nG+L)/L⊆pω+n(G/L).
Putting M = pω+nG + L, it is obvious that pω+nG ⊆ M and pmM =
pω+kG. That is why, G/M is strongly almost ω1-pω+n-projective with
M 6 G satisfying the above two relations.

Furthermore, supposing that Y is a maximal pm-bounded summand
of pω+nG, so there is a direct decomposition pω+nG = X ⊕ Y and, by
what we have just shown above, the inclusions X ⊆ pω+nG ⊆M are true.
We can without loss of generality assume that X is countable because
of the following reasons: Since pω+kG = pmX is countable, it follows
that X = K ⊕ Z where K is countable and Z is pm-bounded. Therefore,
pω+nG = K ⊕ Z ⊕ Y = K ⊕ Y ′ where Y ′ = Z ⊕ Y , as needed.

We next routinely verify thatX[p] = (pω+kG)[p] and thus Y ∩pω+kG =
{0}. So, suppose H is a pω+k-high subgroup of G such that H ⊇ Y .
Now, G[p] = (pω+kG)[p] ⊕ H[p] = X[p] ⊕ H[p] together with H being
pure in G (cf. [9]) readily force that G[pm] = X[pm]⊕H[pm] whenever
m > 1. In fact, given g ∈ G with pmg ∈ pω+kG, we write pmg = pma
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where a ∈ pω+nG = X ⊕ Y . Then pmg = pmx for some x ∈ X, whence
g ∈ x+G[pm] ⊆ X +H[pm], as required.

Besides, X ∩H[pm] ⊆ X ∩H = {0} and consequently (G/pω+kG)[pm]
= (X ⊕H[pm])/pω+kG because pω+kG = pmX ⊆ X. Since M/pω+kG ⊆
(G/pω+kG)[pm], it follows that M ⊆ X ⊕H[pm] and hence

M = (X ⊕H[pm]) ∩M = X +H[pm] ∩M

by virtue of the modular law. Substituting P = H[pm] ∩M , we derive
that pmP = {0} and that M = X + P . In addition, M = M + pω+nG =
P + pω+nG and so G/(pω+nG+ P ) ∼= (G/P )/(pω+nG+ P )/P is strongly
almost ω1-pω+n-projective.

We now claim that pω+n(G/P ) is countable. In fact, pω+n(G/M) is
countable because G/M is strongly almost ω1-pω+n-projective (see [7]).
But we subsequently have that

pω+n(G/M) = pn(pω(G/M)) = pn(∩i<ω(piG+M)/M)

= pn(∩i<ω(piG+ P )/M) ∼= pn(∩i<ω[(piG+ P )/P ]/[M/P ])

= pn(pω(G/P )/[M/P ]) = [pω+n(G/P ) + (M/P )]/[M/P ]

= pω+n(G/P )/[M/P ]

since M/P = (pω+nG+ P )/P ⊆ pω+n(G/P ). Moreover,

M/P = M/(M ∩H[pm]) ∼= (M +H[pm])/H[pm]

= (X +H[pm])/H[pm] ∼= X/(X ∩H[pm]) ∼= X

is countable. Finally, pω+n(G/P ) is countable as well, as claimed.
Also, because (pω+nG + P )/P 6 pω+n(G/P ), Proposition 3.4 (ii)

applied to G/P shows that G/P is strongly almost ω1-pω+n-projective
with pmP = {0}, as required.

As for the “niceness” property, it can be established as Theorem 3.12
quoted below.

Now, with Proposition 2.5 at hand, we deduce the following conse-
quence.

Corollary 3.11. Suppose that pλG is countable for some ordinal λ > ω.
Then the group G is (strongly) almost m-ω1-pω+n-projective if and only
if G/pλG is.

We henceforth have all the information to prove our next basic result.
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Theorem 3.12 (Second Reduction Criterion). The group G is weakly
almost m-ω1-pω+n-projective if and only if

(1) pω+m+nG is countable;

(2) G/pω+m+nG is weakly almost m-ω1-pω+n-projective.

Proof. “⇒”. It follows directly from [2] together with Proposition 3.6 (b).
“⇐”. For our convenience, set k = m+n. By definition, let T/pω+kG 6

G/pω+kG be a pm-bounded nice subgroup such that

(G/pω+kG)/(T/pω+kG) ∼= G/T

is almost ω1-pω+n-projective. Thus T is nice in G (see, e.g., [9]), and
pmT ⊆ pω+kG. Applying Proposition 3.1 or Proposition 2.13 (b) in [2],

G/(T + pω+nG) ∼= [G/T ]/(T + pω+nG)/T = [G/T ]/pω+n(G/T )

is also almost ω1-pω+n-projective. Putting T ′ = T + pω+nG, we see that
G/T ′ is almost ω1-pω+n-projective and that T ′ ⊇ pω+nG remains nice in
G and pmT ′ = pmT + pω+kG = pω+kG. So, replacing hereafter T ′ with
T , we may without loss of generality assume that pω+nG 6 T .

Suppose now Y is a maximal pm-bounded summand of pω+nG; so there
exists a direct decomposition pω+nG = X ⊕ Y and thus the inclusions
X ⊆ pω+nG ⊆ T hold. We may also assume with no harm of generality
that X is countable; in fact, pω+kG = pmX is countable and therefore
we can decompose X = K ⊕ Z, where K is countable and Z is pm-
bounded (whence Z is a pm-bounded summand of pω+nG and so Z ⊆ Y ).
Consequently, it is readily checked that pω+nG = K ⊕ Y with countable
summand K, as wanted.

Next, a straightforward check shows thatX[p]=(pω+kG)[p]=(pmX)[p]
and thus Y ∩ pω+kG = {0} because

(Y ∩ pω+kG)[p] = Y ∩ (pω+kG)[p] = Y ∩X[p] = {0}.

Let us now H be a pω+k-high subgroup of G containing Y (thus H is
maximal with respect to H ∩ pω+kG = {0} with H ⊇ Y ). We now assert
that

(G/pω+kG)[pm] = (X ⊕H[pm])/pω+kG.

In fact, as noted above, X[p] = (pω+kG)[p] and thereby X ∩H = {0}
because

(X ∩H)[p] = X[p] ∩H = (pω+kG)[p] ∩H = {0}.
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Since G[p] = (pω+kG)[p]⊕H[p] = X[p]⊕H[p] and H is pure in G (see
[9]), it plainly follows that G[pm] = X[pm]⊕H[pm]. To prove this, given
v ∈ G with pmv ∈ pω+kG, it suffices to show that v ∈ X ⊕ H[pm]. In
fact, pmv = pmd where d ∈ pω+nG = X ⊕ Y . Then pmd = pmx for some
x ∈ X and so pmv = pmx. Therefore,

v ∈ x+G[pm] = x+X[pm] +H[pm] ⊆ X +H[pm],

as required. So, the assertion is sustained.
Furthermore, by what we have obtained above,

T/pω+kG ⊆ (G/pω+kG)[pm] = (X ⊕H[pm])/pω+kG

implies that T ⊆ X⊕H[pm]; note also that X ⊆ T . Put L = T ∩H[pm] ⊆
H, so that it is clear that L ∩ pω+kG = {0}. Moreover, the modular law
ensures that

T = (X ⊕H[pm]) ∩ T = X ⊕ (T ∩H[pm]) = X ⊕ L.

We consequently conclude that T = pω+nG + T = pω+nG + L and
G/T = G/(pω+nG+ L) is almost ω1-pω+n-projective. Observe also that
L is pm-bounded, and that L is nice in G. The first fact is trivial, as for
the second one L ∩ pω+kG = {0} easily forces that L ∩ pω+nG is nice in
pω+nG and thus it is nice in G. On the other hand, as noticed above,
pω+nG+ L = T is also nice in G. According to [9], these two conditions
together imply that L is nice in G, as expected.

What remains to illustrate is that pω+n(G/L) is countable. Indeed,
we have pω+n(G/L) = (pω+nG+ L)/L = T/L. Also,

T/L = T/(T ∩H[pm]) ∼= (T +H[pm])/H[pm]

= (pω+nG+H[pm])/H[pm] ∼= pω+nG/(pω+nG ∩H[pm]).

But as obtained above, pω+nG = X⊕Y and since Y ⊆ H, we have with the
aid of the modular law that pω+nG∩H = (X⊕Y )∩H = (X∩H)⊕Y = Y ,
whence pω+nG ∩H[pm] = Y [pm]. We therefore establish that

T/L ∼= (X ⊕ Y )/Y [pm] ∼= X ⊕ (Y/Y [pm]) ∼= X ⊕ pmY = X.

Since X is shown above to be countable, so does T/L = pω+n(G/L). We
finally apply Proposition 2.6 to get the desired claim.

Mimicking the method demonstrated above, with Proposition 2.6 in
hand we can state:
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Corollary 3.13. Let λ > ω be an ordinal such that pλG is countable.
Then the group G is weakly almost m-ω1-pω+n-projective if and only if
G/pλG is.

We now ready to establish our next reduction theorem.

Theorem 3.14 (Third Reduction Criterion). The group G is nicely
almost m-pω+n-projective if and only if

(1) pω+m+nG is countable;

(2) G/pω+m+nG is nicely almost m-pω+n-projective.

Proof. “⇒”. Clause (1) follows immediately as above.

As for clause (2), it follows directly by Proposition 3.6 (d).

“⇐”. Assume that (1) and (2) are fulfilled, so that let there exist
a nice pm-bounded subgroup A/pω+m+nG of G/pω+m+nG with A 6 G
such that G/A is almost pω+n-projective. Thus, as we have seen before,
pmA ⊆ pω+kG for k = m + n, and A is nice in G. Imitating the same
technique as in Theorems 3.10 and 3.12, we can find a pm-bounded nice
subgroup N of G such that G/N is almost pω+n-projective, and so we
complete the arguments.

Same as above, we derive:

Corollary 3.15. Let λ > ω be an ordinal for which pλG is countable.
Then the group G is nicely almost m-ω1-pω+n-projective if and only if
G/pλG is.

We will be now concentrated on nice decomposably almost m-ω1-
pω+n-projective groups, which are somewhat difficult to handle. So, we
will restrict our attention on the ideal case n = 1 by showing that the
investigation of nice decomposably almost m-ω1-pω+1-projective groups
can be reduced to these of length not exceeding ω +m+ 1. Specifically,
the following holds:

Theorem 3.16 (Fourth Reduction Criterion). The group G is nice direct
decomposably almost m-ω1-pω+1-projective if and only if

(1) pω+m+1G is countable;

(2) G/pω+m+1G is nice direct decomposably almost m-ω1-pω+m+1-
projective.
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Proof. The “and only if” part follows directly as above in a combination
with Proposition 3.6 (c), respectively.

Concerning the “if” part, we set for simpleness k = m + 1. Using
the corresponding definition, suppose T/pω+kG 6 G/pω+kG is a pm-
bounded nice subgroup such that [G/pω+kG]/[T/pω+kG] ∼= G/T is a
direct sum of a countable group and an almost pω+1-projective group.
Hence T is nice in G (see, e.g., [9]), and pmT ⊆ pω+kG. Also, it is
routinely checked that [G/T ]/pω+1(G/T ) ∼= G/(T + pω+1G) is almost
pω+1-projective. Henceforth, the proof goes on imitating the same scheme
of proof as that in Theorems 3.10 and 3.12 to infer the wanted statement.

Remark 6. As observed in Proposition 3.6 (c), the necessity in Theo-
rem 3.16 is valid for any natural n. However, the sufficiency probably fails
for each other n > 1.

4. Open questions

We close the work with certain challenging problems which are worth-
while for a further study.

Problem 1. Is it true that weakly almost n-ω1-pω+m-projective groups
are almost m-ω1-pω+n-projective?

Problem 2. Are (strongly) almost m-ω1-pω+n-projective groups strongly
almost ω1-pω+m+n-projective?

Problem 3. Does it follow that nice decomposably almost m-ω1-pω+n-
projective groups are strongly almost m-ω1-pω+n-projective?

Correction. In the proof of Theorem 2.23 from [2], on lines 4 and 6 the
phrase “almost pω+n-projective” should be stated as “almost ω1-pω+n-
projective”. The omission “ω1” was involuntarily.
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On solvable Z3-graded alternative algebras

Maxim Goncharov

Communicated by V. M. Futorny

Abstract. Let A = A0 ⊕ A1 ⊕ A2 be an alternative Z3-
graded algebra. The main result of the paper is the following: if A0

is solvable and the characteristic of the ground field not equal 2,3
and 5, then A is solvable.

1. Introduction

Let R be an algebra over a field F. Let G be a finite group of auto-
morphisms of R, and RG = {x ∈ R|φ(x) = x for all φ ∈ G} be a fixed
points subalgebra of R.

For Lie algebras there is a classical Higman result: if a Lie algebra L
has an automorphism φ of simple order p without fixed points (Lφ = 0),
then L is nilpotent [1]. Moreover, nil index h(p) in this case depends only
on the order p. The explicit estimate of the function h(p) was found in
the paper of Kreknin and Kostrikin [2]. At the same time Kreknin proved
that a Lie ring with a regular automorphism of an arbitrary finite order
is solvable [3]. It is also worth mentioning here a result of Makarenko [4]
who proved that if a Lie algebra L admits an automorphism of a prime
order p with a finite-dimensional fixed-point subalgebra of dimension t,
then L has a nilpotent ideal of nilpotency class bounded in terms of p
and of codimension bounded in terms of t and p.

If R is an associative algebra with a finite group of automorphisms G
then classical Bergman-Isaacs theorem says that if the subalgebra of fixed

Key words and phrases: alternative algebra, solvable algebra, Z3-graded algebra,
subalgebra of fixed points.
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points RG is nilpotent and R has no |G|-torsion, then R is nilpotent [5].
Kharchenko proved that under the same conditions, if RG is a PI-ring,
then R is a PI-ring [6]. For Jordan algebras the analogue of Kharchenko’s
result was proved by Semenov [7].

The Bergman-Isaacs theorem was partially generalized by Martindale
and Montgomery to the case when G is a finite group of so called Jordan
automorphisms, that is a linear automorphisms that are automorphisms
of the adjoint Jordan algebra R(+) (note that in this case RG is not a
subalgebra in R, but a subalgebra in R(+)) [8].

Note, that in general for Jordan algebras Bergman-Isaacs theorem is
false - there is an example of a solvable non-nilpotent Jordan algebra J
with an automorphism of second order φ such that the ring of invariants
Jφ is nilpotent. However, Zhelyabin in [11] proved, that if a Jordan algebra
J over a field of characteristic not equal 2,3 admits an automorphism of
second order φ such that the algebra of invariants Jφ is solvable, then J
is solvable.

For alternative algebras in [12] it was proved that if A is an alternative
algebra over a field of characteristic not equal 2 with an automorphism
g of second order then the solvability of the algebra of fixed points Ag

implies the solvability of A. On the other hand, if the characteristic of
the ground field is zero and G is a finite group of automorphisms of an
alternative algebra A, then again the solvability of the algebra of fixed
points AG implies the solvability of A [7]. At the same time it is not
known if the similar result is true in positive characteristic.

In this work we study a special case of the problem for alternative
algebras: we consider a Z3-graded alternative algebra A = A0 ⊕A1 ⊕A2

and prove, that if the characteristic of the ground field not equal 2,3 and
5 and A0 is solvable, then A is solvable.

As a consequence we obtain the following result: if A is an alternative
algebra with an automorphism φ of order 2k3l, then under the same
conditions on the characteristic of the ground field, the solvability of the
subalgebra of fixed points Aφ implies the solvability of A.

2. Definitions and preliminary results

Let F be a field of characteristic not equal 2,3,5, A be an algebra
over F . If x, y, z ∈ A then (x, y, z) = (xy)z − x(yz) is the associator of
elements x, y, z, x ◦ y = xy + xy is a Jordan product of elements x and y
and [x, y] = xy − yx is a commutator of the elements x and y.
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Definition. An algebra A is called Z3-graduated if A is a direct sum of
subspaces Ai, i ∈ Z3 : A = A0 ⊕A1 ⊕A2 and AiAj ⊆ Ai+j .

If A is a Z3-graded algebra, then for every i ∈ Z3 and x ∈ A by xi
we will denote the projection of the element x to the subspace Ai and if
M ⊂ A then Mi = {xi| x ∈M}. An ideal I of A is called homogeneous
if Ij ⊂ I, j = 0, 1, 2 . If I is a homogeneous ideal of A, then the
factor-algebra A/I is also a Z3-graded algebra.

If φ is an automorphism of the algebra A, then by Aφ we denote the
subalgebra of fixed points of φ, that is Ag = {x ∈ A| φ(x) = x}.

Define subsets Ai, A<i> and A(i) as:

A2 = A<2> = A(1) = AA, An =
n−1∑

i=1

AiAn−i, A<n> = A<n−1>A

A(1) = A2, A(i) = A(i−1)A(i−1).

Definition. An algebra A is called nilpotent if Ai = 0 for some i. An al-
gebra is called solvable, if A(i) = 0 for some i.

It is clear that A(i) ⊂ A2i
, so every nilpotent algebra is solvable. If

A is an associative algebra then the inverse is also true: every solvable
associative algebra is nilpotent. But in general, a solvable algebra is not
necessary nilpotent. An example of an alternative solvable non-nilpotent
algebra was constructed by Dorofeev [15](can also be found in [13]).

Definition. An algebra A is called alternative, if for all x, y ∈ A:

(x, x, y) = (y, x, x) = 0. (1)

Let A be an alternative algebra. We will need the following identities
on A (that are the linearizations of the well-known Moufang identities):

(x1, x2y, z) + (x2, x1y, z) = (x1, y, z)x2 + (x2, y, z)x1. (2)

(x1, yx2, z) + (x2, yx1, z) = x1(x2, y, z) + x2(x1, y, z). (3)

(x1 ◦ x2, y, z) = (x1, x2y + yx2, z) + (x2, x1y + yx1, z). (4)

(x1 ◦ x2, y, z) = (x1, y, z) ◦ x2 + (x2, y, z) ◦ x1. (5)

Also, in A the following equalities hold([13]):

2[(a, b, c), d] = ([a, b], c, d) + ([b, c], a, d) + ([c, a], b, d), (6)
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(dx, y, z) + (d, x, [y, z]) = d(x, y, z) + (d, y, z)x. (7)

Let D(A) be the associator ideal of A, that is an ideal generated by
all associators (x, y, z), x, y, z ∈ A. In [13] it was shown that

D(A) = (A,A,A) + (A,A,A)A = (A,A,A) +A(A,A,A), (8)

where (A,A,A) = {
∑
i

(xi, yi, zi)| xi, yi, zi ∈ A}.

Let J2(A)={
∑
i
αia

2
i |αi∈F, a∈A} and J6(A)={

∑
i
αia

6
i |αi∈F , a∈A}.

Suppose A is an alternative algebra, then if char(F ) 6= 2 then J2(A) is
an ideal of A and if char(F ) 6= 2, 3, 5 then J6(A) is also an ideal in A(see,
for example, [13]).

3. Properties of Z3-graded alternative algebras

In this section we will get some technical results that we will need.
Throughout this section A = A0 ⊕ A1 ⊕ A2 is an arbitrary alternative
Z3-graded algebra.

Lemma 1.

1)
(A2

0, A1, A2) ⊂ A2
0 (9)

2) For every x ∈ A1, y ∈ A2, a1, a2 ∈ A0:

(x(a1a2))y = x((a1a2)y)+a′, (y(a1a2))x = y((a1a2)x)+a′′ (10)

for some a′, a′′ ∈ A2
0.

3)
(A0A1)(A2

0A2) ⊂ A2
0, (A0A2)(A2

0A1) ⊂ A2
0 (11)

(A1A
2
0)(A2A0) ⊂ A2

0, (A2A
2
0)(A1A0) ⊂ A2

0. (12)

Proof. Let x ∈ A1, y ∈ A2 and a1, a2 ∈ A0. Then using (7) we get:

(a1a2, x, y) = −(a1, a2, [x, y]) + a1(a2, x, y) + (a1, x, y)a2 ⊂ A
2
0.

And (9) is proved. It is easy to see that (10) follows from (9).
Let us prove (11) and (12). It is easy to see that they are similar and it

is enough to prove one of these inclusions. Using (7) and (9) we compute:

(A0A1)(A2
0A2) ⊂ A0(A1(A2

0A
2)) + (A0, A1, A

2
0A2)

⊂ A2
0 + (A0, A1, A

2
0)A2 +A2

0(A0, A1, A2) + (A1, A
2
0, A2)

⊂ A2
0 + ((A2

0)A1)A2 ⊂ A
2
0.
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Remark. From (10) it is follows that A2
0 + (A1A

2
0)A2 = A2

0 +A1(A2
0A2)

and A2
0 + (A2A

2
0)A1 = A2

0 +A2(A2
0A1). This allows us to omit brackets

in such a sentences without ambiguity.

Lemma 2.

(D(A))1 ⊆ A0A1 + (A1, A2, A1) + (A2, A0, A2). (13)

(D(A))2 ⊆ A0A2 + (A2, A1, A2) + (A1, A0, A1). (14)

Proof. It is enough to prove one of these equations. Let us prove (13).
Using (8) we have:

(D(A))1 ⊆ (A1, A1, A1)A1 + (A0, A0, A0)A1 + (A2, A2, A2)A1

+ (A1, A0, A0)A0 + (A1, A2, A1)A0 + (A2, A2, A0)A0

+ (A1, A1, A0)A2 + (A2, A2, A1)A2 + (A0, A2, A0)A2

+ (A0, A0, A1) + (A1, A2, A1) + (A2, A0, A2).

Using (6) we get:

(A1, A0, A0)A0 ⊆ A0A1 + [A0, (A1, A0, A0)]

⊆ A0A1 + (A0, A1, A0) ⊆ A0A1.

Similarly, we obtain that

(A1, A2, A1)A0 + (A2, A2, A0)A0 ⊆ A0A1 + (A2, A0, A2).

By (2) we compute:

(A1, A1, A0)A2 ⊆ (A2, A1, A0)A1 + (A1, A0, A0) + (A1, A2, A1)

⊆ A0A1 + (A1, A2, A1),

(A2, A2, A1)A2 ⊆ A0A1 + (A2, A0, A2) + (A1, A2, A1).

And, finally, using (1) we obtain the following inclusion:

(A0, A2, A0)A2 ⊆ A0A1 + (A2, A0, A2).

Summing up the obtained inclusions we finally have that:

(D(A))1 ⊆ A0A1 + (A1, A2, A1) + (A2, A0, A2).

Lemma 3.
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1)

(A2
0A1, A0, A2) ⊂ A2

0, (A2
0A2, A0, A1) ⊂ A2

0. (15)

2)

((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦A1) ⊂ A2

0. (16)

((A2, A1, A2) + (A1, A0, A1))A2
0(A2 ◦A2) ⊂ A2

0. (17)

3) For all n > 2:

(A1A
<n>
0 )(A0A2) ⊂ A1(A<n+1>

0 )A2 +A2
0, (18)

(A2A
<n>
0 )(A0A1) ⊂ A2(A<n+1>

0 )A1 +A2
0. (19)

Proof. It is easy to see that it is enough to prove only one inclusion in
every statement. We will prove the first inclusion in all cases.

By (7) we have:

(A2
0A1, A0, A2) ⊂ A2

0(A1, A0, A2) + (A2
0, A0, A2)A1 + (A2

0, A1, A2)

⊂ A2
0 + (A2

0A2)A1 ⊂ A
2
0.

And (15) is proved.

Using (6), (9) and (15) we compute:

((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦A1)

⊂ A2
0 + [(A1, A2, A1) + (A2, A0, A2), A2

0(A1 ◦A1)]

⊂ A2
0 + (A2

0(A1 ◦A1), A0, A1) + (A2
0(A1 ◦A1), A2, A2)

⊂ A2
0 + (A2

0(A1 ◦A1), A2, A2).

Using (2) and (4) we have:

(A2
0(A1 ◦A1), A2, A2) ⊂ (A1, A

2
0, A2) +A2

0 + (A1 ◦A1, A
2
0, A2)A2

⊂ A2
0 + (A1, A

2
0, A0)A2 ⊂ A

2
0.

Thus, ((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦A1) ⊂ A2

0.

Let us prove (18). Using (9) and (15) we get:

(A1A
<n>
0 )(A0A2) ⊂ ((A1A

<n>
0 )A0)A2 + (A1A

<n>
0 , A0, A2)

⊂ A2
0 + (A1A

<n+1>
0 )A2 + (A1, A

<n>
0 , A0)A2

⊂ A2
0 +A1(An+1

0 A2).



M. Goncharov 209

Lemma 4.

1) Let char(F ) 6= 2. Then A is solvable if and only if J2(A) is solvable.

2) Let char(F ) 6= 2, 3, 5. Then A is solvable if and only if J6(A) is
solvable.

Proof. The proof is similar for both cases. Let us prove 2.
If A is solvable then clearly J6(A) is solvable.
Suppose J6(A) is solvable. Consider the factor algebra A = A/J6(A).

Then for every x in A: x6 = 0, that is A is a nil algebra of nil-index 6.
Since the characteristic of the ground field F not equal 2,3 or 5, then by
Zhevlakov’s theorem A is solvable ([14], the proof can also be found in
[13]). Thus, A is solvable.

Lemma 5. Let A be a Z3-graded alternative algebra over a field F of
characteristic not equal 2,3,5. Then we have the following inclusions:

1) (J2(A))1 ⊂ A0 ◦A1 +A2 ◦A2, (J2(A))2 ⊂ A0 ◦A2 +A1 ◦A1.

2) (J6(A))0 ⊂ A
2
0 +A1A

2
0A2 +A2A

2
0A1.

Proof. The first assertion is obvious.
Let us prove 2. We will use the following notation: if u, v ∈ A then

u ≡ v means that u− v ∈ A2
0 +A1A

2
0A2 +A2A

2
0A1

Let x∈A1, y∈A2, a∈A0. It is sufficient to prove that ((x+y+a)6)0≡0.
First we will proof the following inclusion:

x(y, x, a)x2 + x2(y, x, a)x ∈ A2
0 (20)

Indeed, using (5) and (2) we have

A2
0 ∋ 2(xy, x3, a) = (xy, x2, a) ◦ x+ (xy, x, a) ◦ x2

= x(xy, x, a)x+ (xy, x, a)x2 + (xy, x, a) ◦ x2

= x(y, x, a)x2 + 2(y, x, a)x3 + x2(y, x, a)x.

Thus, x(y, x, a)x2 + x2(y, x, a)x ∈ A2
0. Similarly, one can prove the follow-

ing inclusion:
y(x, y, a)y2 + y2(x, y, a)y ∈ A2

0. (21)

Consider p = (x+ y + a)3. Then we have:

p0 = x3 + y3 + a3 + (x ◦ a)y + (y ◦ a)x+ (x ◦ y)a,

p1 = x2y + (x ◦ y)x+ y2a+ (a ◦ y)y + a2x+ (a ◦ x)a,

p2 = y2x+ (y ◦ x)y + x2a+ (a ◦ x)x+ a2y + (a ◦ y)a.
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Since ((x+ y + a)6)0 = p2
0 + p1 ◦ p2, then it is enough to proof that:

(x2y + (x ◦ y)x) ◦ (y2x+ (y ◦ x)y) ≡ 0, (22)

(y2a+ (a ◦ y)y) ◦ (y2x+ (y ◦ x)y) ≡ 0, (23)

(a2x+ (a ◦ x)a) ◦ (y2x+ (y ◦ x)y) ≡ 0, (24)

(x2y + (x ◦ y)x) ◦ (x2a+ (a ◦ x)x) ≡ 0, (25)

(y2a+ (a ◦ y)y) ◦ (x2a+ (a ◦ x)x) ≡ 0, (26)

(a2x+ (a ◦ x)a) ◦ (x2a+ (a ◦ x)x) ≡ 0, (27)

(x2y + (x ◦ y)x) ◦ (a2y + (a ◦ y)a) ≡ 0, (28)

(y2a+ (a ◦ y)y) ◦ (a2y + (a ◦ y)a) ≡ 0, (29)

(a2x+ (a ◦ x)a) ◦ (a2y + (a ◦ y)a) ≡ 0. (30)

The equivalences (22),(27) and (29) are obvious. Let us prove (23).
We have:

(y2a)(y2x) + (y2x)(y2a)

= (y2ay)(yx)− (y2a, y, yx) + ((y2x)y2)a− (y2x, y2, a)

≡ −(a, y, x)y3 − y(y2x, y, a)− (y2x, y, a)y ≡ y(y, x, a)y2,

(y2a)((y ◦ x)y) + (y ◦ x)y)(y2a)

= ((y2a)(y ◦ x)))y + (y2a, y ◦ x, y) + (y ◦ x)(y3a) + (y ◦ x, y, y2a)

≡ (y2(a(y ◦ x)))y + (y2, a, y ◦ x)y + (y2a, y ◦ x, y) + (y ◦ x, y, y2a)

≡ y(y, a, x)y2 + 2(y ◦ x, y, a)y2 = 3y(y, a, x)y2,

((a ◦ y)y)(y2x) + (y2x)((ay + ya)y)

= ((a ◦ y)y2)(yx) + ((a ◦ y)y, y, yx) + y((yx)(ay2)) + (y, yx, ay2)

+ (y2xy)(ay)− (y2x, y, ay)

≡ y((yx)a)y2 − y(yx, a, y2) + y2(y, x, a)y + ((y2xy)a)y

− (y2xy, a, y)− y(x, y, a)y2

≡ y2(y, x, a)y + y2((xy)a)y + (y2, xy, a)y−y(x, a, y)y2−y(x, y, a)y2

≡ y2(y, x, a)y,

((a ◦ y)y)((y ◦ x)y)) + ((y ◦ x)y))((a ◦ y)y)

= (ay2)((y ◦ x)y) + (yay)(yxy + xy2) + (y ◦ x)(y(a ◦ y)y)

+ (y ◦ x, y, (a ◦ y)y)
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≡ a(y2((y ◦ x)y)) + (a, y2, (y ◦ x)y) + (yay2)(xy)− (yay, y, xy)

+ ((yay)x)y2 − (yay, x, y2) + y2(x, y, a)y

≡ 3y2(x, y, a)y + y((ay)x)y2 + (y, ay, x)y2

≡ 3y2(x, y, a)y + y(a(yx))y2 + y(a, y, x)y2 + y(y, a, x)y2

≡ 3y2(x, y, a)y.

Summing up the obtained equations we have:

(y2a+ (a ◦ y)y) ◦ (y2x+ (y ◦ x)y)

≡ y(y, x, a)y2 + 3y(y, a, x)y2 + y2(y, x, a)y + 3y2(x, y, a)y ≡ 0.

That proves (23). Using similar arguments one can obtain (25).
Let us prove (24):

(a2x) ◦ (y2x+ (y ◦ x)y)

≡ a2(xy2x+ (y ◦ x)y) + (a2, x, y2x+ (y ◦ x)y) ≡ 0,

((a ◦ x)a) ◦ (y2x+ (y ◦ x)y)

= (xa2) ◦ (y2x+ (y ◦ x)y) + (axa)(y2x+ (y ◦ x)y)

+ (y2x+ (y ◦ x)y)(axa)

≡ a((xa)(y2x+ (y ◦ x)y)) + (a, xa, (y2x+ (y ◦ x)y))

+ ((y2x+ (y ◦ x)y)(ax))a− ((y2x+ (y ◦ x)y), ax, a)

≡ a(a, x, (y2x+ (y ◦ x)y))− ((y2x+ (y ◦ x)y), x, a)a ≡ 0.

Thus, (a2x) ◦ (y2x+ (y ◦ x)y) + ((a ◦ x)a) ◦ (y2x+ (y ◦ x)y) ≡ 0 and
(24) is proved. Similarly, one can prove (28).

Consider (26). We have:

(y2a) ◦ (x2a) = ((y2a)x2)a− (y2a, x2, a) + ((x2a)y2)a− (x2a, y2, a)

≡ −a(y2a, x2, a)− a(x2, y2, a) ≡ 0.

Similarly, (y2a) ◦ (ax2) + (ay2) ◦ (ax2) + (ay2) ◦ (x2a) ≡ 0. Further, we
compute:

(y2a)(xax)+(ay2)(xax) = y2(axax)+(y2, a, xax)+a(y2(xax))+(a, y2, xax)

≡ y(((y(ax))a)x)−y(y(ax), a, x)≡−y(y(ax), a, x).

Using (7) and (9) we get:

−y(y(ax), a, x) = (y(ax), a, y)x− (y(ax), a, yx)− ([y(ax), a], y, x)

≡ (y(ax), a, y)x = ((ax, a, y)y)x = (((x, a, y)a)y)x ≡ 0.
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Using similar computations one can prove that (xax)(y2a)+(xax)(ay2)≡0.
Finally,

(yay)(xax) + (xax)(yay)

= ((yay)x)(ax)− (yay, x, ax) + x((ax)(yay)) + (x, ax, yay)

≡ ((ya)(yx))(ax) + (ya, y, x)(ax) + x(((ax)y)(ay))− x(ax, y, ay)

≡ (y(a(yx)))(ax) + (y, a, yx)(ax) + (ya, y, x)(ax) + x((((ax)y)a)y)

− x((ax)y, a, y)− x(ax, y, ay)

≡ ((y, a, x)y)(ax) + ((a, y, x)y)(ax)− x(y(ax, a, y))

− x(y(ax, y, a)) = 0.

And (26) is proved. The equality (30) can be proved in a similar
way.

4. The main part

Recall that if A is an algebra, then by D(A) we denote the ideal
generated by associators. Define subalgebras Ki and Ti as

K1 := J2(A), T1 := D(K1), Ki := J2(Ti−1), Ti := D(Ki).

It is easy to see that:

A ⊇ K1 ⊇ T1 ⊇ K2 ⊇ ... ⊇ Ki ⊇ Ti ⊇ ...

Lemma 6. If for some i > 1 Ti or Ki is solvable, then A is solvable.

Proof. By lemma 4 A is solvable if and only if J2(A) = K1 is solvable.
Since D(K1) is a homogeneous ideal, then K1/D(K1) - is an associative
Z3-graded algebra with a solvable even part. Thus, by Bergman-Isaacs
theorem K1/D(K1) is nilpotent and if D(K1) is solvable, then A is
solvable.

Similar arguments show that Ki and Ti are solvable if and only if Ti−1

is solvable.

Lemma 7. Let A be a Z3-graded algebra and A0 = 0. If charF 6= 2, 3,
then A is solvable.

Proof. Consider J3(A) = {
∑
i
x3
i |xi ∈ A}. Using similar arguments as in

lemma 4 we get, that A is solvable if and only if J3(A) is solvable. For all
x ∈ A1 and y ∈ A2 we have:

(x+ y)3 = x3 + y3 + x2y + yx2 + xyx+ y2x+ xy2 + yxy.
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But x3 ∈ A0, y3 ∈ A0 and xy ∈ A0. Thus (x+y)3 = 0 and J3(A) = 0.

Theorem 1. Let A be a Z3-graded alternative algebra over a field F .
If A0 is solvable and charF 6= 2, 3, 5, then A is solvable.

Proof. Let A
(m)
0 = 0 and n = 2m. Consider Tn and define I = J6(Tn).

By lemmas 4 and 6 it is enough to prove that I is solvable. By lemma 5
we have I0 ⊂ A

2
0 + (Tn)2(A2

0)(Tn)1 + (Tn)1(A2
0)(Tn)2.

Our aim now is to prove that

(Tn)1(A2
0)(Tn)2 ⊂ A

2
0 + (Tn−1)1A

<3>
0 (Tn−1)2. (31)

Indeed, since Tn ⊂ Kn = J2(Tn−1) then by lemma 5:

(Tn)2 ⊂ A0 ◦ (Tn−1)2 + (Tn−1)1 ◦ (Tn−1)1.

By (12) and (18) we have that

(Tn)1A
2
0(A0 ◦ (Tn−1)2) ⊂ (Tn−1)1A

<3>
0 (Tn−1)2 +A2

0.

Using inclusion (13) we get:

(Tn)1 = (D(Kn))1

⊆ A0(Kn)1 + ((Kn)1, (Kn)2, (Kn)1) + ((Kn)2, A0, (Kn)2).

And now it is left to use inclusions (11) and (16) to prove (31). Similar
reasons shows us that (Tn)2(A2

0)(Tn)1 ⊂ A
2
0 + (Tn−1)2A

<3>
0 (Tn−1)1 and

we may conclude that

I0 ⊂ A
2
0 + (Tn−1)1A

<3>
0 (Tn−1)2 + (Tn−1)2A

<3>
0 (Tn−1)1.

Now we can continue to use similar arguments and get that

I0 ⊂ A
2
0 + (Tn−2)1A

<4>
0 (Tn−2)2 + (Tn−2)2A

<4>
0 (Tn−2)1.

And finally, we will get that

I0 ⊂ A
2
0 +A1A

<n>
0 A2 +A2A

<n>
0 A1. (32)

Let us prove that A1A
<n>
0 A2 ⊂ A

2
0. For this we will prove that for all

k > 2:

A1(Ak0, A0, A0)A2 ⊂ A
2
0. (33)
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Indeed, using (2) and (9) we have:

A1(Ak0, A0, A0)A2 ⊂ A1((A2, A0, A0)Ak0) +A1(Ak0, A2, A0) ⊂ A2
0.

Moreover, from (18) and (33) we see that

A1(((...((A2
0, A0, A0)A0)A0)...A0)A2 ⊂ A

2
0. (34)

Now we can use (34) to obtain the following inclusions:

A1A
<n>
0 A2 ⊂ A1(((A2

0A
2
0)A0)...A0)A2 +A2

0

⊂ A1(((A2
0A

2
0)A2

0)...A2
0)A2 +A2

0

⊂ A1(((A
(2)
0 A

(2)
0 )...)A

(2)
0 )A2 +A2

0

⊂ ... ⊂ A1A
(m)
0 A2 +A2

0 = A2
0.

Similarly, A2A
<n>
0 A1 ⊂ A

2
0. Thus, I0 ⊂ A

2
0 = A

(1)
0 .

Now we can start from the beginning with the ideal I and construct an
ideal I ′ such that I (and, thus,A) is solvable if and only if I ′ is solvable and

I ′
0 ⊂ I

2
0 ⊂ A

(2)
0 . Repeating this construction, in the end we will construct

an sublagebra Ĩ such that A is solvable if and only if Ĩ is solvable and

Ĩ0 ⊂ A
(m)
0 = 0. But by lemma 7 Ĩ is solvable, so A is also solvable.

Corollary 1. Let A be an alternative algebra with an automorphism φ
of order 3. If charF 6= 2, 3, 5 and the subalgebra Aφ of fixed points with
respect to φ is solvable, then A is solvable.

Proof. If the ground field F is algebraically closed, then we can consider
subspaces Aξ = {x ∈ A| φ(x) = ξx} and Aξ2 = {x ∈ A| φ(x) = ξ2x},
where ξ is a primitive cube root of unity. It is easy to see that A =
Aξ ⊕Aξ2 ⊕Aφ and A is a Z3-graded algebra. Since Aφ is solvable, then
by theorem 1 A is solvable.

If F is not algebraically closed we can consider it’s algebraic closure F
and an algebra A = A⊗F F . Then A is an alternative algebra over F and
A is solvable if and only if A is solvable. We can define an automorphisms
φ on A by putting: φ(a⊗α) = φ(a)⊗α for all a ∈ A,α ∈ F . Then φ is an

automorphism of order 3 and the subalgebra of fixed points A
φ

= Aφ⊗F
is solvable. Thus, A is solvable and, finally, A is solvable.

Corollary 2. Let A =
n−1∑
i=0

Ai be a Zn-graded alternative algebra, where

n = 2k3l and k + l > 1. If charF 6= 2, 3, 5 and the subalgebra A0 is
solvable, then A is solvable.
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Proof. If k = 0 then by corollary 1 A is solvable. Suppose k > 1. We will
use an induction on l. If l = 0 then the result follows from the paper of
Smirnov [12]. Let l > 1. Then we can consider subspaces Â0 =

∑
i
A3i,

Â1 =
∑
i
A1+3i, Â2 =

∑
i
A2+3i. Then A = Â0⊕Â1⊕Â2 - is a Z3-gradation

of A. By theorem 1 A is solvable if and only if Â0 is solvable. On the other
hand it is easy to see that Â0 is a Zn′-graded algebra, where n′ = 2k3l−1

and (Â0)0 = A0 is solvable. Now we may use the induction and get that
Â0 is solvable. Hence, A is solvable.

Corollary 3. Let A be an alternative algebra with an automorphism φ
of order 2k3l. If charF 6= 2, 3, 5 and the subalgebra Aφ of fixed points with
respect to φ is solvable, then A is solvable.
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Abstract. We present equivalences between certain cat-
egories of vector bundles on projective varieties, namely cokernel
bundles, Steiner bundles, syzygy bundles, and monads, and full sub-
categories of representations of certain quivers. As an application,
we provide decomposability criteria for such bundles.

1. Introduction

Vector bundles over algebraic varieties play a central role in algebraic
geometry, and many interesting problems are still open. In particular,
constructing indecomposable vector bundles on a variety X with rank
smaller than the dimX is not an easy task for certain choices of X,
especially for projective spaces.

Monads are one of the most important tools for constructing such
bundles; indeed, the majority of examples of low rank bundles on projective
spaces, namely the Horrocks–Mumford bundle of rank 2 on P4, Horrocks’
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parent bundle of rank 3 on P5, and the rank 2k instanton bundles on
P2k+1, are obtained as cohomologies of certain monads.

The goal of this paper is to show that the theory of representations
of quivers might also be an interesting tool for the construction of use-
ful monads and cokernel bundles on projective varieties. More precisely,
we present equivalences between certain categories of vector bundles on
projective varieties and full subcategories of representations of certain
quivers. In this way, we translate the problems of constructing indecom-
posable vector bundles on Pn with low rank into a (possibly still very
hard) problem of linear algebra. As an application of these results, we
give decomposability criteria for cokernel bundles, syzygy bundles and
monads.

Let us now present more precisely the results proved here, starting
with cokernel bundles, a class a vector bundles introduced by Brambilla
in [1]. Let X be a nonsingular projective variety of dimension n, and let
E and F be simple vector bundles on X such that

(i) Hom(F , E) = Ext1(F , E) = 0;

(ii) E∨ ⊗F is globally generated;

(iii) dim Hom(E ,F) 6 3.

A cokernel bundle of type (E ,F) on X is a vector bundle C with a resolution
of the form

0 // Ea
α // Fb // C // 0 .

We prove (cf. Thm 3.5 below):

Theorem 1.1. The category of cokernel bundles of type (E ,F) is equiva-
lent to a full subcategory of the category of representation of the Kronecker
quiver with w = dim Hom(E ,F) arrows:

•

1 //
...
w

//
•

As application of this equivalence, we obtain new proofs of simplicity
and exceptionality criteria for cokernel bundles that were originally es-
tablished by Brambilla in [1, Thm. 4.3] (cf. Thm 3.8 below) and Soares
in [10, Theorem 2.2.7] (cf. Cor 3.13 below).

Next, we consider 1st-syzygy bundles on projective spaces; recall that
syzygy bundles are those given as kernel of surjective morphisms of the
form

OPn(−d1)a1 ⊕ · · · ⊕ OPn(−dm)am α
→ OcPn .
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Let G := kerα; we refer to [2] as a general reference on syzygy bundles.
The case m = 1 can be regarded as a cokernel bundle; for the remainder

of the paper, we focus on the case m = 2, though it is not hard to generalize
our results for m > 2 (see Remark 4.6 below). More precisely, we prove
the following result, including a new decomposability criterion for syzygy
bundles.

Theorem 1.2. For any fixed integers d1 > d2 > 0, there is a faithful
functor from the category of representations of the quiver

•

1 //
...
w1

//
• •...

w2

oo

1oo

to the category of syzygy bundles given by sequences of the form

0→ G → OPn(−d1)a1 ⊕OPn(−d2)a2 α
→ OcPn → 0 (1)

where wj = h0(OPn(dj)), j = 1, 2. Moreover, if a2
1 + a2

2 + c2 − w1a1c −
w2a2c > 1, then G is decomposable.

Finally, we consider the relation between monads and representations
of quivers. Recall that a monad on a nonsingular projective variety X is
a complex of locally free sheaves of the form

M• : Aa // Bb // Cc (2)

whose only nontrivial cohomology is the middle one, which we assume, in
this paper, to also be a locally free sheaf. We prove:

Theorem 1.3. If A, B and C are simple vector bundles, then the category
of monads of the form (2) is equivalent to a full subcategory of the category
of representations of the quiver

•

1 //
...
m

//
• ...

n
//

1 //
•

where m = dim Hom(A,B) and n = dim Hom(B, C). In addition, if a2 +
b2 + c2−mab−nbc > 1 then the cohomology sheaf of (2) is decomposable.

This generalizes the results of [4] (in particular, [4, Thm 1.1]) con-
cerning linear monads on Pn, i.e. when A = OPn(−1), B = OPn and
C = OPn(1).
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Furthermore, ifA, B and C are elements of distinct blocks of an n-block
collection generating the bounded derived category Db(X) of coherent
sheaves of OX -modules, then we also prove that the cohomology sheaf E of
(2) is decomposable, if and only if the corresponding quiver representation
is decomposable, cf. Theorem 5.5.

Notation. Throughout this paper, κ denotes an algebraically closed field
with characteristic zero, and X is always a nonsingular projective variety
over κ of dimension n.

2. Preliminary definitions and results

In this section we revise some key definitions and results on the theory
of representations of quivers and on the derived category of coherent
sheaves that will be relevant in the following sections.

2.1. Representations of quivers

We begin by revising some basic facts about representations of quivers.
Recall that a quiver Q consists on a pair (Q0, Q1) of sets where Q0 is the
set of vertices and Q1 is the set of arrows and a pair of maps t, h : Q1 → Q0

the tail and head maps. An example is the Kronecker quiver, denoted Kw,
which consists of 2 vertices and w arrows.

•

1 //
...
w

//
• (3)

A representation R = ({Vi}, {Aa}) of Q consists of a collection of
finite dimensional κ-vector spaces {Vi; i ∈ Q0} together with a collection
of linear maps {Aa : Vt(a) → Vh(a); a ∈ Q1}. A morphism f between two
representations R1 = ({Vi}, {Aa}) and R2 = ({Wi}, {Ba}) is a collection
of linear maps {fi} such that for each a ∈ Q1 the diagram bellow is
commutative

Vt(a)
Aa //

ft(a)

��

Vh(a)

fh(a)

��
Wt(a) Ba

//Wh(a)

With these definitions, representations of Q form an abelian category
hereby denoted by R(Q).
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Given a representation R ∈ R(Q), we associate a vector v ∈ ZQ0

called dimension vector, whose entries are vi = dimVi.
The Euler form on ZQ0 is a bilinear form associated to Q, given by

< v,w >=
∑

i∈Q0

viwi −
∑

a∈Q1

vt(a)wh(a).

The Tits form is the corresponding quadratic form, given by

q(v) =< v,v > .

For instance, the Tits form of the Kronecker quiver with w arrows is given
by

qw(v) = a2 + b2 − wab, v = (a, b) ∈ Z2. (4)

Definition 2.1. A vector v ∈ ZQ0 is a root if there is an indecomposable
representation R of Q with dimension vector v. Moreover, v is a Schur
root if there is a representation R of Q with dimension vector v satisfying
Hom(R,R) = κ.

Clearly, every Schur root is a root; note also that the condition
Hom(R,R) = κ is an open condition in the affine space

⊕a∈Q1Hom(κvt(a) , κvh(a))

of all representations with fixed dimension vector v. Thus if v is a Schur
root, then Hom(R,R) = κ for a generic representation with dimension
vector v. In particular, if v is a Schur root, then generic representation
with dimension vector v is indecomposable. A reference for generic repre-
sentations and Schur roots is [8]. For more information about roots and
root systems, we refer to [5].

The following two facts will be very relevant in what follows. The first
one follows from Kac’s theory of infinite root systems [5].

Proposition 2.2. Let Q be a quiver with Tits form q. If v is a dimension
vector satisfying q(v) > 1, then every representation with dimension vector
v is decomposable.

The second fact follows from [5, Prop 1.6] and [9, Thm 4.1].

Proposition 2.3. Let Q be the Kronecker quiver with w > 3, and let
v ∈ Z2 be a dimension vector. If qw(v) 6 1, then v is a Schur root.
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2.2. Derived categories

In [7], Miró-Roig and Soares gave a cohomological characterisation of
Steiner bundles and later Marques and Soares [6], gave a cohomological
characterisation of a class of bundles given as cohomology of monads.
Both results will be relevant for us, so we review them here.

Let Db(X) be the bounded derived category of the abelian category of
coherent sheaves of OX -modules. An exceptional collection is an ordered
collection (F0, · · · ,Fm) of objects of Db(X) such that

Hom0
Db(X)(Fi,Fi) ≃ κ, Extp(Fi,Fi) = 0, for all p > 1,

Extp(Fi,Fj) = 0 for all i > j, and p > 0.

In addition, if

Extp(Fi,Fj) = 0 for i 6 j and p 6= 0 ,

then (F0, . . . ,Fm) is called a strongly exceptional collection. It is a full
(strongly) exceptional collection if it generates Db(X).

An exceptional collection (F0, · · · ,Fm) is called a block if

Extp(Fj ,Fi) = 0 ∀ p > 0 and i 6= j.

An m-block collection of type (t0, . . . , tm) is an exceptional collection
B = (F0, . . . ,Fm) where each F i = (F i1, . . . ,F

i
ti

) is a block.

Definition 2.4. Let B = (F0, . . . ,Fm) be an m-block collection of type
(t0, . . . , tm). The left dual m-block collection of B is the m-block collection
∨B of type (u0, . . . , um) with ui = um−i

∨B = (H0, . . . ,Hm) = (H0
1, . . . ,H

0
u0
, . . . ,Hm1 , . . . ,H

m
um

)

where
Homk

Db(X)(H
i
j ,F

l
p) = 0

for all indices, with the only exception

Exti(Hij ,F
m−i
j ) ≃ κ.

These conditions uniquely determine ∨B.

We are now able to define Steiner bundles in the sense of [7] and state
their cohomological characterisation.
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Definition 2.5. A vector bundle S on X is a Steiner bundle of type
(F0,F1) if it is given by a short exact sequence of the form

0 // Fa0
α // Fb1 // S // 0

such that a, b > 1 and (F0,F1) is an ordered pair of vector bundles on X
satisfying

(i) (F0,F1) is strongly exceptional;

(ii) F∨
0 ⊗F1 is globally generated.

The cohomological characterisation is the following, cf. [7, Thm 2.4].

Theorem 2.6. Let X be a smooth projective variety of dimension n with
an n-block collection B = (F0, . . . ,Fn), F i = (F i1, . . . ,F

i
ti

) of locally
free sheaves which generate Db(X), and let ∨B be its left dual basis.
Let F ii0 ∈ F i and F jj0 ∈ F j, where 0 6 i < j 6 n and 1 6 i0 6 ai,
1 6 j0 6 aj, and let S be a locally free sheaf on X. Then S is a Steiner

bundle of type (F ii0 ,F
j
j0

) given by the short exact sequence

0 // (F ii0)a // (F jj0)b // S // 0

if and only if (F ii0)∨⊗F jj0 is globally generated and all Extl(Hmp ,S) vanish,
with the only exceptions of

dim Extn−i−1(Hn−i
i0

,S) = a and dim Extn−j(Hn−j
j0

,S) = b. (5)

Now we turn our attention to the cohomological characterisation for
the bundles obtained as cohomology of monads, due to Marques and
Soares in [6].

Definition 2.7. A monad M• on a smooth projective variety X is a
complex of locally free coherent sheaves on X

M• : A
α // B

β // C

such that α is injective, β is surjective; the coherent sheaf E = kerβ/imα
is called the cohomology of M•.

The following two definitions are important for the main result we
would like to present.
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Definition 2.8. Let B = (F0, · · · ,Fm), F i = (F i1, · · · ,F
i
ti

), be an m-
block collection. A coherent sheaf E on X has natural cohomology with
respect to B if for each 0 6 p 6 m and 1 6 j 6 tp there is at most one
q > 0 such that Extq(Fpj , E) 6= 0.

Definition 2.9. Let X be a smooth projective variety with an m-block
collection B = (F0, · · · ,Fm), F i = (F i1, · · · ,F

i
ti

) of coherent sheaves on
X. A Beilinson monad for E is a bounded complex G• in Db(X) whose
terms are finite direct sums of elements of B and whose cohomology is E ,
that is, ⊕

i∈Z

H i(G•) = H0(G•) = E .

The next result tell us when a coherent sheaf E on X is isomorphic to
a Beilinson monad G•, see [6, Cor 1.7].

Lemma 2.10. Let X be a smooth projective variety of dimension n
with an n-block collection B = (F0, · · · ,Fn) generating Db(X). Let
∨B = (H0, · · · ,Hn) with Hi = (Hi1, · · · ,H

i
ui

), be its left dual n-block
collection. Then each coherent sheaf E on X is isomorphic to a Beilinson
monad G• with each Gr given by

Gr =
⊕

p,q

Extn−q+r(Hn−q
p , E)⊗Fqp .

The cohomological characterisation for monads is the following, cf.
[6, Thm 2.2].

Theorem 2.11. Let X be a nonsingular projective variety of dimension
n, and let B = (F0, · · · ,Fn), where F i = (F i1, · · · ,F

i
ti

), be an n-block
collection of coherent sheaves on X generating Db(X). Let ∨B be its left
dual n-block collection, and let F ii0 , F jj0 , and Fkk0

be elements of the blocks
F i,F j and Fk, respectively, with 0 6 i < j < k 6 n.

A torsion-free sheaf E on X is the cohomology sheaf of a monad of
the form

M• : (F ii0)a // (F jj0)b // (Fkk0
)c (6)

for some b > 1 and a, c > 0 if and only if E has:

(1) rank b · rk(F jj0)− a · rk(F ii0)− c · rk(Fkk0
);

(2) Chern polynomial ct(E) = ct(F
j
j0

)bct(F
i
i0

)−act(F
k
k0

)−c;

(3) natural cohomology with respect to ∨B.
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Remark 2.12. The original statement of [6, Thm 2.2] requires a, b, c > 1.
However, following the same steps of the proof of [6, Thm 2.2], one can
prove that the result also holds for a, c > 0; in other words, one can allow
for degenerate monads.

This result will be very useful in the last section of this paper, in
which we study the decomposability of sheaves given by the cohomology
of monads of the above form.

3. Cokernel and Steiner bundles

In this section we explain the relation between cokernel and Steiner
bundles and representations of the Kronecker quiver.

3.1. Cokernel bundles

Let E and F be vector bundles on a nonsingular projective variety X
of dimension n > 2, satisfying the following conditions:

(1) E and F are simple, that is, Hom(E , E) = Hom(F ,F) = κ;

(2) Hom(F , E) = 0;

(3) Ext1(F , E) = 0;

(4) the sheaf E∨ ⊗F is globally generated;

(5) W = Hom(E ,F) has dimension w > 3.

The next definition is due to Brambilla [1].

Definition 3.1. A cokernel bundle of type (E ,F) on Pn is a vector bundle
C with resolution of the form

0 // Ea
α // Fb // C // 0 (7)

where E ,F satisfy the conditions (1) through (5) above, a > 0 and
b · rk(F)− a · rk(E) > n.

Cokernel bundles of type (E ,F) form a full subcategory of the category
of coherent sheaves on X; this category will be denoted by CX(E ,F).

Let us now see how cokernel bundles are related to quivers. Fix a
basis σ = {σ1, · · · , σw} of Hom(E ,F).
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Definition 3.2. A representation R = ({κa, κb}, {Ai}
w
i=1) of Kw is

(E ,F ,σ)-globally injective when the map

α(P ) :=
w∑

i=1

Ai ⊗ σi(P ) : κa ⊗ EP → κb ⊗FP

is injective for every P ∈ X; here, EP and FP denote the fibers of E and
F over the point P , respectively.

(E ,F ,σ)-globally injective representations of Kw form a full subcate-
gory of the category of representations of Kw; we denote it by R(Kw)gi.
From now on, since (E ,F ,σ) are fixed, we will just refer to globally in-
jective representations. It is a simple exercise to establish the following
properties of R(Kw)gi.

Lemma 3.3. The category R(Kw)gi is closed under sub-objects, i.e. every
subrepresentation R′ of a representation R in R(Kw)gi is also in R(Kw)gi.

Lemma 3.4. The category R(Kw)gi is closed under extensions and under
direct summands, that is, respectively:

(i) if R1, R2 ∈ R(Kw)gi and

0 // R1
// R // R2

// 0

is a short exact sequence in R(Kw)gi, then R ∈ R(Kw)gi;

(ii) if R ∈ R(Kw)gi with R ≃ R1 ⊕R2, then Ri ∈ R(Kw)gi, i = 1, 2.

Our next result relates the category of globally injective representations
of Kw to the category of cokernel bundles.

Theorem 3.5. For every choice of basis σ of Hom(E ,F), there is an
equivalence between R(Kw)gi, the category of (E ,F ,σ)-globally injective
representations of Kw, and CX(E ,F), the category of cokernel bundles of
type (E ,F).

Proof. Given a basis σ of Hom(E ,F), we construct a functor

Lσ : R(Kw)gi → CX(E ,F)

and show that it is essentially surjective and fully faithful.
Let R = ({κa, κb}, {Ai}

w
i=1) be a globally injective representation of

Kw. Define a map α : Ea → Fb given by

α = A1 ⊗ σ1 + · · ·+Aw ⊗ σw.
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Since R is globally injective, we have that dim cokerα(P ) = b · rk(F)−
a · rk(E) for each P ∈ X. Therefore α is injective as a map of sheaves,
and C := cokerα is a cokernel bundle.

Now given two globally injective representations

R1 = ({κa, κb}, {Ai}
w
i=1) and R2 = ({κc, κd}, {Bi}

w
i=1),

and a morphism f = (f1, f2) between them, let Lσ(R1) = C1,Lσ(R2) = C2

be the cokernel bundles and α1, α2 the maps associated to R1 and R2,
respectively. We want to define a morphism Lσ(f) : C1 → C2.

Since we have f1 : κa → κc, f2 : κb → κd, we have maps f
′

1 = f1⊗1E ∈
Hom(Ea, Ec) and f

′

2 = f2 ⊗ 1F ∈ Hom(Fb,Fd). Consider the diagram

0 // Ea

f
′

1
��

α1 // Fb

f
′

2 ��

π1 // C1
//

��

0

0 // Ec
α2 // Fd

π2 // C2
// 0

(8)

where π1, π2 are the projections. Applying the left exact contravariant
functor Hom(−, C2) to the upper sequence on (8) we find a map φ ∈
Hom(C1, C2) and we define Lσ(f) := φ.

Now given C an object of CX(E ,F) we take α =
∑w
i=1Ai ⊗ σi, with

Ai ∈ Hom(κa, κb), i = 1, · · · , w. Hence R = ({κa, κb}, {Ai}
w
i=1) is a glob-

ally injective representation of R(Kw) such that Lσ(R) = C. Therefore
Lσ is essentially surjective.

Finally, we need to prove that Lσ is fully faithful. To check that it is full,
given φ ∈ Hom(Lσ(R1),Lσ(R2)) we want f = (f1, f2) ∈ Hom(R1, R2)
such that Lσ(f) = φ. Let φ̃ = φπ1 ∈ Hom(Fb, C2). Let us apply the left
exact covariant functor Hom(Fb,−) to the lower sequence in diagram (9)
below:

0 // Ea

f
′

1
��

α1 // Fb

f
′

2 ��

π1 // C1
//

φ

��

0

0 // Ec
α2 // Fd

π2 // C2
// 0

(9)

we conclude that

ρ2 : Hom(Fb,Fd)→ Hom(Fb, C2) (10)

is an isomorphism since Hom(Fb, Ec) = Ext1(Fb, Ec) = 0. It follows that
there is a morphism f

′

2 ∈ Hom(Fb,Fd) such that

ρ2(f
′

2) = π2f
′

2 = φπ1
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with f
′

2 = f2 ⊗ 1F and f2 ∈ Hom(κb, κd).

Consider ˜̃φ = f
′

2α1 ∈ Hom(Ea,Fd). Applying the left exact covariant
functor Hom(Ea,−) to the lower sequence on (9) we get

0 // Hom(Ea, Ec)
γ1 // Hom(Ea,Fd)

γ2 // Hom(Ea, C2) // · · ·

Once we have an exact sequence,

γ2(f
′

2α1) = π2f
′

2α1 = φπ1α1 = 0

then f
′

2α1 ∈ ker γ2 = im γ1, and there is a map f
′

1 ∈ Hom(Ea, Ec) such
that γ1(f

′

1) = α2f
′

1 = f
′

2α1 and f
′

1 = f1 ⊗ 1E with f1 ∈ Hom(κa, κc).
Since α1 =

∑w
i=1Ai ⊗ σi, α2 =

∑w
i=1Bi ⊗ σi, α2f

′

1 = f
′

2α1, and σ is a
basis then f2Ai = Bif1, i = 1, · · · , w, thus

f = (f1, f2) ∈ HomR(Kw)gi(R1, R2).

Now we need to prove that Lσ(f) = φ. Suppose Lσ(f) = φ such that
φπ1 = π2f

′

2 = φπ1. Then (φ − φ)π1 = 0 and C1 = im π1 ⊂ ker(φ − φ)
therefore φ = φ.

Finally, we show that Lσ : Hom(R1, R2)→ Hom(Lσ(R1),Lσ(R2)) is
injective. Let f = (f1, f2), g = (g1, g2) ∈ Hom(R1, R2) be morphisms such
that Lσ(f) = φ1 = φ2 = Lσ(g), that is, φ1 − φ2 = 0.

0 // Ea

f
′

1−g
′

1
��

α1 // Fb

f
′

2−g
′

2 ��

π1 // C1
//

0

��

0

0 // Ec
α2 // Fd

π2 // C2
// 0

(11)

Given φ1 − φ2 = 0 ∈ Hom(C1, C2), doing the same construction as
before,

0π1 = 0 ∈ Hom(Fb, C2) ≃ Hom(Fb,Fd)

with isomorphism given by ρ2 in (10). Since

ρ2(f
′

2 − g
′

2) = π2 ◦ (f
′

2 − g
′

2) = 0

then f
′

2 − g
′

2 = 0 and so f
′

2 = g
′

2. Similarly, 0α1 = 0 ∈ Hom(Ea,Fd) and

γ1(f
′

1 − g
′

1) = α2(f
′

1 − g
′

1) = 0α1 = 0.

Since γ1 injective, f
′

1− g
′

1 = 0, then f
′

1 = g
′

1. Therefore Lσ is faithful.
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Remark 3.6. Note that the functor Lσ depends on the choice of the basis
σ. However let σ′ be another basis for Hom(E ,F). Let Lσ′ be the equiva-
lence between the category of (E ,F ,σ′)-globally injective representations
of Kw and the cokernel bundles on Pn. Then if G is the inverse functor
of Lσ′ we have that the functor G ◦Lσ′ gives an equivalence between the
categories (E ,F ,σ)- and (E ,F ,σ′)-globally injective representations of
Kw.

Lemma 3.7. For any choice of basis σ, the functor Lσ : R(Kw)gi →
CX(E ,F) defined above is additive and exact. In particular, if R ≃ R1⊕R2

is a globally injective representation, then Lσ(R) ≃ Lσ(R1)⊕ Lσ(R2).

Proof. Checking the additivity of Lσ is a simple exercise. We show its
exactness in detail.

Let us prove that Lσ preserves exact sequences. Let R1 = ({κa1 , κb1},
{Ai}

w
i=1), R2 = ({κa2 , κb2}, {Bi}

w
i=1) and R3 = ({κa3 , κb3}, {Ci}

w
i=1) be

globally injective representations of Kw and let f : R1 → R2 and g :
R2 → R3 be morphisms such that the sequence

0 // R1
f // R2

g // R3
// 0

is exact. We want to prove that

0 // C1
ϕ // C2

ψ // C3
// 0

is also exact, where Ci = Lσ(Ri), i = 1, 2, 3 and ϕ = Lσ(f), ψ = Lσ(g).
From the exact sequence of representations we get

0

��

0

��

0

��
0 // Ea1

α1 //

1E ⊗f1

��

Fb1
π1 //

1F ⊗f2

��

C1

ϕ

��

// 0

0 // Ea2
α2 //

1E ⊗g1

��

Fb2
π2 //

1F ⊗g2

��

C2
//

ψ

��

0

0 // Ea3
α3 //

��

Fb3
π3 //

��

C3
//

��

0

0 0 0

We need to show that ϕ is injective and ψ is surjective.
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• ψ is surjective:

It follows from the fact that π3(1F ⊗ g2) is surjective.

• ϕ is injective.

Let us suppose ϕ(s) = 0, s ∈ C1. Then s = π1(v), v ∈ Fb1 and

0 = ϕπ1(v) = π2(1F ⊗ f2)(v).

Since kerπ2 = imα2, there is u ∈ Ea2 such that

(1F ⊗ f2)(v) = α2(u) (12)

Note that

α3(1E ⊗ g1)(u) = (1F ⊗ g2)(α2)(u) = (1F ⊗ g2)(1F ⊗ f2)(v) = 0

and since α3 is injective, (1E ⊗ g1)(u) = 0 so u = (1E ⊗ f1)(u′) with
u′ ∈ Ea1 . We have

α2(u) = α2(1E ⊗ f1)(u′) = (1F ⊗ f2)α1(u′).

From (12) we have (1F ⊗ f2)(v) = (1F ⊗ f2)(α1(u′)). Since (1F ⊗ f2) is
injective, it follows that v = α1(u′) therefore

s = π1(v) = π1α1(u′) = 0.

Now suppose R ≃ R1⊕R2. Let us prove that Lσ(R1⊕R2) ≃ Lσ(R1)⊕
Lσ(R2). We have the short exact sequence

0 // R1

iR1 // R1 ⊕R2

πR2 // R2

iR2

oo
// 0

where iRj
is the inclusion and πRj

the projection, j = 1, 2. Since the
sequence above is split, πR2 ◦ iR2 = 1R2 . Now since Lσ is an exact functor,
we have

0 // Lσ(R1)
Lσ(iR1

)
// Lσ(R1 ⊕R2)

Lσ(πR2
)
// Lσ(R2) //

Lσ(iR2
)

oo
0 (13)

Then

Lσ(πR2 ◦ iR2) = Lσ(πR2) ◦ Lσ(iR2) = Lσ(1R2) = 1Lσ(R2)

therefore the sequence (13) is split. Hence Lσ(R1 ⊕ R2) ≃ Lσ(R1) ⊕
Lσ(R2).
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As an application of the previous results, we give a new, functorial
proof for a result due to Brambilla, cf. [1, Thm 4.3].

Theorem 3.8. Let C be a cokernel bundle of type (E ,F), given by the
resolution

0 // Ea
α // Fb // C // 0 , (14)

and let w = dim Hom(E ,F).

(i) If C is simple, then a2 + b2 − wab 6 1.

(ii) If a2 + b2 − wab 6 1, then there exists a non-empty open subset
U ⊂ Hom(Ea,Fb) such that for every α ∈ U the corresponding
cokernel bundle is simple.

Proof. To prove (i), let C be a cokernel bundle given by resolution (14)
and suppose C is simple. By Theorem 3.5 there is a globally injective
representation R of Kw such that C = Lσ(R). Since Lσ is full, we have
that κ = Hom(C, C) ≃ Hom(R,R), thus R is simple and therefore, by
Proposition 2.2, qw(a, b) = a2 + b2 − wab 6 1.

For the second claim, note that if qw(a, b) 6 1, there is a generic
representation R with dimension vector (a, b) such that R is Schur, by
Proposition 2.2. Then there is a non-empty open subset

U ⊂ Hom(κa, κb)⊗ κw ≃ Hom(Ea,Fb)

such that every R ∈ U is simple. Since Hom(C, C) ≃ Hom(R,R) = κ, it
follows that C is simple.

The previous Theorem implies that if a2 + b2 − wab > 1 then C is
not simple. However, more is true, and it is not difficult to establish the
following stronger statement.

Proposition 3.9. Under the same conditions as in Theorem 3.8, if
a2 + b2 − wab > 1, then C is decomposable.

Under more restrictive conditions, Brambilla proved in [1, Thm 6.3]
that if C is a generic cokernel bundle such that a2 + b2 − wab > 1, then
C ≃ Cnk ⊕ C

m
k+1, where Ck and Ck+1 are Fibonacci bundles, n,m ∈ N (we

refer to [1] for the definition of Fibonacci bundles).
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Proof. Let C be any cokernel bundle given by the exact sequence (14), such
that a2 + b2 − wab > 1. Then there is a globally injective representation
R of Kw, such that C = Lσ(R) with dimension vector (a, b) satisfying and
qw(a, b) = a2 + b2 − wab > 1. By Lemma 2.2, R is decomposable. Then
by Lemma 3.7, C is also decomposable.

Next, recall that a vector bundle E on X is exceptional if it is simple
and Extp(E , E) = 0 for p > 1.

Proposition 3.10. Under the same conditions as in Theorem 3.8, if C
is exceptional, then a2 + b2 − wab = 1.

Proof. Since the functor Lσ is exact, we have an isomorphism

Ext1(R,R) ≃ Ext1(Lσ(R),Lσ(R)).

Now we know from [8] that

qw(a, b) = dim Hom(R,R)− dim Ext1(R,R) (15)

hence if C is an exceptional cokernel bundle, then qw(a, b) =
a2 + b2 − wab = 1.

However, the converse of the Proposition 3.10 is not true. For instance,
consider the generic cokernel bundle given by the exact sequence

0 // OP3 // OP3(4)35 // C // 0 .

We have q35(1, 35) = 1, but from the long exact sequence of cohomologies,
Ext2(C, C) ≃ κ35 hence C is not exceptional. In order to establish the
converse statement, we need stronger assumption, provided by Steiner
bundles.

3.2. Steiner bundles

Note that the Steiner bundles of type (E ,F) satisfying
dim Hom(E ,F) > 3, are a particular case of cokernel bundles,
therefore all results in the previous section also hold for such Steiner
bundles. Furthermore, the additional hypotheses satisfied by the sheaves E
and F allow to establish the converse of Lemma 3.7 and Proposition 3.10.

Let us first consider the converse of Lemma 3.7; more precisely, we
prove the following statement.
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Theorem 3.11. Let X be a nonsingular projective variety of dimension
n, and let B = (F0, · · · ,Fn) be an n-block collection generating Db(X).
A Steiner bundle of type (F ii0 ,F

j
j0

) such that w = dim Hom(F ii0 ,F
j
j0

) > 3

is decomposable if and only if, for any choice of basis γ for Hom(F ii0 ,F
j
j0

),

the corresponding (F ii0 ,F
j
j0
,γ)-globally injective representation of Kw is

also decomposable.

The theorem follows easily from Lemma 3.7 and the following claim.
Let S

F i
i0
,Fj

j0

(X) denote the category of Steiner bundles of type (F ii0 ,F
j
j0

)

over X.

Proposition 3.12. The category S
F i

i0
,Fj

j0

(X) is closed under direct sum-

mands.

Proof. Let ∨B = (H0, · · · ,Hn) where Hi = (Hi1, · · · ,H
i
ui

), be the n-
block collection which is left dual to B, and let S be a Steiner bundle of
type (F ii0 ,F

j
j0

) given by the short exact sequence

0 // (F ii0)a // (F jj0)b // S // 0 ,

where F ii0 and F jj0 are elements of blocks F i and F j respectively, 0 6

i < j 6 n.

If S ≃ S1 ⊕ S2, 0 6= Si ( S, i = 1, 2, then we have that

Extp(Hmq ,S) ≃ Extp(Hmq ,S1)⊕ (Hmq ,S2).

It follows that Extp(Hmq ,Sl), l = 1, 2, vanish except for

Extn−i−1(Hn−i
i0

,Sl) = al, al > 0, l = 1, 2

and

Extn−j(Hn−j
j0

,Sl) = bl, bl > 0, l = 1, 2

with a1 + a2 = a and b1 + b2 = b. Then from the cohomological character-
isation, Theorem 2.11, one of the following possibilities must hold.

1) For al 6= 0 and bl 6= 0, l = 1, 2, the bundles Sl are Steiner bundles
given by

0 // (F ii0)al // (F jj0)bl // Sl // 0 .
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2) For a1, b1, b2 6= 0 and a2 = 0, we have

0 // (F ii0)a1 // (F jj0)b1 // S1
// 0 and S2 ≃ (F jj0)b2 .

3) For a1 = 0 and b1, a2, b2 6= 0, we have

S1 ≃ (F ii0)a1 and 0 // (F ii0)a2 // (F jj0)b2 // S2
// 0 .

To complete this section, we consider the converse of Proposition 3.10.

Proposition 3.13. Let S be a Steiner bundle of type (E ,F) with w =
dim Hom(E ,F) > 3, given by the short exact sequence:

0 // Ea
α // Fb // S // 0 . (16)

(i) If S is exceptional then a2 + b2 − wab = 1.

(ii) If a2 + b2 − wab = 1 then there is a non-empty open subset U ⊂
Hom(Ea,Fb) such that for every α ∈ U the corresponding bundle S
is exceptional.

Proof. The first claim is just Proposition 3.10. For the second state-
ment, we first show that if S1,S2 are Steiner bundles of type (E ,F), then
Extp(S1,S2) = 0 for p > 2.

Indeed, suppose Si, i = 1, 2, are given by short exact sequences

0 // Eai // Fbi // Si // 0 (17)

Applying the functor Hom(−,F) to the sequence (17) for i = 1, we have
Extp(S1,F) = 0, p > 2. Applying Hom(−, E) to the same sequence, we
obtain Extq(S1, E) = 0, q > 0. Finally applying the functor Hom(S1,−)
to the sequence (17), i = 2, we conclude that Extj(S1,S2) = 0 for j > 2.

Now to prove the second claim, start by supposing that qw(a, b) =
a2 + b2 − wab = 1. By Theorem 3.8 item (ii) there exists a non-empty
open subset U ⊂ Hom(Ea,Fb) such that for every α ∈ U the associated
bundle S is simple. From (15) we see that Ext1(S,S) = 0. Finally, from
the considerations above, we have Extp(S,S) = 0 for p > 2. Hence S is
exceptional.

Remark 3.14. Soares also proved in [10, Thm 2.2.7], using a different
method, that a generic Steiner bundle of type (E ,F) given by the short
exact sequence (16) is exceptional if and only if a2 + b2 − wab = 1.
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4. Syzygy bundles and quivers

In this section we relate a different class of vector bundles, the syzygy
bundles, with representations of quivers. A locally free sheaf G given by
the short exact sequence

0 // G // OPn(−d1)a1 ⊕ · · · ⊕ OPn(−dm)am α // OcPn
// 0 (18)

is called a syzygy bundle. Here, α = (α1, α2, . . . , αm) is a surjective map
of sheaves on Pn given by

α(f1, f2, . . . , fm) =
m∑

i=1

αifi

where f1, . . . , fm are homogeneous polynomials of degree d1, . . . , dm in
κ[X0, . . . , Xn] and di are distinct positive integers. Let us assume 0 6

dm < · · · < d1.
Note that for m = 1, the dual bundle G∗ is a cokernel bundle. However,

the same is not true for m > 1, since the bundle F = OPn(d1)a1 ⊕ · · · ⊕
OPn(dm)am is not simple.

To relate syzygy bundles with representations of quivers, we restrict
ourselves, for the sake of simplicity, to the case m = 2. The results for the
general case are the same, but the notation becomes more complicated.
Thus we set m = 2, and consider exact sequences of the form

0 // G // OPn(−d1)a ⊕OPn(−d2)b
α1,α2 // OcPn

// 0 (19)

with d1 > d2. We denote by Syz(d1, d2) the category of syzygy bundles
given by short exact sequences as in (19) above.

Fix, for i = 1, 2, a basis σi = {f i1, . . . , f
i
wi
} of H0(OPn(di)), where

wi =
(n+di

di

)
. Consider the quiver below, which will be denoted by Aw1,w2 :

•

1 //
...
w1

//
• •...

w2

oo

1oo
(20)

If (a, b, c) is a dimension vector of this quiver, its Tits form is given by

qw1,w2(a, b, c) = a2 + b2 + c2 − w1ab− w2bc. (21)

Let R = ({κa, κb, κc}, {Ai}
w1
1 , {Bj}

w2
1 ) be a representation of Aw1,w2 ,

where each Ai is a c×a matrix, and each Bj is a c× b matrix with entries
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in κ. We define

α1 =
w1∑

i=1

Ai ⊗ f
1
i and α2 =

w2∑

j=1

Bj ⊗ f
2
j ,

so that we have a map

(α1, α2) : OPn(−d1)a ⊕OPn(−d2)b → OcPn . (22)

Definition 4.1. A representation R of Aw1,w2 is (σ1,σ2)-globally surjec-
tive if the map (α1, α2) is surjective.

Denote by R(Aw1,w2)gs the category of (σ1,σ2)-globally surjective
representations of Aw1,w2 . We will now build a functor Gσ1,σ2 between
the R(Aw1,w2)gs and the category of syzygy bundles Syz(d1, d2).

First, let R = ({κa, κb, κc}, {Ai}
w1
i=1, {Bj}

w2
i=1) be a globally surjective

representation of Aw1,w2 . We define the sheaf

Gσ1,σ2(R) := ker(α1, α2),

where (α1, α2) is the map defined above in (22). Note that, since R is
globally surjective, Gσ1,σ2(R) is a vector bundle, and it is given by the
exact sequence (19).

Now let {g1, g2, h} be a morphism between the globally surjective
representations

R = ({κa, κb, κc}, {Ai}
w1
i=1, {Bj}

w2
i=1) and

R′ = ({κa
′

, κb
′

, κc
′

}, {A′
i}
w1
i=1, {B

′
j}
w2
i=1).

The following diagram commutes for i = 1, . . . , w1 and j = 1, . . . , w2.

κa
g1

,,

Ai

��

κa
′

A′

i

  
κc

h // κc
′

κb
Bi

??

g2

22 κb
′

B′

j

>>

(23)
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It induces the following diagram:

0 // G

φ

��

i1 // OPn(−d1)a ⊕OPn(−d2)b

M
��

α1,α2 // OcPn

h⊗1O
Pn

��

// 0

0 // G′ i2 // OPn(−d1)a
′

⊕OPn(−d2)b
′ α′

1,α
′
2// Oc

′

Pn
// 0

(24)

where

M =

(
g1 ⊗ 1OPn (−d1) 0

0 g2 ⊗ 1OPn (−d2)

)

The commutativity of (23) implies the commutativity of the right square
in (24). We then have an induced morphism φ : G = Gσ1,σ2(R)→ G′ =
Gσ1,σ2(R′), which we define to be Gσ1,σ2(g1, g2, h).

Lemma 4.2. The functor Gσ1,σ2 is faithful and essentially surjective.

Proof. We prove that Hom(R,R′)→ Hom(G(R),G(R′)) is injective. Let
{g1, g2, h} be a morphism between R and R′ such that G({g1, g2, h}) = 0,
that is, φ = 0. Since the diagram (24) commutes if φ = 0 then g1 = g2 =
h = 0, hence G is faithful.

Let G be a syzygy bundle with resolution

0 // G // OPn(−d1)a ⊕OPn(−d2)b
α1,α2 // OcPn

// 0

Then the maps α1 and α2 are given by

α1 =
w1∑

i=1

Ai ⊗ f
1
i and α2 =

w2∑

j=1

Bj ⊗ f
2
j

with Ai ∈ Hom(ka, kc) and Bj ∈ Hom(kb, kc). Therefore

R = ({ka, kb, kc}, {Ai}
w1
1 , {Bj}

w2
1 )

is a globally surjective representation of (20) such that G(R) = G.

Remark 4.3. Note that Gσ1,σ2 is not full, since not every

M ∈ Hom (OPn(−d1)a ⊕OPn(−d2)b,OPn(−d1)a
′

⊕OPn(−d2)b
′

)

is necessarily diagonal. It follows that the categories R(Aw1,w2)gs and
Syz(d1, d2) are not, in general, equivalent.
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This completes the proof of the first part of Theorem 1.2. To establish
its second part, we first need the following two lemmas.

Lemma 4.4. The category of globally surjective representations of
Aw1,w2 is closed under quotients, and hence closed under direct summands.

Proof. Let R = ({κa, κb, κc}, {Ai}
w1
i=1, {Bj}

w2
j=1) be a (σ1,σ2)-globally

surjective representation of Aw1,w2 and R′ = ({κa
′

, κb
′

, κc
′

}, {A′
i}
w1
i=1,

{B′
j}
w2
j=1) be a subrepresentation of R. We want to prove that the quotient

representation

R/R′ = ({κa/κa
′

, κb/κb
′

, κc/κc
′

}, {Ci}
w1
i=1, {Dj}

w2
j=1),

where Ci and Dj are the maps induced by Ai and Bj respectively, is also
globally surjective. We have the diagram

0

��

0

��

0

��

κa
′

l1

��

A′
1 //
...

A′
w1

//
κc

′

l3

��

κb
′

l2

��

B′
w2

oo
...

B′
1oo

κa

p1

��

A1 //
...

Aw1

//
κc

p3

��

κb

p2

��

Bw2

oo
...

B1oo

κa/κa
′

��

C1 //
...

Cw1

//
κc/κc

′

��

κb/κb
′

��

Dw2

oo
...

D1oo

0 0 0

where li are the inclusions and pi the projections i = 1, 2, 3. Now consider
the commutative diagram

OPn(−d1)a ⊕OPn(−d2)b

M
��

(α1,α2) // OcPn

p3⊗1O
Pn

��

OPn(−d1)(a−a′) ⊕OPn(−d2)(b−b′) (γ1,γ2)// O
(c−c′)
Pn
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where

M =

(
p1 ⊗ 1OPn (−d1) 0

0 p2 ⊗ 1OPn (−d2)

)

and γ1 =
∑w1
i=1Ci ⊗ f

1
i , γ2 =

∑w2
j=1Dj ⊗ f

2
j .

Since pi is surjective and (α1, α2) is surjective for every P ∈ Pn, we
have that the map (γ1, γ2) is also surjective for every point P ∈ Pn, hence
the quotient representation R/R′ is globally surjective.

Lemma 4.5. Let R be a decomposable globally surjective representation
of Aw1,w2. Then Gσ1,σ2(R) is also decomposable.

Proof. Let R ≃ R1 ⊕R2 be a decomposable globally surjective represen-
tation. From Lemma 4.4 we have that R1 and R2 are globally surjective.
Let Gi = Gσ1,σ2(Ri), i = 1, 2 be given by the short exact sequence

0 // Gi // OPn(−d1)ai ⊕OPn(−d2)bi
αi

// Oci
Pn

// 0

where αi = (αi1, α
i
2), i = 1, 2. Since

G = Gσ1,σ2(R) = ker(α1 ⊕ α2) ≃ kerα1 ⊕ kerα2 =

= Gσ1,σ2(R1)⊕Gσ1,σ2(R2),

it follows that G is decomposable.

We are finally in position to complete the proof of Theorem 1.2.
Indeed, fix bases σj for H0(OPn(dj)), j = 1, 2. For every syzygy bundle G
given by a short exact sequence of the form (19), one can find a (σ1,σ2)-
globally surjective representation R of Aw1,w2 with dimension vector
(a, b, c) with Gσ1,σ2(R) = G. If qw1,w2(a, b, c) > 1, then R is decomposable,
by Lemma 2.2, and it must decompose as a sum of (σ1,σ2)-globally
surjective representations by Lemma 4.4. Therefore Lemma 4.5 implies
that G is also decomposable.

Remark 4.6. All the results can be generalized for syzygy bundles with
m > 2. To build the associated quiver, we add a vertex to the quiver with
wi = dimH0(OPn(di)) arrows from this vertex to the vertex associated
to O⊕c

Pn , for each term OPn(−di)
⊕ai .
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5. Monads and representations of quivers

Recall that a monad M• on a projective variety X is a complex of
locally free sheaves

M• : A⊕a α // B⊕b β // C⊕c (25)

where α is injective and β is surjective. The coherent sheaf
E := kerβ/im α is called the cohomology of M•; note that E is locally
free if and only if the map αP on the fibers is injective for every point
P ∈ X.

Now let m = dim Hom(A,B) and n = dim Hom(B, C). We also assume
that A,B, C are simple vector bundles, and that the cohomology sheaf E
is locally free. We will denote the category of such monads by MA,B,C,
regarding it as a full subcategory of the category of complexes of coherent
sheaves on X.

Next, consider the quiver Km,n given by the graph

•

1 //
...
m

//
• ...

n
//

1 //
•

The category of representations of Km,n is denoted by R(Km,n). Note
that its Tits form is given by

qm,n(a, b, c) = a2 + b2 + c2 −mab− nbc. (26)

5.1. Proof of Theorem 1.3

We begin by describing a functor from MA,B,C to R(Km,n) in a
manner similar to what was done in the previous sections. Choose bases
γ = {γ1, · · · , γm} of Hom(A,B) and σ = {σ1, · · · , σn} of Hom(B, C). We
can write

α =
m∑

i=1

Ai ⊗ γi and β =
n∑

j=1

Bj ⊗ σj

where each Ai is a b× a matrix with entries in κ, and each Bj is a c× b
matrix with entries in κ.

Now let

Gγ,σ : MA,B,C → R(Km,n) (27)
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be the functor that to each monad M• as in (25) with maps α and β,
associates the representation R = ({κa, κb, κc}, {Ai}

m
i=1, {Bj}

m
j=1). Let

ϕ• = (f, g, h) be a morphism between the monads M•
1 and M•

2 below

Aa1

f

��

α1 // Bb1

g
��

β1 // Cc1

h
��

Aa2
α2

// Bb2

β2

// Cc2

Since A, B and C are simple, it follows that

(f, g, h) = (A⊗ 1A, B ⊗ 1B, C ⊗ 1C)

where A,B and C are, respectively, a2 × a1, b2 × b1 and c2 × c1 matrices
with entries in κ. If

Gγ,σ(M•
1 ) = ({κa1 , κb1 , κc1}, {A1

i }
m
i=1, {B

1
j }
n
j=1)

and Gγ,σ(M•
2 ) = ({κa2 , κb2 , κc2}, {A2

i }
m
i=1, {B

2
j }
n
j=1),

we then have

κa1

A

��

A1
1 //
...
A1

m

//
κb1

B

��

...
B1

n

//

B1
1 //
κc1

C

��
κa2

A2
1 //
...
A2

m

//
κb2 ...

B2
n

//

B2
1 //
κc2

(28)

BA1
i = A2

iA and CB1
j = B2

jB for i = 1, · · · ,m and j = 1, · · · , n.

Hence the matrices A,B and C define a morphism between the rep-
resentations. From the construction of the functor we see that Gγ,σ :
Hom(M•

1 ,M
•
2 ) → Hom(Gγ,σ(M•

1 ),Gγ,σ(M•
2 )) is an isomorphism, thus

we have the following result, which corresponds to the first part of Theo-
rem 1.3.

Proposition 5.1. The category MA,B,C is equivalent to a full subcategory
of R(Km,n).
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Let us further characterise the subcategory of R(Km,n) obtained in
this way. The monad conditions imply that α(P ) is injective and β(P ) is
surjective for every P ∈ X. Therefore we say that a representation R =
({κa, κb, κc}, {Ai}

m
i=1, {Bj}

n
j=1) is (γ,σ)-globally injective and surjective

if α(P ) =
∑m
i=1Ai ⊗ γi(P ) is injective and β(P ) =

∑n
j=1Bj ⊗ σj(P ) is

surjective, for every P ∈ X. In addition, the matrices Ai and Bj must
satisfy quadratic equations imposed by the condition βα = 0:

∑

16i6j6m

(BiAj +BjAi)(σiγj) = 0;

note that the precise relation depends on the choice of bases γ and σ. We
denote by Ggis

m,n the full subcategory of R(Km,n) consisting of the objects
satisfying the conditions above.

In order to prove the second part of Theorem 1.3, our first goal is to
prove that Ggis

m,n is closed under direct summands.

Lemma 5.2. The category Ggis
m,n is closed under direct summands.

Proof. It is a general fact that if S is a subrepresentation of a quiver
representation R which satisfies the given relations, then S also satisfies
the same relations.

Moreover, every subrepresentation of a γ-globally injective represen-
tation will also be γ-globally injective (cf. Lemma 3.3 above), while any
quotient representation of a σ-globally surjective representation will also
be σ-globally surjective (cf. Lemma 4.4 above).

Next, the previous lemma allows us to relate the decomposability of the
monad with the decomposability of the associated quiver representation.

Proposition 5.3. A monad M• is decomposable if and only if the asso-
ciated quiver representation Gγ,σ(M•) is decomposable. In addition, if
Gγ,σ(M•) is decomposable, then the cohomology of M• is a decomposable
vector bundle.

Proof. We begin by showing that the functor Gγ,σ : MA,B,C → Ggis
m,n

preserves direct sums, that is, Gγ,σ(M•
1 ⊕M

•
2 ) ≃ Gγ,σ(M•

1 )⊕Gγ,σ(M•
2 ).

In particular, if M• is decomposable then R = Gγ,σ(M•) is decomposable.

Indeed, consider a monad M• = M•
1 ⊕M

•
2 given by

Aa1+a2 α // Bb1+b2
β // Cc1+c2
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where α = α1 ⊕ α2 and β = β1 ⊕ β2 with αi ∈ Hom(Aai ,Bbi) and
βi ∈ Hom(Bbi , Cci), i = 1, 2. We write αi, βi as

αi =
m∑

l=1

Ail ⊗ γl and βi =
n∑

j=1

Bi
j ⊗ σj , i = 1, 2.

Then Gγ,σ(M•
1 ⊕M

•
2 ) is the representation

κa1⊕a2

A1
1⊕A2

1//
...

A1
m⊕A2

m

//
κb1⊕b2 ...

B1
n⊕B2

n

//

B1
1⊕B2

n//
κc1⊕c2

and it is clear that

Gγ,σ(M•
1 ⊕M

•
2 ) = ({κa1+a2 , κb1+b2 , κc1+c2}, {A1

i ⊕A
2
i }
m
i=1, {B

1
j ⊕B

2
j }
n
j=1)

≃ ({κa1 , κb1 , κc1}, {A1
i }
m
i=1, {B

1
j }
n
j=1)⊕({κa2 , κb2 , κc2}, {A2

i }
m
i=1, {B

2
j }
n
j=1)

= Gγ,σ((M•
1 )⊕Gγ,σ((M•

2 ).

For the converse, suppose R = Gγ,σ(M•) ≃ R1 ⊕R2. By Lemma 5.2
we know that there are monads M•

i , for i = 1, 2, such that Ri = Gγ,σ(M•
i ).

It follows that

Gγ,σ(M•) ≃ Gγ,σ(M•
1 )⊕Gγ,σ(M•

2 ) ≃ Gγ,σ(M•
1 ⊕M

•
2 )

hence M• is decomposable.
The second claim follows easily from the observation that if a monad

is decomposable, then so is its cohomology sheaf.

The completion of the proof of Theorem 1.3 is at hand: if M• is a
monad of the form (25) with (a, b, c) satisfying qm,n(a, b, c) = a2 +b2 +c2−
mab−nbc > 1, then the associated quiver representation is decomposable,
by Proposition 2.2. This means that M• itself, and hence its cohomology
sheaf, must also be decomposable, as desired.

5.2. Decomposability of bundles vs. decomposability of repre-
sentations

The last goal of this paper will be to examine under which assumption
one does have the converse of the second part of Proposition 5.3, that is, if
the cohomology of a monad is decomposable as a vector bundle, then the
quiver representation associated to the monad is also decomposable. The
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difficulty here, of course, is to argue that if the cohomology of a monad
of the form (25) decomposes, then its summands are also cohomologies of
monads of the same form. Such statement can be proved under the follow-
ing additional assumptions, and using the cohomological characterisation
of monads provided by Theorem 2.11 above.

Let B = (F0, · · · ,Fn) be an n-block collection generating the
bounded derived category Db(X) of coherent sheaves on X, and let ∨B
its left dual n-block collection, as in the statement of Theorem 2.11. Let
E be a vector bundle on X given by the cohomology of type (6), and
assume that E is decomposable: E ≃ E1 ⊕ E2. From Theorem 2.11, since
E has natural cohomology with respect to ∨B we have

dim Extn−i−1(Hn−i
i0

, E) = a,

dim Extn−j(Hn−j
j0

, E) = b,

dim Extn−k+1(Hn−k
k0

, E) = c,

and extp(Hmq , E) = 0 otherwise. Hence for l = 1, 2,

dim Extn−i−1(Hn−i
i0

, El) = al,

dim Extn−j(Hn−j
j0

, El) = bl,

dim Extn−k+1(Hn−k
k0

, El) = cl, l = 1, 2,

where a = a1 + a2, b = b1 + b2, and c = c1 + c2, with al, bl, cl > 0 and
Extq(Hmp , El) = 0 otherwise.

Let us prove that M
F i

i0
,Fj

j0
,Fk

k0

is closed under direct summands. From

Lemma 2.10 and Theorem 2.11, El is isomorphic to a Beilinson monad
G•
l , l = 1, 2, where each Gul is given by

Gul =
⊕

p,q

Extn−q+u(Hn−q
p , El)⊗F

q
p , l = 1, 2.

Then we have
Gul = 0, l = 1, 2; u < −1, u > 1,

and

G−1
l =

⊕

p,q

Extn−q−1(Hn−q
p , El)⊗F

q
p = Extn−i−1(Hn−i

i0
, El)⊗F

i
i0
≃ (F ii0)al

G0
l =

⊕

p,q

Extn−q(Hn−q
p , El)⊗F

q
p = Extn−j(Hn−j

j0
, El)⊗F

j
j0
≃ (F jj0)bl
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G1
l =

⊕

p,q

Extn−q+1(Hn−q
p , El)⊗F

q
p = Extn−k+1(Hn−k

k0
, El)⊗F

k
k0
≃ (Fkk0

)cl

for l = 1, 2. From the definition of Beilinson monad, Definition 2.9, El is
isomorphic to the monad

(F ii0)al // (F jj0)bl // (Fkk0
)cl (29)

with l = 1, 2 and al, bl, cl > 0. We have the following cases:

1) If al, bl, cl 6= 0 for l = 1, 2, E1 and E2 are cohomology of a monad of
type (29)

E1 = H0(G•
1), E2 = H0(G•

2).

2) If a1, b1, c1, b2, c2 6= 0 and a2 = 0, then E1 = H0(G•
1) and E2 is given

by the short exact sequence

0 // E2
// (F jj0)b2 // (Fkk0

)c2 // 0.

3) If a1, b1, c1, a2, b2 6= 0 and c2 = 0 then E1 = H0(G•
1) and E2 is given

by the short exact sequence

0 // (F ii0)a2 // (F jj0)b2 // E2
// 0 .

4) If a1, b1, c1, b2 6= 0 and a2 = c2 = 0, then E1 = H0(G•
1) and E2 ≃

(F jj0)b2 .

5) If b1, c1, a2, b2 6= 0 and a1 = c2 = 0 then

0 // E1
// (F jj0)b1 // (Fkk0

)c1 // 0

and

0 // (F ii0)a2 // (F jj0)b2 // E2
// 0 .

And the symmetric cases to cases 2, 3, 4 and 5.

We have just proved that:

Lemma 5.4. The category M
F i

i0
,Fj

j0
,Fk

k0

is closed under direct

summands.
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Suppose m = dim Hom(F ii0 ,F
j
j0

), and n = dim Hom(F jj0 ,F
k
k0

) and

choose γ and σ bases of Hom(F ii0 ,F
j
j0

) and Hom(F jj0 ,F
k
k0

), respectively.

Let Gγ,σ be the functor between M
F i

i0
,Fj

j0
,Fk

k0

and Sgis
m,n described after

equation (27). Note that given a monad of type (29) with al = 0 the
associated representation is

0

0 //
...
0

//
κbl ...

Bl
n

//

Bl
1 //
κcl

which is (γ,σ)-globally injective and surjective. If cl = 0, the associated
representation is

κal

Al
1 //
...
Al

m

//
κbl ...

0
//

0 //
0

that is (γ,σ)-globally injective and surjective. If al = cl = 0, the associated
representation is

0

0 //
...
0

//
κbl ...

0
//

0 //
0

which is also (γ,σ)-globally injective and surjective. Hence we can prove
the following.

Theorem 5.5. Let E be a vector bundle on X given by the cohomology
of a monad in M

F i
i0
,Fj

j0
,Fk

k0

and R the associated (γ,σ)-globally injective

and surjective representation in Sgis
m,n. Then E is decomposable if and only

if R is decomposable.

Proof. We only need to prove the sufficient condition. If E ≃ E1⊕E2 then
from Lemma 5.4, Ei, i = 1, 2, are cohomologies of monads in M

F i
i0
,Fj

j0
,Fk

k0

,

therefore R = Gγ,σ(E) ≃ Gγ,σ(E1⊕E2) ≃ Gγ,σ(E1)⊕Gγ,σ(E2) = R1⊕R2.

5.3. An example: generalized Horrocks–Mumford monads

As an application of Theorem 5.5, let X = P2p with p > 2, κ = C,
and consider the 2p-block collection

B = (Ω2p
P2p(2p),Ω2p−1

P2p (2p− 1), · · · ,Ω1
P2p(1),OP2p)
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generating the bounded derived category Db(P2p). The complex

OP2p(−1)2p+1 α // Ωp
P2p(p)2 β // O2p+1

P2p (30)

is a monad, for α = (αij) ∈ ∧
pC2p+1 ⊗Mat2×2p+1(C) and β = (βij) ∈

∧pC2p+1 ⊗Mat2p+1×2(C) given by

βi1 = x1+i ∧ x2+i ∧ · · · ∧ xp+i;

βi2 = xi ∧ xp+1+i ∧ xp+2+i ∧ · · · ∧ x2p−1+i

where i ≡ k(mod 2p + 1) and the matrix α is given by

α = (βQ)t

with

Q =

(
0 1

(−1)p−1 0

)
.

Note that when p = 2, the monad (30) is precisely the one that yields,
as its cohomology, the Horrocks–Mumford rank 2 bundle on P4. For this
reason, monads of the form (30) are called generalized Horrocks–Mumford
monads. The goal of this section is to prove, as an application of Theorem
5.5, that the cohomology of a monad of type (30) is an indecomposable

vector bundle of rank 2
((2p

p

)
− 2p− 1

)
on P2p.

To this end, note that one can fix a basis of the vector space ∧pC2p+1

so that the quiver representation associated to the morphism

β ∈ Hom(Ωp
P2p(p)2,O2p+1

P2p )

is a representation of the Kronecker quiver K(2p+1
p ) of the form

R = ({C2,C2p+1}, {φl}
(2p+1

p )
l=1 ) where 4p + 2 elements φl are elementary

matrices of size (2p+ 1)× 2 for some l and null matrices otherwise. The
crucial step is the following result.

Lemma 5.6. The representation R is simple.

In particular, it follows from Theorem 3.5 that the kernel bundle kerβ,
whose dual is a Steiner bundle, is also simple.

Proof. Suppose without loss of generality that the ordered basis is the
following

{x01···p−1, x12···p, x23···p+1, · · · , x2p0···p−2, · · · }



248 Vector bundles and representations of quivers

where xi1i2···ip = xi1 ∧ xi2 ∧ · · · ∧ xip . Then β can be written as

β = x01···p−1 · E2p,1 + x12···p · E2p+1,1 + x23···p+1 · E1,1 + · · ·

where Ei,j ∈ Mat(2p+1)×2(C) is an elementary matrix. The associated

quiver representation is of the form R = ({C2,C2p+1}, {φl}
(2p+2

2 )
l=1 ) where

φ1 = E2p,1, φ2 = E2p+1,1, ϕ3 = E1,1 and so on.

LetR1 = ({V1, V2}, {ψ}
(2p+1

p )
l=1 ) be a subrepresentation ofR and without

loss of generality suppose V1 6= 0. Then there is v = (a, b) ∈ V1 ⊂ C2,
with a 6= 0 . The following diagram commutes

C2

φ1 //
...

φ(2p+1
p )

//
C2p+1

V1

i1

OO

ψ1 //
...

ψ(2p+1
p )

//
V2

i2

OO (31)

and note that the vectors {φj(v)}2p+1
j=1 are linearly independent, hence

V2 ≃ C2p+1. If R2 = ({W1,W2}, {γl}
(2p+1

p )
l=1 ) is a subrepresentation of R

such that R ≃ R1 ⊕R2, then W2 ≡ 0 and if W1 6= 0 there is k such that
φk 6= 0 and φk |W1 6= 0. Therefore R is simple, hence indecomposable.

Since α = (βQ)t, the representation of the Kronecker quiver K(2p+1
p )

associated to α is of the form R
′

= ({C2p+1,C2}, {φ′
l}

(2p+1
p )

l=1 ), where φ′
l are

elementary matrices or null matrices (the transpose of φl up to sign). Hence
R′ is also simple. By Theorem 5.5, the cohomology of the monad (30) is
an indecomposable vector bundle on P2p.
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A group-theoretic approach to covering systems
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Communicated by L. A. Kurdachenko

Abstract. In this article, we show how group actions can
be used to examine the set of all covering systems of the integers
with a fixed set of distinct moduli.

1. Introduction

A (finite) covering system C, or simply a covering, of the integers is a
system of t congruences x ≡ ri (mod mi), with mi > 1 for all 1 6 i 6 t,
such that every integer n satisfies at least one of these congruences.
The concept of a covering was introduced by Paul Erdős in a paper in
1950 [8], where he used a covering to find an arithmetic progression of
counterexamples to Polignac’s conjecture that every positive integer can
be written in the form 2k + p, where p is a prime. Since then, numerous
authors have used covering systems to investigate and solve various
problems [1–4,4–7,9–16,18–21,23–30,32–35,37–41,43–49].

Under the restriction that all moduli in a covering are distinct, Erdős
made the following statement in [8]:

“It seems likely that for every c there exists such a system all
the moduli of which are > c."

This conjecture, known as the minimum modulus problem, remained
unresolved until recently when Bob Hough [20] showed that it is false.
Since the minimum modulus in a covering is now known to be bounded

2010 MSC: Primary 11B25; Secondary 05E18, 11A07.
Key words and phrases: covering system, group action, congruence.
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above, one can naively speculate as to whether a categorization of all
covering systems with a fixed minimum modulus might be possible in
some way. Admittedly, such a notion seems intractable, if not impossible.
But perhaps, a less ambitious task is possible. For example, could an
enumeration be given of all coverings with a fixed set of moduli or a fixed
least common multiple of the moduli? Recently [31], we have accomplished
this goal for a very specific situation involving primitive covering numbers–
a notion introduced by Zhi-Wei Sun [47] in 2007. While the methods in
[31] are purely combinatorial, we show in this article how certain group
actions can be used to examine the set of all covering systems of the
integers with a fixed set of distinct moduli.

2. Preliminaries

It will be convenient on occasion to write any covering C = {(ri,mi)},
where x ≡ ri (mod mi) is a congruence in the covering, simply as C =
[r1, r2, . . . , rt], when the moduli are written as a list [m1,m2, . . . ,mt]. We
write lcm(M) to denote the least common multiple of the elements in a
set or list of moduli M . We let ΓM , or simply Γ, if there is no ambiguity,
denote the set of all coverings having moduli M . We define a covering C
to be minimal if no proper subset of C is a covering . We also define a
set, or list, of distinct moduli M to be minimal if every possible covering
using all the elements of M is minimal. A positive integer L is called
a covering number if there exists a covering of the integers where the
moduli are distinct divisors of L greater than 1. A covering number L is
called a primitive covering number if no proper divisor of L is a covering
number. The following two theorems concerning covering numbers, which
we state without proof, are due to Zhi-Wei Sun [47].

Theorem 2.1. Let p1, p2, . . . , pr be distinct primes, and let a1, a2, . . . , ar
be positive integers. Suppose that

∏

0<t<s

(at + 1) > ps − 1 + δr,s, for all s = 1, 2, · · · , r, (1)

where δr,s is Kronecker’s delta, and the empty product
∏

0<t<1(at + 1) is
defined to be 1. Then pa1

1 p
a2
2 · · · p

ar
r is a covering number.

Infinitely many primitive covering numbers can be constructed using
Theorem 2.1. We let ⌊x⌋ denote the greatest integer less than or equal
to x.
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Theorem 2.2. Let r > 1 and let 2 = p1 < p2 < · · · < pr be primes.
Suppose further that pt+1 ≡ 1 (mod pt − 1) for all 0 < t < r − 1, and
pr > (pr−1 − 2)(pr−1 − 3). Then

p
p2−1

p1−1
−1

1 . . . p

pr−1−1

pr−2−1
−1

r−2 p

⌊
pr−1

pr−1−1

⌋

r−1 pr

is a primitive covering number.

It is straightforward to see that Theorem 2.2 produces an infinite set
L of primitive covering numbers, and that every element of L satisfies (1).
In [47], Sun conjectured that every primitive covering number pα1

1 · · · p
αr
r ,

where p1, . . . , pr are distinct primes, satisfies (1). However, this conjecture
is now known to be false [31].

Unless stated otherwise, we assume throughout this article that the
moduli in all coverings are distinct, and that all sets of moduli are minimal.

3. Counting the number of coverings

without group theory

While it is the main goal of this paper to use group-theoretic techniques
to impose some structure on, and examine, the set of all coverings with
a fixed list of distinct moduli, there are certain situations when some
information can be obtained without the use of group theory. In particular,
using a combinatorial approach, a formula was given in [31] for |ΓM |,
when L ∈ L and M is minimal with lcm(M) = L. The following theorem
illustrates another situation when |ΓM | can be determined without the
use of group theory.

Theorem 3.1. For k > 2, let

Mk = [2, 22, . . . , 2k, 3, 2k−1 · 3, 2k · 3].

For brevity of notation, let Γk denote the set of all coverings using the
moduli Mk. Then

|Γk| = 2k+1 · 3.

Proof. The proof is by induction on k. First let k = 2. The set Γ2 of all
possible coverings using the moduli M2 = [2, 4, 3, 6, 12] is easy to generate
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using a computer. We get that

Γ2 = {[0, 1, 0, 1, 11], [0, 1, 0, 5, 7], [0, 1, 1, 3, 11], [0, 1, 1, 5, 3],

[0, 1, 2, 1, 3], [0, 1, 2, 3, 7], [1, 2, 0, 2, 4], [1, 0, 0, 2, 10],

[1, 0, 0, 4, 2], [1, 0, 1, 0, 2], [1, 2, 0, 4, 8], [1, 0, 1, 2, 6],

[1, 0, 2, 0, 10], [1, 2, 1, 0, 8], [1, 0, 2, 4, 6], [1, 2, 1, 2, 0],

[1, 2, 2, 0, 4], [1, 2, 2, 4, 0], [0, 3, 0, 1, 5], [0, 3, 0, 5, 1],

[0, 3, 1, 3, 5], [0, 3, 1, 5, 9], [0, 3, 2, 1, 9], [0, 3, 2, 3, 1]} .

(2)

Observe that |Γ2| = 24, so that the base case is verified. Let Lk = 2k · 3.
Assume, by induction, that |Γk| = 2k+1·3. Let M̂k = {2, 22, . . . , 2k, 3, 2k ·3}.
Let R̂k be a list of residues in a covering in Γk corresponding to the moduli
M̂k. There is just one hole modulo Lk left to fill to complete a covering in
Γk, and this can be done in exactly one way using a residue r (mod 2k−1·3).
Thus, there are exactly two holes modulo Lk+1 that need to be filled to
complete a covering in Γk. These two holes can be filled in exactly two
ways using the two moduli 2k+1 and 2k+1 · 3 in the following way. We can
use either

r (mod 2k+1) and r + 2k · 3 (mod 2k+1 · 3),

or

r + 2k · 3 (mod 2k+1) and r (mod 2k+1 · 3).

Thus, we have shown that |Γk+1| = 2 |Γk| = 2k+2 · 3, and the proof is
complete.

Remark 3.2. Note that when k = 2 in Theorem 3.1, we have L = 12 ∈ L,
and so this is a special case addressed in [31].

4. Group theory and covering systems

In this section, we develop a group-theoretic approach to describe
a relationship among the elements in Γ, and to help determine |Γ|. In
particular, we investigate when there exist finite groups that act on Γ and
we exploit this action to enumerate and categorize the elements of Γ. We
let orbG(C) and stabG(C) denote, respectively, the orbit and stabilizer of
C ∈ Γ under the action of some group G. We begin by providing a brief
analysis, without general proofs, in the situation when L ∈ L and M is
minimal.
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4.1. A group action in Sun’s primitive covering number
situation

A formula was given in [31] for |ΓM | when L ∈ L and M is minimal
with lcm(M) = L. From this formula, a finite group G can be constructed
that acts transitively on ΓM . This formula, and consequently the group
G, are quite complicated in general. However, in special situations, G can
be described fairly easily. Let

L = pα1
1 pα2

2 · · · p
αr−1

r−1 pr ∈ L.

Under certain restrictions, the formula in [31] for |ΓM | reduces to

|ΓM | =
r∏

i=1

(pi!)
αi . (3)

Remark 4.1. Formula 3 also holds for values of L 6∈ L. See Table 1.

A consequence of (3) is the existence of a finite group

G ≃ (Sp1)a1 × · · · × (Spr )ar , (4)

where
(Spi

)ai = Spi
× · · · × Spi︸ ︷︷ ︸

ai−factors

and Spi
is the symmetric group on pi letters, that acts transitively on Γ by

appropriately permuting the residues. The following example illustrates
this process.

An example: L=12 with M =[m1,m2,m3,m4,m5]=[2,4,3,6,12]

We see easily that L = 12 is a primitive covering number satisfying (1).

• p1 = 2
We seek a group H1 ≃ S2 × S2. We start with the element h =
(12)(34). To construct the other three nontrivial elements of H1, we
conjugate h by the elements (24) and (23) to get

H1 = {(1), (12)(34), (14)(23), (13)(24)}

• p2 = 3
We seek a group H2 ≃ S3. Let

H2 = {(1), (12), (23), (13), (123), (132)} .
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Therefore, G = H1×H2. We write a covering C as [r1, r2, r3, r4, r5], where
ri (mod mi) is a congruence in C. We illustrate the action on the set
Γ of all 24 coverings given in (2). As an example, let C = [1, 2, 1, 0, 8].
We use the Chinese remainder theorem to decompose the residues on
the composite moduli into prime power moduli, and we substitute pki
(mod pki ) for 0 (mod pki ). We also place subscripts on the residues in these
decompositions to remind us of the prime power moduli. Thus,

C = [1, 2, 1, [22, 33], [44, 23]] .

Let g = ((14)(23), (123)). Then

g.C = [4, 3, 2, [32, 13], [14, 33]] = [0, 3, 2, 1, 9] ∈ Γ,

and it is easy to verify that orbG(C) = Γ.

If it is the desire to navigate explicitly among the coverings C ∈ Γ via
this action of G, we see from the previous example that the process is
somewhat cumbersome. We show in the next section that, for any value
of L, there is a more easily-described group that acts on the set of all
coverings. The disadvantage is that the action is not always transitive.

4.2. A group action in the general situation

In this section, we lift the restriction that L must satisfy (1). Let ZL
be the additive group of integers modulo L. We define the holomorph of
ZL to be

Hol (ZL) = Aut (ZL) ⋉ ZL ≃ Z∗
L ⋉ ZL, (5)

where Z∗
L is the group of units in the ring ZL of integers modulo L. Note

that |Hol (ZL)| = φ(L)L. For brevity of notation, we let G = Hol (ZL).

Remark 4.2. More typically, a semidirect product is written using the
notation A⋊B. However, it is more convenient here to use the isomorphic
group B ⋉A.

Theorem 4.3. There is a natural (left) action of G on Γ.

Proof. Let g = (a, x) ∈ G and C =
{

(ri,mi)
∣∣∣ 1 6 i 6 t

}
∈ Γ. Define

g.C :=

{
(ari + x,mi)

∣∣∣∣ 1 6 i 6 t

}
.
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We first show that g.C is indeed a covering. Let n be any integer. Since
C is a covering, there exists j such that

a−1(n− x) ≡ rj (mod mj).

Hence,

n ≡ arj + x (mod mj),

so that n is covered by g.C.

Note that (1, 0) ∈ G is the identity element in G, and that (1, 0).C = C.
Next, let h ∈ G with h = (b, y). By the definition of the operation in G,
we have that

gh = (a, x)(b, y) = (ab, ay + x).

Thus,

(gh).C =

{
(abri + ay + x,mi)

∣∣∣∣ 1 6 i 6 t

}

=

{
(a(bri + y) + x,mi)

∣∣∣∣ 1 6 i 6 t

}

= g.

{
(bri + y,mi)

∣∣∣∣ 1 6 i 6 t

}

= g. (h.C) ,

which completes the proof.

Theorem 4.4. Let C =
{

(ri,mi)
∣∣∣ 1 6 i 6 t

}
∈ Γ. Then

|orbG(C)| > κ(L)φ(L), (6)

where κ(L) denotes the square-free kernel of L, and φ is Euler’s totient
function. Moreover, equality holds in (6) if

κ(L) (ri − rj) ≡ 0 (mod gcd (mi,mj)) for all i and j. (7)

Proof. Let g = (a, x) ∈ stab(C). Then g.C = C and hence

(a− 1)ri + x ≡ 0 (mod mi), (8)

for all (ri,mi) ∈ C. Let p be a prime such that L ≡ 0 (mod p), and let

Cp =

{
(ri,mi) ∈ C

∣∣∣∣ mi ≡ 0 (mod p)

}
.
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Since C is a covering, there exist i and j, with i 6=j and (ri,mi), (rj ,mj)∈Cp,
such that ri 6≡ rj (mod p). For this particular pair of congruences in Cp,
we have by (8) that

(a− 1)ri + x ≡ (a− 1)rj + x (mod p). (9)

Rearranging (9) and using the fact that ri 6≡ rj (mod p), we get that
a ≡ 1 (mod p). Thus,

a ≡ 1 (mod κ(L)). (10)

There are exactly φ(L)/φ(κ(L)) = L/κ(L) distinct values of a ∈ Z∗
L that

satisfy (10). For each such value of a, we claim that there is at most one
value of x ∈ ZL that satisfies all congruences in (8). To see this, we fix
a and write a− 1 = zκ(L) for some integer z with 0 6 z 6 L/κ(L)− 1.
Then the system of congruences (8) can be rewritten as the following
system of congruences in the variable x:

x ≡ −zκ(L)ri (mod mi), for all (ri,mi) ∈ C. (11)

By the generalized Chinese remainder theorem, the system (11) has a
solution x ∈ ZL, and it is unique, if and only if

zκ(L) (ri − rj) ≡ 0 (mod gcd (mi,mj))

for all i and j. Thus, we have shown that

|stabG(C)| 6
L

κ(L)
.

Consequently, since |G| = φ(L)L, we have that

|orbG(C)| = [G : stabG(C)] > κ(L)φ(L).

Moreover, if

κ(L) (ri − rj) ≡ 0 (mod gcd (mi,mj))

for all i and j, then

zκ(L) (ri − rj) ≡ 0 (mod gcd (mi,mj))

for any fixed z and all i and j. Thus, in this case, the system (11) has a
unique solution, and so equality holds in (6).
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The following corollary is immediate from Theorem 4.4.

Corollary 4.5. Let C =
{

(ri,mi)
∣∣∣ 1 6 i 6 t

}
∈ Γ. If (7) holds and G

acts transitively on Γ, then

|Γ| = |orbG(C)| = κ(L)φ(L). (12)

Condition (7) alone is not sufficient to deduce (12). For example, let
L = 36 and M = [2, 3, 4, 6, 9, 18, 36]. Then, computer computations show
that |Γ| = 144 and each C ∈ Γ satisfies (7). Also, there are two orbits of
size κ(L)φ(L) = 72, so that G does not act transitively on Γ. Thus, in
this case, we see that |Γ| = 2κ(L)φ(L).

Corollary 4.6. If L is square-free, then equality holds in (6) for all
C ∈ Γ.

Proof. Since |orbG(C)| divides |G| = Lφ(L), we have that |orbG(C)| 6
Lφ(L). Since L is square-free, κ(L) = L, and therefore by Theorem 4.4,
we deduce that

Lφ(L) > |orbG(C)| > κ(L)φ(L) = Lφ(L).

If we want to utilize Theorem 4.4 to determine |Γ|, then the question
of transitivity of the action of G on Γ is a main concern. Unfortunately,
we have been unable to find a way to determine when this occurs in
general. For certain values of L and certain lists M , we used a computer
to determine |Γ| and |orbG(C)|. This information is given in Table 1. We
denote the number of orbits as #. A complete set of orbit representatives
for each example given in Table 1 is available upon request. Note that, in
Table 1, L ∈ S only for L = 80 and L = 90.

L M # |orb(C)| |Γ|
36 [2, 3, 4, 6, 9, 18, 36] 2 72 144

60 [2, 3, 4, 5, 6, 10, 15, 20, 30] 6 480 2880

72 [2, 3, 4, 6, 9, 24, 36, 72] 2 144 288

80 [2, 4, 5, 8, 10, 16, 20, 40, 80] 6 320 1920

90 [2, 3, 9, 5, 6, 10, 15, 18, 30, 45] 12 720 8640

108 [2, 3, 4, 6, 9, 18, 27, 54, 108] 4 216 864

120 [2, 3, 4, 5, 8, 10, 12, 30, 40, 60] 6 960 5760

Table 1. Data concerning the action of G on Γ

The examples in Table 1 are all such that M is minimal, and the
cardinality of each orbit under the action of G is the same. However, there
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are examples of lists of moduli such that the cardinalities of the orbits
are different. Although we cannot make it precise, there seems to be a
connection between this difference in the cardinalities of the orbits and
the following phenomenon.

Definition 4.7. Let M be a list of moduli such that ΓM 6= ∅ and, to
avoid a trivial situation, that some C ∈ ΓM is minimal. We say that M
is quasi-minimal if there exist C1, C2 ∈ ΓM such that C1 is minimal, but
C2 is not.

We give an example to illustrate that quasi-minimal M do exist.

Example 4.8. The list

M = [3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]

is quasi-minimal since the covering

C1 ={(0, 3), (0, 4), (0, 5), (1, 6), (6, 8), (3, 10), (5, 12), (11, 15),

(7, 20), (10, 24), (2, 30), (34, 40), (59, 60), (98, 120)}

is minimal, but the covering

C2 ={(2, 3), (0, 4), (0, 5), (3, 6), (2, 8), (7, 10), (6, 12), (1, 15),

(19, 20), (22, 24), (13, 30), (0, 40), (49, 60), (0, 120)}

is not minimal. Note that the elements (0, 40) and (0, 120) can be removed
from C2 and the remaining set Ĉ2 is a covering; in fact, it is minimal.

Remark 4.9. The covering C1 in Example (4.8) is due to Erdős [8], while
the covering Ĉ2 is due to Krukenberg [33].

To illustrate the possible connection between quasi-minimality and
the difference in the cardinalities of the orbits, we give examples of two
coverings using M from Example 4.8 where the cardinalities of the orbits
under the action of G are different. The covering

C3 ={(1, 3), (2, 4), (0, 5), (3, 6), (4, 8), (1, 10), (0, 12), (8, 15),

(7, 20), (8, 24), (29, 30), (11, 40), (17, 60), (13, 120)}

is not minimal since removing the set of congruences {(11, 40), (13, 120)}
from C3 gives a covering. Examining the orbit of C3 under G, we see that
|orbG(C3)| = 3840. However, the covering

C4 ={(0, 3), (3, 4), (3, 5), (2, 6), (5, 8), (6, 10), (10, 12), (4, 15),

(0, 20), (17, 24), (22, 30), (25, 40), (37, 60), (1, 120)}

is minimal and |orbG(C4)| = 1920.
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5. Final comments

Until now, no attempt had been made to impose an algebraic structure
on the set of all coverings with a fixed list of moduli. While our results do
not provide an answer in the most general situation, they do indicate that
a rich and useful algebraic structure does indeed exist, and it is worthy
of further pursuit.
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Abstract. In this paper, we provide a lower bound for
the volume of a three-dimensional smooth integral convex polytope
having interior lattice points. Since our formula has a quite simple
form compared with preliminary results, we can easily utilize it for
other beneficial purposes. As an immediate consequence of our lower
bound, we obtain a characterization of toric Fano threefold. Besides,
we compute the sectional genus of a three-dimensional polarized
toric variety, and classify toric Castelnuovo varieties.

1. Introduction

Points in Zn are called lattice points of Rn, and a polytope is said to be
integral if all its vertices are lattice points. For an integral polytope P , we
denote by vol(P) the volume of P and by ∂P the boundary of P , and put
Int(P) = P \∂P. Besides, we define l(S) = ♯(S ∩Zn) for a subset S ⊂ Rn.
In the study of integral polytopes, one of the most significant problem
is to compute their volume by using the information of the number of
lattice points in them. The following classical theorem gave a clue to the
solution of this issue.

Theorem 1.1 (cf. [14]). Let P be an integral polygon which is homeo-
morphic to a closed circle. Then its volume is computed by 2vol(P) =
l(P) + l(Int(P))− 2.

2010 MSC: Primary 52B20; Secondary 14C20, 14J30, 14M25.
Key words and phrases: lattice polytopes, polarized varieties, toric varieties,

sectional genus.
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In the case where an integral polygon is not homeomorphic to a closed
circle, Reeve generalized the above Pick’s result by employing the Euler
characteristics χ(P) of the polygon and χ(∂P) of its boundary.

Theorem 1.2 (cf. [15]). Let P be an n-dimensional integral polygon.

(i) If n = 2, then 2vol(P) = l(P) + l(Int(P))− 2χ(P) + χ(∂P).

(ii) If n = 3, then

2k(k2 − 1)vol(P) = l(kP) + l(Int(kP))− k(l(P)

+ l(Int(P))) + (k − 1)(2χ(P)− χ(∂P)),

l(∂(kP)) = k2l(∂P)− 2(k2 − 1)

for any positive integer k, where kP denotes the dilated polytope
{kx | x ∈ P}.

Moreover, Macdonald established the general formula to compute the
volume of an integral polytope of arbitrary dimension in [10]. Concretely,
for an n-dimensional integral polytope P,

(n− 1)n! vol(P) =
n−1∑

k=1

(−1)n−k−1

(
n− 1

k

)
(l(kP)

+ l(Int(kP))) + (−1)n−1(2χ(P)− χ(∂P)) (1)

and

n! vol(P) =
n∑

k=1

(−1)n−k

(
n

k

)
l(kP) + (−1)nχ(P). (2)

In addition, some other interesting formulae have been provided by
Kołodziejczyk and Reay in [7–9]. One can in principle compute the volume
of a polytope by using these results. In fact, however, it is not easy to carry
it out. This difficulty comes from the intricate behavior of the number of
lattice points in a dilated polytope kP. Therefore, from the application
standpoint, it is desirable to find a more simple formula even if not as
strong as (1) and (2). Specifically, in this paper, we will give a lower bound
for the volume of a three-dimensional integral convex polytope (Theorem
1.4). Although this result gives only an inequality, it is of wide application
because of its simplicity. First, Corollary 1.6 provides a characterization of
toric Fano threefold. Furthermore, we will apply this corollary to compute
the sectional genus of a three-dimensional polarized toric variety and
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classify so-called Castelnuovo varieties in Section 3 (Theorem 3.8). Before
describing our main result, we need to define the smoothness of a polytope.
A polytope is said to be convex if it is a convex hull of a finite number of
points in Rn.

Definition 1.3. Let P be an n-dimensional integral convex polytope in Rn,
and P be a vertex of P. Define R>0(P−P )={a(Q−P )∈Rn |Q∈P, a>0}.
If there exists a Z-basis {m1, . . . ,mn} of Zn such that

R>0(P − P ) = R>0m1 + · · ·+ R>0mn,

the vertex P is said to be smooth. We say P is smooth if all its vertices
are smooth. An m-dimensional (m < n) integral convex polytope P ′ in
Rn is said to be smooth if it is smooth with respect to Rm which is the
smallest affine subspace of Rn including P ′.

Theorem 1.4. Let P be a three-dimensional smooth integral convex
polytope having at least one interior lattice point. Then 3vol(P) > l(P) +
l(Int(P))− 4, and equality holds if and only if P is a polytope associated
to the anti-canonical bundle on a toric Fano threefold.

Toric Fano threefolds have been already classified into eighteen types in
[2] and [17], independently. Namely, there exist eighteen polytopes (see, e.g.,
(6) in Section 2) whose volume achieves the lower bound in Theorem 1.4.
We remark that the conditions of smoothness and l(Int(P)) > 1 are
essential for the above theorem. Indeed, if we remove these conditions,
we can easily find counterexamples as follows.

Example 1.5. For a subset S of R3, we denote by Conv(S) the convex
hull of S.

(i) For a nonsmooth integral convex polytope

P1 = Conv({(0, 0,±1), (2, 1,±1), (1, 2,±1), (1, 1, 2)}),

we have 3vol(P1) = 21/2 < l(P1) + l(Int(P1))− 4 = 11.

(ii) For a unit cube P2, we have 3vol(P2)=3 < l(P2)+l(Int(P2))−4=4.

On the other hand, as is well known, the theory of polytopes is
closely related to the toric geometry. For an ample line bundle L on
an n-dimensional compact toric variety X, there exists an associated
n-dimensional integral convex polytope �L from which we can read off
many invariants of L. A computation of the dimension of a cohomology
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group can be reduced to counting lattice points in the polytope. For
example, we have h0(X,L) = l(�L) and h0(X,L + KX) = l(Int(�L)).
The degree of L can be computed as Ln = n!vol(�L). These relations,
for example, tell us that Pick’s formula coincides with the Riemann-Roch
theorem on a surface. Indeed, if X is two-dimensional, the equalities
χ(OX) = 1 and h0(X,KX) = h1(X,KX) = 0 hold. Besides, the general
theory of toric varieties gives that h1(X,L) = h2(X,L) = 0 if |L| has no
base points. Therefore, we can deform Theorem 1.1 as

h0(X,L) = L2 − h0(X,L+KX) + 2

χ(OX(L)) = L2 − h0(X,KL) + 2 =
1

2
L.(L−KX) + χ(OX).

In this manner, properties of polytopes and that of line bundles on a
toric variety can be translated each other.

Using the terminology of the algebraic geometry, we can interpret
Theorem 1.4 as a theorem about line bundles.

Corollary 1.6. Let L be an ample line bundle on a three-dimensional
smooth compact toric variety X. If h0(X,L + KX) > 1, then L3 >

2(h0(X,L) + h0(X,L+KX)− 4) holds, and equality holds if and only if
X is a toric Fano threefold and L = −KX .

2. Proof of the main theorem

First of all, we need to introduce several notations. We denote by
Hf(x,y,z) the plane in R3 defined by an equation f(x, y, z) = 0. For a
lattice point P and a polygon F included in a plane Hf(x,y,z), we denote
by h(F, P ) the lattice distance. In concrete terms, we define h(F, P ) = |n|,
where n is an integer such that Hf(x,y,z)−n passes through P .

Henceforth, the notation P always denotes a three-dimensional smooth
integral convex polytope having interior lattice points. In addition, we
denote by V (P) the set of vertices of P, and E(P) the set of points on
edges of P. Note that vol(P), l(P) and l(Int(P)) do not change even if
we perform an affine linear transformation (i.e., a composition of parallel
displacements and linear transformations by unimodular matrices).

Lemma 2.1. If we place P in R3
z>0 so that P has a face on Hz, then

P ∩Hz−1 is an integral convex polygon.

Proof. We can assume that the origin O is a vertex of P . Then O has three
adjacent lattice points (a1, b1, 0), (a2, b2, 0), (a3, b3, c3) ∈ E(P). Since the
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vertex O is smooth, we have c3 = 1 by the equality

det



a1 a2 a3

b1 b2 b3

0 0 c3


 = (a1b2 − a2b1)c3 = ±1.

By similar arguments, we see that any edge of P which is extending
from a vertex on Hz but not lying on Hz has a lattice point on Hz−1.
The assertion follows from this fact.

Lemma 2.2. There exists a plane Hf(x,y,z) such that the section T =
P ∩Hf(x,y,z) is an integral convex polygon having a smooth vertex and at
least one interior lattice point.

Proof. Without loss of generality, we can assume that O, (1, 0, 0), (0, 1, 0)
and (0, 0, 1) are contained in E(P). Put P1 = (0, 1, 1), P2 = (1, 0, 1) and
P3 = (1, 1, 0). In the case where P1 /∈ P, the integral convex polygon
P ∩Hx must be a unit triangle by the smoothness of P. Similarly, if P2

(resp. P3) is not contained in P, then P ∩ Hy (resp. P ∩ Hz) becomes
a unit triangle. Since l(Int(P)) > 1 and every vertex of P has just
three edges, it is required that at least two points of P1, P2 and P3 are
contained in P. Hence we can assume (after permuting the coordinates,
if necessary) that P1, P2 ∈ P. It is sufficient to consider the case where
(1, 1, 1) /∈ Int(P), because if (1, 1, 1) ∈ Int(P), we can finish the proof by
putting f(x, y, z) = z − 1.

Let (x0, y0, z0) be an interior lattice point of P. Suppose that P3 ∈ P.
Since (1, 1, 1) is not contained in Int(P), there exist four integers α, β, γ
and δ such that P ⊂ {(x, y, z) | αx+βy+γz+δ > 0} and α+β+γ+δ 6 0.
By the conditions P1, P2, P3 ∈ P, we have

β + γ + δ > 0, α+ γ + δ > 0, α+ β + δ > 0,

which imply that α, β, γ 6 0. Then we obtain a contradiction

αx0 + βy0 + γz0 + δ > 0

δ > −αx0 − βy0 − γz0 > −α− β − γ.

Thus we see that P3 is not contained in P. In this case, the face
P ∩Hz is a unit triangle, and the vertex (1, 0, 0) has three adjacent lattice
points O, (0, 1, 0) and (a, 0, c) in E(P). One can check c = 1 by the
smoothness of the vertex (1, 0, 0) in a similar way to that in the proof
of Lemma 2.1. Thus P has a face included in the plane Hx+y+(1−a)z−1
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containing three points (1, 0, 0), (0, 1, 0) and (a, 0, 1). Then we obtain
a > 2 by the inequality

0 > x0 + y0 + (1− a)z0 − 1 > (1− a)z0.

It follows that (2, 0, 1) is contained in P . Similarly, one can verify that
(0, 2, 1) is contained in P. By the assumption (1, 1, 1) /∈ Int(P), the section
P ∩ Hz−1 must be a triangle Conv({(0, 0, 1), (2, 0, 1), (0, 2, 1)}), which
implies a = 2. Next we focus on the point (1, 1, 2). Suppose that (1, 1, 2)
is not contained in Int(P). Then there exist four integers ε, ζ, η and θ
such that P ⊂ {(x, y, z) | εx+ ζy + ηz + θ > 0} and ε+ ζ + 2η + θ 6 0.
Since (0, 0, 1), (2, 0, 1), (0, 2, 1) ∈ P, we have

η + θ > 0, 2ε+ η + θ > 0, 2ζ + η + θ > 0,

which imply that ε + η + θ > 0, ζ + η + θ > 0 and ε + ζ + η + θ > 0.
It follows that η 6 −ε − ζ − η − θ 6 0, ε + η 6 −ζ − η − θ 6 0 and
ζ + η 6 −ε − η − θ 6 0. Since P has a face included in Hx+y−z−1, the
inequality x0 + y0 − z0 − 1 < 0 holds, which implies a contradiction

εx0 + ζy0 + ηz0 + θ > 0

θ > −εx0 − ζy0 − ηz0 > −(ε+ η)x0 − (ζ + η)y0

> −ε− ζ − 2η.

Therefore, we can conclude that (1, 1, 2) is contained in Int(P), and
P ∩Hx−1 is the desired section.

Let Q be a three-dimensional integral convex polytope, and Q be a
vertex of Q. We define

µ(Q) = vol(Q)−
l(Q) + l(Int(Q))− 4

3

and QQ = Conv((Q∩ Z3) \ {Q}), and denote by Q
Q

the set of points in
QQ which are visible from Q, that is,

Q
Q

= {P ∈ QQ | (the segment PQ) ∩QQ = {P}}.

Although Q
Q

is not a convex polytope but a set consisting of some

faces of QQ, we formally define V (Q
Q

) = V (QQ)∩Q
Q

, ∂Q
Q

= ∂Q∩Q
Q

and Int(Q
Q

) = Q
Q
\ ∂Q

Q
. The following proposition tells us the precise

difference between Q and QQ, which is a central tool in the induction
step in the proof of Theorem 1.4.



R. Kawaguchi 269

Proposition 2.3. Let Q be a vertex of a three-dimensional integral convex

polytope Q, and F1, . . . , Fk be faces of QQ such that Q
Q

=
⋃k
j=1 Fj. If we

put aj = l(Fj) and bj = l(Int(Fj)), then

µ(Q) = µ(QQ) +
1

6
l(∂Q

Q
)−

2

3
+

1

6

k∑

j=1

(h(Fj , Q)− 1)(aj + bj − 2).

Proof. For simplicity, we put hj = h(Fj , Q). Since vol(Fj) = (aj+bj−2)/2
by Theorem 1.1, we have

µ(Q)− µ(QQ) =
1

6

k∑

j=1

hj(aj + bj − 2)−
1

3
(l(Int(Q))− l(Int(QQ)) + 1)

=
1

6

k∑

j=1

(hj − 1)(aj + bj − 2) +
1

6

k∑

j=1

(aj + bj)

−
1

3
(l(Int(Q

Q
)) + k + 1).

To estimate the right-hand value, let us compute
∑k
j=1(aj + bj), which

means counting lattice points in Q
Q

(with several duplications). Indeed,
we can write

k∑

j=1

(aj + bj) =
∑

P∈Q
Q

∩Z3

c(P ), (3)

where c(P ) denotes the number of times P is counted in the left-hand

side of (3). It is clear that c(P ) = 1 for P ∈ ∂Q
Q
\ V (Q

Q
) since there

exists a unique face containing P in this case. Let us check c(P ) = 2

for a point P in Int(Q
Q

) \ V (Q
Q

). This is clear if P is not on any edge
of QQ. While if P is on some edge of QQ, then there exist two faces

of Q
Q

containing P . Hence, in this case, P is counted two times in the

left-hand side of (3). We next consider points in V (Q
Q

). Let P be a point

in V (Q
Q

)∩ Int(Q
Q

) having s edges. Since s faces contain P , P is counted
s times in the left-hand side of (3), that is, c(P ) = s. Meanwhile, if P is

contained in V (Q
Q

)∩ ∂Q
Q

and t edges of Q
Q

extend from P , there exist
t− 1 faces containing P . It follows that c(P ) = t− 1. Consequently, we
obtain

k∑

j=1

(aj+bj) = 2l(Int(Q
Q

))+l(∂Q
Q
\V (Q

Q
))+

s0∑

s=3

(s−2)ms+
t0∑

t=2

(t−1)nt,
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where we define

ms = ♯{P ∈ V (Q
Q

) ∩ Int(Q
Q

) | there exist s edges of Q
Q

extending from P},

nt = ♯{P ∈V (Q
Q

)∩∂Q
Q
| there exist t edges of Q

Q

extending from P}.

Next, to compute the value of k, we take a lattice point P0 /∈ Conv(Q
Q

)

such that an integral polytope Q0 = Conv(Q
Q
∪ {P0}) satisfies V (Q0) =

V (Q
Q

) ∪ {P0} (see Fig. 1).
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Figure 1.

Then the number of vertices, edges and faces of Q0 are
∑s0
s=3ms +∑t0

t=2 nt+ 1,
(∑s0

s=3 sms+
∑t0
t=2 tnt

)
/2 +

∑t0
t=2 nt and k+

∑t0
t=2 nt, respec-

tively. Hence, by Euler’s polyhedron formula, we have

s0∑

s=3

ms +
t0∑

t=2

nt + 1−

s0∑
s=3

sms +
t0∑
t=2

tnt

2
−

t0∑

t=2

nt + k +
t0∑

t=2

nt = 2,

which implies that k =
(∑s0

s=3(s − 2)ms +
∑t0
t=2(t − 2)nt

)
/2 + 1. As a

consequence,

µ(Q)− µ(QQ) =
1

6

(
l(∂Q

Q
\ V (Q

Q
)) +

t0∑

t=2

nt

)
−

2

3

+
1

6

k∑

j=1

(hj − 1)(aj + bj − 2)

=
1

6
l(∂Q

Q
)−

2

3
+

1

6

k∑

j=1

(hj − 1)(aj + bj − 2).
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By noting that l(∂Q
Q

) > 3, aj > 3 and bj > 0, we obtain the following
corollary.

Corollary 2.4. Let Q, Q and Fj be as in Proposition 2.3. If there exists
a face Fj0 of QQ such that h(Fj0 , Q) > 2, then µ(Q) > µ(QQ).

Let us show the main result. Since the proof is relatively long, we
divide it into two parts.

Proof of the inequality in Theorem 1.4. Let T be a section of P as in
Lemma 2.2. We take a lattice point P0 ∈ V (P) \ T and put P1 = PP0 .
By carrying out such operation repeatedly, we construct a sequence of
integral convex polytopes

P = P0 → P1 → P2 → · · · , (4)

where Pi ∈ V (Pi) \ T and Pi+1 = PPi
i . It is sufficient to show that, by

going through a suitable process, we can find Pn such that µ(P0) > µ(Pn),
l(Pn) = l(T ) + 2 and T is not a face of Pn (see Fig. 2).
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Figure 2.

Indeed, for such a Pn, it follows from Theorem 1.1 that

µ(Pn) = vol(Pn)−
l(Pn) + l(Int(Pn))− 4

3

>
2

3
vol(T )−

l(T ) + l(Int(T ))− 2

3

=
2

3
·
l(T ) + l(Int(T ))− 2

2
−
l(T ) + l(Int(T ))− 2

3
= 0.

To verify the existence of Pn, it is sufficient to prove the following
claim:

Claim A. Let i be a nonnegative integer. If l(Pi) > l(T )+3 and T is not
a face of Pi, then we can construct Pi0 (i0 > i) such that µ(Pi) > µ(Pi0)
and T is not a face of Pi0.
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We define A = {Q ∈ V (Pi) \ T | T is not a face of PQi }. If there

exists a point Q ∈ A such that l(∂Pi
Q

) > 4, by putting Pi = Q, we obtain
the inequality µ(Pi) > µ(Pi+1) by Proposition 2.3. Hence Claim A is true
in this case. We thus assume that

l(∂Pi
Q

) = 3 for any Q ∈ A. (5)

We take a pointQ0 ∈ A. Note that the inequality µ(Pi) > µ(PQ0
i )−1/6

follows from Proposition 2.3. We denote by Q1, Q2 and Q3 the vertices

of a triangle ∂Pi
Q0 , and put vj = Qj − Q0 for j = 1, 2, 3. We define

εj = max{ε ∈ N | Q0 + εvj ∈ Pi} and Q′
j = Q0 + εjvj for j = 1, 2, 3.

(i) We first consider the case where l(Conv({Q0, Q1, Q2, Q3})) > 5.
We put t = ♯({Q1, Q2, Q3} ∩ T ). If t = 3, then T is a triangle
Conv({Q1, Q2, Q3}) whose border has no lattice points except for three
vertices. This contradicts the property of T of having a smooth vertex
and interior lattice points. Hence we have t 6 2.

(i)–(a) If t 6 1, we can assume Q1, Q2 /∈ T and ε1 6 ε2.
In the case where ε1 > 2, we put Pi = Q0, Pi+1 = Q1 and

Pi+2 = Q2. Then ∂Pi+1
Pi+1 contains Q1 + v1, Q2, Q3 and at least

one lattice point in Conv({Q0, Q1, Q2, Q3}) \ {Q0, . . . , Q3}. It follows

from Proposition 2.3 that µ(Pi+1) > µ(Pi+2). Similarly, since ∂Pi+2
Pi+2

contains Q1 + v1, Q1 + v2, Q2 + v2, Q3 and at least one lattice point in
Conv({Q0, Q1, Q2, Q3})\{Q0, . . . , Q3}, we have µ(Pi+2) > µ(Pi+3)+1/6.
In sum, Claim A is true by

µ(Pi) > µ(Pi+1)−
1

6
> µ(Pi+2)−

1

6
> µ(Pi+3).

We next consider the case where ε1 = 1. Since Q1 ∈ A, we have

l(∂Pi
Q1) = 3 by (5), and more concretely, Q′

1(= Q1) has three adjacent
lattice points Q′

1 − v1(= Q0), Q0 + αv1 + βv2 and Q0 + γv1 + δv3 in

E(Pi), where α, γ > 0 and β, δ > 1. We denote by F a face of Pi
Q1

containing two points Q0 and Q0 + αv1 + βv2. By an easy computation,
we obtain h(F,Q1) > β. If β > 2, we can finish the proof by putting
Pi = Q1. Indeed, in this case, the inequality µ(Pi) > µ(Pi+1) holds by
Corollary 2.4. Similar arguments can be carried out for the case where
δ > 2. Let us consider the case where β = δ = 1. We can assume α > γ
without loss of generality, and have α + γ > 1 by the existence of T .

If α + γ > 2, we put Pi = Q0 and Pi+1 = Q1. Then, since ∂Pi+1
Pi+1
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contains Q2 + kv1 (k = 0, . . . , α), Q3 + kv1 (k = 0, . . . , γ) and at least
one lattice point in Conv({Q0, Q1, Q2, Q3}) \ {Q0, . . . , Q3}, we obtain
µ(Pi+1) > µ(Pi+2) + (α+ γ − 1)/6. Hence

µ(Pi) > µ(Pi+1)−
1

6
> µ(Pi+2) +

α+ γ − 2

6
> µ(Pi+2).

Let us consider the remaining case where α = 1 and γ = 0. Note that
Pi has a face containing Q1, Q3 and Q1 + v2 (see Fig. 3).
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Figure 3.

We define ζj = max{ζ ∈ Z>0 | Qj + ζv2 ∈ Pi} for j = 1, 2, 3.
Considering the properties of T , at least one of Q1 + ζ1v2, Q2 + ζ2v2, and
Q3 + ζ3v2 is not on T . Then, by (5), such a point has just three adjacent
lattice points in E(Pi). This implies that V (Pi) = {Q0, Q1, Q3, Q1 +
ζ1v2, Q2 + ζ2v2, Q3 + ζ3v2}, which contradicts the existence of T .

(i)–(b) If t = 2, we can assume that Q1 /∈ T and Q2, Q3 ∈ T . By the
properties of T , we see that Q0 + εv1 is not on T for 0 6 ε 6 ε1. As
we saw in the case (i)-(a), Q′

1 has three adjacent lattice points Q′
1 − v1,

Q0 +αv1 +βv2 and Q0 +γv1 + δv3 in E(Pi), and the proof is finished by
putting Pi = Q′

1 in the case where β > 2 or δ > 2. We assume β = δ = 1.
Since T has interior lattice points, we see that at least one of Q0+αv1+v2

and Q0 + γv1 + v3 is not on T . Then this case is equivalent to the case
(i)-(a) by regarding Q′

1 as Q0.
(ii) We next consider the case where l(Conv({Q0, Q1, Q2, Q3})) = 4.

If h(Conv({Q1, Q2, Q3}), Q0) > 2, we can finish the proof by putting
Pi = Q0. Hence we can assume that Q0 is a smooth vertex, that is,
Q0 = O, Q1 = (1, 0, 0), Q2 = (0, 1, 0) and Q3 = (0, 0, 1). Moreover, we
assume that every vertex in A is smooth in order to avoid the duplication
with the case (i). We denote by Lj the segment Q0Q

′
j (j = 1, 2, 3), and

put u = ♯{Lj | Lj ∩ T 6= ∅, j = 1, 2, 3}.
(ii)–(a) In the case where u 6 1, we can assume that L1 ∩ T = ∅

and L2 ∩ T = ∅. Since Q′
1 is smooth, it has three adjacent lattice points

(ε1 − 1, 0, 0), (α, 1, 0) and (γ, 0, 1) in E(Pi). If we put Pi+ε = (ε, 0, 0)
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for ε = 0, . . . , ε1, since ∂Pi+ε1

Pi+ε1 contains lattice points (k, 1, 0) with
k = 0, . . . , α and (l, 0, 1) with l = 0, . . . , γ, it follows that

µ(Pi) > µ(Pi+1)−
1

6
> · · ·> µ(Pi+ε1)−

ε1

6
> µ(Pi+ε1+1)+

α+ γ − ε1 − 2

6
.

If α+ γ > ε1 + 2, the proof is finished. We next consider the vertex
Q′

2 and its three adjacent lattice points (0, ε2 − 1, 0), (1, β, 0) and (0, δ, 1)
in E(Pi). Similarly to the case of Q′

1, we can finish the proof in the
case where β + δ > ε2 + 2. Hence we assume that α + γ 6 ε1 + 1 and
β+ δ 6 ε2 + 1. Let (x0, y0, z0) be a lattice point in Int(Pi). Since Pi has a
face containing three points (ε1, 0, 0), (α, 1, 0) and (γ, 0, 1) (resp. (0, ε2, 0),
(1, β, 0) and (0, δ, 1)), we have

x0 + (ε1 − α)y0 + (ε1 − γ)z0 − ε1 < 0

(resp. (ε2 − β)x0 + y0 + (ε2 − δ)z0 − ε2 < 0).

By noting x0, y0, z0 > 1 and α, γ, β, δ > 0, we obtain (α, γ) = (ε1 + 1, 0)
or (0, ε1 + 1) and (β, δ) = (ε2 + 1, 0) or (0, ε2 + 1). Clearly, γ = δ = 0
gives a contradiction. Besides, considering the shape of Pi, if either α or
β is zero, then the other one also must be zero and ε1 = ε2 = 1. In sum,
we have (α, γ) = (β, δ) = (0, 2). Then, putting Pi = Q0 and Pi+j = Qj
for j = 1, 2, we have

l(∂Pi
Pi) = l(Conv({(1, 0, 0), (0, 1, 0), (0, 0, 1)})) = 3,

l(∂Pi+1
Pi+1) = l(Conv({(2, 0, 1), (0, 1, 0), (0, 0, 1)})) = 4,

l(∂Pi+2
Pi+2) = l(Conv({(2, 0, 1), (0, 2, 1), (0, 0, 1)})) = 6.

It follows from Proposition 2.3 that µ(Pi) = µ(Pi+1)−1/6 = µ(Pi+2)−
1/6 = µ(Pi+3) + 1/6.

(ii)–(b) If u = 2, we can assume that L1 ∩ T = ∅, L2 ∩ T 6= ∅ and
L3 ∩ T 6= ∅. As we saw in the case (ii)-(a), it is sufficient to consider the
case where Q′

1 has three adjacent lattice points (ε1 − 1, 0, 0), (α, 1, 0) and
(γ, 0, 1) with (α, γ) = (ε1 + 1, 0) or (0, ε1 + 1). Here we consider only the
former case (α, γ) = (ε1 + 1, 0). The latter case can be shown in a similar
way. First, we remark that ε3 = 1 holds by the condition γ = 0. This
means that (0, 0, 1) is on T . Denote by L4 the line passing through Q′

1

and (α, 1, 0). Since T has interior lattice points, L4 does not contain a
lattice point on T . Then, by regarding Q′

1 as Q0, this case can be reduced
to the case (ii)-(a).
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(ii)–(c) Assume u = 3. In this case, we see that Qj /∈ T
for j = 1, 2, 3 since T has interior lattice points. It follows that
(2, 0, 0), (0, 2, 0), (0, 0, 2) ∈ Pi. If we put Pi = Q0 and Pi+j = Qj for
j = 1, 2, 3, then

l(∂Pi
Pi) = l(Conv({(1, 0, 0), (0, 1, 0), (0, 0, 1)})) = 3,

l(∂Pi+1
Pi+1) = l(Conv({(2, 0, 0), (0, 1, 0), (0, 0, 1)})) = 3,

l(∂Pi+2
Pi+2) = l(Conv({(2, 0, 0), (0, 2, 0), (0, 0, 1)})) = 4,

l(∂Pi+3
Pi+3) = l(Conv({(2, 0, 0), (0, 2, 0), (0, 0, 2)})) = 6.

Hence we have

µ(Pi) > µ(Pi+1)−
1

6
> µ(Pi+2)−

2

3
> µ(Pi+3)−

2

3
> µ(Pi+4).

Since T has interior lattice points, at least one of (2, 0, 0), (0, 2, 0) and
(0, 0, 2) is not on T , that is, T is not a face of Pi+4.

In order to show the latter part of Theorem 1.4, we require results
in the theory of toric varieties and the classification theory of polarized
varieties. Hence, in the proof below, we take in advance the contents in
the next section although not in the proper order. See Section 3 for precise
definitions and notations.

Proof of the equivalency in Theorem 1.4. The classification of toric Fano
threefolds has been completed, and they are classified into eighteen types
(cf. [2, 17]). For each type X of toric Fano threefolds, the polytope �−KX

associated to the anti-canonical bundle has just one interior lattice point.
Moreover, we can obtain

vol(�−KX
) =

l(�−KX
)

3
− 1

by steady calculations. We list several examples of them for readers’
exercise.

X �−KX

P3 the fourth dilation of a unit three-simplex
P1 × P1 × P1 the twice dilation of a unit cube

P2 × P1 Conv({(0, 0,±1), (3, 0,±1), (0, 3,±1)})
Σ1 × P1 Conv({(0, 0,±1), (3, 0,±1), (1, 2,±1), (0, 2,±1)})

...
...

(6)
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Let us show the sufficiency. We first consider the case where
l(Int(P))=1 and vol(P) = l(P)/3 − 1. Let L be an ample line bundle
on a three-dimensional toric variety X whose associated polytope �L

coincides with P. Then our assumptions are equivalent to two equalities
h0(X,L + KX) = 1 and L3 = 2h0(X,L) − 6. By noting Lemma 3.7,
the sectional genus and the ∆-genus of the polarized variety (X,L) is
g(X,L) = h0(X,L)− 2 and ∆(X,L) = h0(X,L)− 3, respectively. On the
other hand, since ⌊(L3 − 1)/(L3 −∆(X,L)− 1)⌋ = 2, the above sectional
genus coincides with the upper bound in Theorem 3.3. Namely, (X,L) is
a Castelnuovo variety in this case. Since (X,L) is a Mukai variety by the
remark after Theorem 3.3, we can conclude that X is a Fano variety and
L = −KX .

In the remaining part, we prove the inequality vol(P) > (l(P) +
l(Int(P))− 4)/3 under the assumption l(Int(P)) > 2. Recall the sequence
of integral convex polytopes (4) and Claim A in the proof of Theorem 1.4.
Then it is sufficient to show that, by going through a suitable process,
we can construct Pi0 such that µ(P) > µ(Pi0) and T is not a face of Pi0 .
We place P in R3 so that four points O, Q1 = (1, 0, 0), Q2 = (0, 1, 0) and
Q3 = (0, 0, 1) are contained in E(P), and define

ε1 = max{ε ∈ N | (ε, 0, 0) ∈ P},

ε2 = max{ε ∈ N | (0, ε, 0) ∈ P},

ε3 = max{ε ∈ N | (0, 0, ε) ∈ P},

Q′
1 = (ε1, 0, 0), Q′

2 = (0, ε2, 0) and Q′
3 = (0, 0, ε3). Then, by the smooth-

ness of P, we see that Q′
1 has three adjacent lattice points (ε1 − 1, 0, 0),

(α1, 1, 0) and (α2, 0, 1) in E(P). Similarly, Q′
2 (resp. Q′

3) has three adja-
cent lattice points (0, ε2− 1, 0), (1, β1, 0) and (0, β2, 1) (resp. (0, 0, ε3− 1),
(1, 0, γ1) and (0, 1, γ2)) in E(P). In the case where α1 + α2 > ε1 + 3,
we can take T so that it does not contain points on the x-axis by us-
ing a similar method to that in the proof of Lemma 2.2. If we put

Pi = (i, 0, 0) for i = 0, . . . , ε1, then ∂Pi
Pi is a triangle with vertices

(i+ 1, 0, 0), Q2 and Q3 for i = 0, . . . , ε1 − 1, and ∂Pε1

Pε1 is a trapezoid
Conv({Q2, Q3, (α1, 1, 0), (α2, 0, 1)}). We thus obtain

µ(P0) > µ(P1)−
1

6
> · · · > µ(Pε1)−

ε1

6

> µ(Pε1+1) +
α1 + α2 − ε1 − 2

6
> µ(Pε1+1)

by Proposition 2.3. Also in the cases where β1 + β2 > ε2 + 3 or γ1 + γ2 >

ε3 + 3, we can finish the proof in essentially the same way.
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We assume henceforth that α1 + α2 6 ε1 + 2, β1 + β2 6 ε2 + 2 and
γ1 + γ2 6 ε3 + 2. Moreover, without loss of generality, we can assume that
OQ′

1 is the shortest edge of P and α1 > α2. Since P has a face containing
three points Q′

1, (α1, 1, 0) and (α2, 0, 1), the inclusion

Int(P) ⊂ {(x, y, z) | x, y, z > 1, x+ (ε1 − α1)(y − 1)

+ (ε1 − α2)(z − 1) + ε1 − α1 − α2 + 1 6 0}
(7)

is derived from the inequality x+(ε1−α1)y+(ε1−α2)z−ε1 < 0. Similarly,
by considering the vertices Q′

2 and Q′
3, we obtain

Int(P) ⊂ {(x, y, z) | x, y, z > 1, (ε2 − β1)(x− 1) + y

+ (ε2 − β2)(z − 1) + ε2 − β1 − β2 + 1 6 0},
(8)

Int(P) ⊂ {(x, y, z) | x, y, z > 1, (ε3−γ1)(x−1)+(ε3−γ2)(y−1)

+ z + ε3 − γ1 − γ2 + 1 6 0}.
(9)

(i) Assume that α1 6 ε1, and let (x0, y0, z0) be a lattice point in
Int(P). By noting α1 > α2 and α1 + α2 6 ε1 + 2, we have x0 = 1 and
α1 + α2 = ε1 + 2 by (7). If α2 < ε1, we see that z0 = 1 by (7) and y0 = 1
by (8), which contradicts the assumption l(Int(P)) > 2. We thus have
α2 > ε1, and similarly β2 > ε2 and γ2 > ε3. Since ε1 = α1 = α2 = 2
in this case, ε2, ε3 6 2 follows from the shortestness of the edge OQ′

1.
Moreover, it follows from (2, 1, 0), (2, 0, 1) ∈ P that β1 > ε2 and γ1 > ε3.
As a consequence, we have (ε2, β1, β2) = (ε3, γ1, γ2) = (1, 1, 2). By the
shortestness of the edge OQ′

1 again, the faces P ∩Hx and P ∩Hx−2 are
one of the four types of polygons as in Fig. 4.
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Figure 4.

Then, considering the smoothness of P and the assumption l(Int(P)) >
2, there exist only three possibilities (P ∩ Hx,P ∩ Hx−1,P ∩ Hx−2) =
(G1, G4, G4), (G4, G4, G1), (G4, G4, G4). In the first two cases, we have
vol(P) = 9, l(P) = 27 and l(Int(P)) = 2. On the other hand, in the last
case, vol(P) = 10, l(P) = 30 and l(Int(P)) = 2. Hence the inequality
vol(P) > (l(P) + l(Int(P))− 4)/3 holds in each case.
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(ii) Suppose that ε1 + 1 6 α1 6 ε1 + 2 and β1, β2 6 ε2. Let (x0, y0, z0)
be a lattice point in Int(P). We have y0 = 1 and β1 + β2 = ε2 + 2 by (8).
Then, since ε1 − α2 > α1 − 2 > 0, we have x0 = 1 and α1 + α2 = ε1 + 2
by (7). By the assumption l(Int(P)) > 2, there must be an interior
lattice point such that z0 > 2. It follows that α2 = ε1 and β2 = ε2.
These facts, together with the shortestness of OQ′

1, immediately give that
ε1 = ε2 = α2 = β2 = 1 and α1 = β1 = 2. By using the shortestness of
OQ′

1 again, we see that P ∩Hx and P ∩Hy are unit squares, which yields
a contradiction l(Int(P)) = 0.

(iii) Suppose that ε1+1 6 α1 6 ε1+2 and β2 > ε2+1. Note that α1 > 2
and β1 6 1 in this case. Then β1 must be one since (2, 1, 0) ∈ P. Hence
P ∩Hz is a trapezoid Conv({O,Q′

1, (α1, 1, 0), Q2}), which contradicts the
shortestness of OQ′

1.

(iv) Suppose that ε1 + 1 6 α1 6 ε1 + 2 and β2 = 0. In this case, ε2

must be one by the smoothness of the vertex Q3. We thus have ε3 = 1
and γ2 = 0, which imply γ1 > 2 (namely, (1, 0, 2) ∈ P) by (9). By noting
(2, 0, 1) /∈ P, we see that P∩Hy is a trapezoid Conv({O,Q1, (1, 0, γ1), Q3}),
which contradicts the shortestness of OQ′

1.

(v) We finally consider the remaining case where ε1 + 1 6 α1 6 ε1 + 2,
β1 = ε2 + 1 and β2 = 1. If ε1 = 1, by the shortestness of OQ′

1, P ∩Hx

is a unit square, and P ∩ Hy is a unit triangle or a unit square. This
contradicts the assumption l(Int(P)) > 2. We thus assume ε1 > 2. Note
that α1 = ε1 + 1 and α2 = 1 in this case. Hence, if (x0, y0, z0) is a lattice
point in Int(P), x0 = y0 and z0 = 1 follow from (7) and (8). We define
ε4 = max{ε ∈ N | (ε, ε2 + ε, 0) ∈ P}, and put Q4 = (ε4, ε2 + ε4, 0). By
the smoothness of P, the vertex Q4 has three adjacent lattice points
(ε4 − 1, ε2 + ε4 − 1, 0), (δ1, δ1 + ε2 − 1, 0) and (δ2, δ2 + 1, 1) in E(P) (see
Fig. 5).
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If δ1 + δ2 > ε4 + 3, we put Pi = (i, ε2 + i, 0) for i = 0, . . . , ε4. Then

∂Pi
Pi is a triangle with vertices (i + 1, ε2 + i + 1, 0), (0, ε2 − 1, 0) and

(0, 1, 1) for i = 0, . . . , ε4 − 1, and ∂Pε4

Pε4 is a trapezoid

Conv({(0, ε2 − 1, 0), (δ1, δ1 + ε2 − 1, 0), (0, 1, 1), (δ2, δ2 + 1, 1)}).

The proof is finished since

µ(P0) > µ(P1)−
1

6
> · · · > µ(Pε4)−

ε4

6

> µ(Pε4+1) +
δ1 + δ2 − ε4 − 2

6
> µ(Pε1+1)

by Proposition 2.3. Finally, let us show that the case where δ1 + δ2 6

ε4 + 2 does not occur. Since P has a face containing three points Q4,
(δ1, δ1 + ε2 − 1, 0) and (δ2, δ2 + 1, 1), the inclusion

Int(P) ⊂ {(x, y, z) | x, y, z > 1, (ε4 − δ1 + 1)(x− 1)− (ε4 − δ1)(y − 1)

+ (δ1ε2 − ε2ε4 − δ1 − δ2 + 2ε4)(z − 1)

− δ1 − δ2 + ε4 + 2 6 0}

holds. As we have already mentioned, any interior lattice point of P can
be written as (x0, x0, 1). This contradicts the above inclusion and the
assumption l(Int(P)) > 2.

3. Application

In this section, we apply our result to the computation of the sectional
genus of a polarized toric variety. For an n-dimensional (smooth) complex
projective variety X and an ample line bundle L on X, the pair (X,L) is
called a (smooth) polarized variety. We remark that, in the case where L
is ample, the associated polytope �L is smooth if and only if X is smooth.
Let us review the classification theory of polarized varieties before getting
to the main subject. We first recall the well-known upper bound for the
geometric genus of a smooth curve.

Theorem 3.1 (Castelnuovo’s bound, [1]). Let C be a smooth curve of
genus g. Assume that C admits a birational map onto a nondegenerate
curve of degree d in Pr. Then

g 6
1

2
a(a− 1)(r − 1) + a(d− a(r − 1)− 1),

where a = ⌊(d− 1)/(r − 1)⌋.
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A smooth curve is said to be extremal if its genus is equal to Casteln-
uovo’s bound, which was studied in [4]. As a higher dimensional extension,
Fujita established various invariants for polarized varieties and proved a
similar inequality (Theorem 3.3).

Definition 3.2. For an n-dimensional smooth polarized variety (X,L),
we define the sectional genus and the ∆-genus by

g(X,L) =
1

2
Ln−1.((n− 1)L+KX) + 1,

∆(X,L) = Ln + n− h0(X,L).

Theorem 3.3 (cf. [5]). Let L be a line bundle on an n-dimensional
smooth projective variety X. If |L| has no base points and the associated
morphism Φ|L| is birational on its image, then

g(X,L) 6 a∆(X,L)−
1

2
a(a− 1)(Ln −∆(X,L)− 1),

where a = ⌊(Ln − 1)/(Ln −∆(X,L)− 1)⌋.

We call (X,L) a Castelnuovo variety if its sectional genus achieves the
maximum of the above upper bound. Castelnuovo varieties can be roughly
classified according to the relation between Ln and 2∆(X,L). First, the
case where Ln < 2∆(X,L) has been classified in [5]. If Ln = 2∆(X,L),
then (X,L) is a Mukai variety (i.e., KX ∈ |(2 − n)L|), which has been
classified in [11]. On the other hand, the case where Ln > 2∆(X,L) still
has many unknown aspects. Two- or three-dimensional polarized toric
varieties, which we consider below, contain examples of this case.

In the two-dimensional case, we do not need to use the results in this
paper, but only the Riemann-Roch theorem. To see this, let us introduce
the notion of a ladder.

Definition 3.4. Let (X,L) be an n-dimensional polarized variety, and
put X0 = X and L0 = L. A sequence X0 ⊃ X1 ⊃ · · · ⊃ Xn−1 of (smooth)
subvarieties of X is called a (smooth) ladder of (X,L) if Xi ∈ |Li−1| for
each i > 1, where we put Li = L|Xi

.

Theorem 3.5 (cf. [5]). Let (X,L) be an n-dimensional polarized variety
having a ladder. If Ln > 2∆(X,L), then L is very ample and g(X,L) =
∆(X,L).
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If X is smooth and L is generated by global sections, by virtue of
Bertini’s theorem, we obtain a smooth ladder of (X,L) by cutting Xi

by a general member of |Li|. Since any ample line bundle on a compact
toric variety is generated by global sections, a polarized toric variety
always has a smooth ladder. Using these results, let us now consider the
two-dimensional polarized toric varieties.

Theorem 3.6. For a smooth compact toric surface X and an ample line
bundle L on X, the polarized variety (X,L) is a Castelnuovo variety with
L2 > 2∆(X,L) + 2 unless L is a line in P2.

Proof. By the general theory of toric varieties,L is very ample, and we have
pa(X) = 0, h0(X,L) > 3 and h1(X,L) = h2(X,L) = 0. Hence we obtain
L2 = 2h0(X,L) +L.KX − 2 by the Riemann-Roch theorem. On the other
hand, since −L.KX is equal to l(∂�L), we have the inequality −L.KX > 3,
where the equality holds if and only if (X,L) ≃ (P2,OP2(1)). Consequently,
we have L2 6 2h0(X,L)−6, which implies that L2 > 2∆(X,L)+2. Then,
since g(X,L) = ∆(X,L) by Theorem 3.5, we can conclude that (X,L) is
a Castelnuovo variety.

Next, in order to investigate the three-dimensional case, we compute
the value of L2.KX . This computation also can be reduced to a matter
of the number of lattice points.

Lemma 3.7. For a three-dimensional smooth polarized toric variety
(X,L), the equality L2.KX = 2(h0(X,L+KX)− h0(X,L) + 2) holds.

Proof. We denote by D1, . . . , Dd the TN -invariant divisors of X, and by
Fi the face of �L corresponding to Di. It is known that KX ∼ −

∑d
i=1Di

and L2.Di is equal to twice of the area of Fi. Hence the statement of the
lemma can be rewritten as

d∑

i=1

vol(Fi) = −l(Int(�L)) + l(�L)− 2 = l(∂�L)− 2.

Let us compute the left-hand side by using Theorem 1.1 and Euler’s
polyhedron formula. Denote by v and e the number of vertices and edges
of �L, respectively. It follows from the smoothness of �L that every vertex
of �L has three edges. Hence we have 3v = 2e and

d∑

i=1

vol(Fi) =
1

2

d∑

i=1

(l(Fi) + l(Int(Fi))− 2) =
1

2
(2l(∂�L) + v)− d

= l(∂�L)− v + e− d = l(∂�L)− 2.
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Theorem 3.8. Let X be a three-dimensional smooth compact toric variety,
and L be an ample line bundle on X. Assume that (X,L) 6≃ (P3,OP3(1)).
Then a polarized variety (X,L) is a Castelnuovo variety if and only if

(i) X is a Fano variety and L ∼ −KX , or

(ii) h0(X,L+KX) = 0 and h0(X, 2L+KX) 6 h0(X,L)− 4.

We provide several additional explanations. The former case has been
classified into eighteen types in [2] and [17]. Besides, L3 = 2∆(X,L)
holds in this case. On the other hand, L3 > 2∆(X,L) holds in the
case (ii), and it is known that three-dimensional polarized toric varieties
with h0(X,L + KX) = 0 (not necessarily assume the latter inequality)
can be classified into five types (see [13]). We will see further details of
this classification after the proof. Incidentally, more generally, Fukuma
classified n-dimensional polarized varieties (not necessarily toric) with
h0(X, (n− 2)L+KX) = 0 in [6].

Proof of Theorem 3.8. If we rewrite the inequality in Theorem 3.1 by
using Lemma 3.7, we see that (X,L) is a Castelnuovo variety if and
only if

(a2 + a− 2)h0(X,L) = 2(2a2 + a− 3 + (a− 1)L3 − h0(X,L+KX)).
(10)

On the other hand, we have h0(X,L) 6 (L3−1)/a+4 by the definition
of a. By combining this inequality with (10), we see that

2ah0(X,L+KX) > (a− 1)(a− 2)(L3 − 1) (11)

holds if (X,L) is a Castelnuovo variety.
(i) We first consider the case where h0(X,L+KX) > 1. In order to

prove the sufficiency, we assume that (X,L) is a Castelnuovo variety. Note
that a > 2 by (10). By Corollary 1.6 and Lemma 3.7, we have

h0(X,L+KX) 6 h0(X,L+KX)+
1

4
(L3−2h0(X,L)−2h0(X,L+KX)+8)

=
1

4
L3 −

1

2
h0(X,L) +

1

2

(
1

2
L2.KX + h0(X,L)− 2

)
+ 2

=
1

4
L3 +

1

4
L2.KX + 1 6

1

4
L3,

where the last inequality follows from the fact that −L2.KX is twice the
sum of areas of faces of �L. Then the inequality (11) induces (2a2 − 7a+
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4)L3 6 2(a− 1)(a− 2). If a > 3, we have vol(�L) = L3/6 6 2/3, which
clearly contradicts the assumption l(Int(�L)) > 1. Hence we obtain a = 2.
Then, since

h0(X,L+KX) = L3 − 2h0(X,L) + 7 > 2h0(X,L+KX)− 1

by (10) and Corollary 1.6, we have h0(X,L+KX) = 1 and L3 = 2∆(X,L).
Hence (X,L) is a Mukai variety, which means that (X,L) ≃ (X,−KX)
is a Fano variety. Such varieties, so-called toric Fano three-folds, have
been classified into eighteen types in [2] and [17] independently (see (6)
in Section 2). Hence the necessity is checked by computing. For all types,
in practice, we can confirm that a = 2 and the equality (10) holds.

(ii) Assume that h0(X,L + KX) = 0 (equivalently, l(Int(�L)) = 0).
In this case, Theorem 1.2 gives

12vol(�L) = l(�2L) + l(Int(�2L))− 2l(�L)

= l(∂�2L) + 2l(Int(�2L))− 2l(�L)

= 4l(∂�L) + 2l(Int(�2L))− 2l(�L)− 6

= 2l(�L) + 2l(Int(�2L))− 6,

which implies that L3 = h0(X,L) + h0(X, 2L+KX)− 3. Therefore, the
inequality in the statement is equivalent to L3 6 2h0(X,L)−7. If (X,L) is
a Castelnuovo variety, we have a 6 2 by (11). In the case where a = 1, it is
clear that L3 < 2h0(X,L)−7 by the definition of a. On the other hand, if
a = 2, the condition (10) is equivalent to the equality L3 = 2h0(X,L)− 7.
Conversely, if L3 6 2h0(X,L)− 7, we have

a =

{
1 (L3 < 2h0(X,L)− 7),
2 (L3 = 2h0(X,L)− 7)

by definition. In either case, we can easily check that (X,L) satisfies (10).

By virtue of [13, Proposition 2.3], we can see the detailed structure of
(X,L) in the case (ii) in Theorem 3.8. If h0(X,L+KX) = 0, then X is
one of the following five types.

(a) a toric P1-bundle over a smooth toric surface.

(b) (X,L) ≃ (P3,OP3(k)) (k = 1, 2, 3).

(c) a toric P2-bundle P(OP1(a)⊕OP1(b)⊕OP1(c)) over P1.
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(d) a blow-up of P3 at TN -invariant i points (i = 1, 2, 3, 4).

(e) a blow-up of P(OP1(a)⊕OP1(b)⊕OP1(c)) at TN -invariant i points
(i = 1, 2).

In each case, the polytope �L is as follows. For simplicity, we put
m1 = (1, 0, 0), m2 = (0, 1, 0) and m3 = (0, 0, 1), and assume a > b > c
in the cases (c) and (e).

(a) Conv(F0∪F1), where F0 and F1 are parallel smooth faces of distance
one such that they define the same two-dimensional smooth fan.

(b) Conv({O, km1, km2, km3}).

(c) Conv({O,m1,m2, (1, 0, a), (0, 1, b), (0, 0, c)}) or
Conv({O, 2m1, 2m2, (2, 0, 2a− c), (0, 2, 2b− c), (0, 0, c)}).

(d) Conv({km1, km2, km3 | k = 1, 3}),
Conv({m1,m2,m3, 3m1, 3m2, 2m3, (1, 0, 2), (0, 1, 2)}),
Conv({m1,m2,m3, 3m1, 2m2, 2m3, (1, 2, 0), (0, 2, 1), (1, 0, 2),
(0, 1, 2)}) or Conv({km1, km2, km3, (2, 1, 0), (2, 0, 1), (1, 2, 0),
(0, 2, 1), (1, 0, 2), (0, 1, 2) | k = 1, 2}).

(e) a polytope obtained from Q by cutting of a unit three-simplex at
one of O, 2m1 and 2m2, where Q denotes the latter polytope in the
case (c),
a polytope obtained from the above one by cutting of a unit three-
simplex at one of (2, 0, 2a− c), (0, 2, 2b− c) and (0, 0, c).

By computing, we can check 6vol(�L) 6 2l(�L) − 8, that is,
(X,L) is a Castelnuovo variety in the latter four cases except for
Conv({O,m1,m2,m3}) (in which case L is a hyperplane in P3). On the
other hand, in the case (a), the value of vol(�L) varies greatly depending
on the shapes of F0 and F1. See the following examples.

Example 3.9. Let (X,L) be a three-dimensional polarized toric variety
of type (a).

(a1) If Fi = Conv({(i, 0, 0), (i, 3, 0), (i, 3, 3), (i, 0, 3)}, then 6vol(�L) =
2l(�L)− 10.

(a2) If Fi = Conv({(i, 0, 0), (i, 2, 0), (i, 3, 1), (i, 3, 2), (i, 2, 3), (i, 1, 3),
(i, 0, 2)}), then 6vol(�L) = 2l(�L)− 7.

(a3) If Fi = Conv({(i, 1, 0), (i, 2, 0), (i, 3, 1), (i, 3, 2), (i, 2, 3), (i, 1, 3),
(i, 0, 2), (i, 0, 1)}), then 6vol(�L) = 2l(�L)− 6.

In the first two cases, (X,L) is a Castelnuovo variety, while the last
one is not.
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of modules and their relations
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Abstract. In this paper, strongly-prime submodules of a
cyclic module are considered and their main properties are given. On
this basis, a concept of a cyclic spectrum of a module is introduced.
This spectrum is a generalization of the Rosenberg spectrum of a
noncommutative ring. In addition, some natural properties of this
spectrum are investigated, in particular, its functoriality is proved.

Introduction

In this paper, we consider strongly-prime ideals and modules. The
concept of strongly-prime ideal was introduced by Beachy in [1]. Also
in that paper the author introduced and investigated the concept of a
strongly-prime module. Independently, the concept of strongly-prime
module and submodule were introduced and investigated by Dauns in his
paper [3]. Also, the strongly-prime modules were investigated by Algirdas
Kaučikas in [2], where the author studied strongly-prime submodules
of cyclic modules, but he did not study the concept of the Rosenberg
spectrum for modules. The concept of pre-order on ideals was introduced
by Rosenberg, and this concept is a basic one in the definition of cyclic
spectrum, whose functoriality is investigated in this paper. Also we con-
sider the notion and some properties of torsion-theoretic spectra of rings
and modules. The notion and main properties of torsion-theoretic spectra
were introduced by Golan in [5]. The main result of this paper is the

Key words and phrases: strongly-prime ideal, strongly-prime module, cyclic
spectrum, torsion-theoretic spectrum, localizations.
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proof of the fact that there exists mapping from the cyclic spectrum to
the torsion-theoretic spectrum of module is continuous and surjective.

1. Strongly-prime ideals and modules

Let R be an associative ring with 1 6= 0. To have a reference, recall
some necessary concepts from the ring theory that are related to the
concept of spectrum of a noncommutative ring.

A left ideal p of a ring R is called prime, if for every x, y ∈ R, xRy ⊆ p

implies x ∈ p or y ∈ p. Clearly, any left prime ideal is two-sided if and
only if it is prime in the classical way. Set of all two-sided prime ideals is
denoted by Spec(R) and is called a (prime) spectrum of a ring R.

Recall the definition of a pre-order 6 on the set of left ideals of ring
R in the following way: a 6 b for left R-ideals a and b if and only if there
exists a finite subset V of ring R such that (a : V ) ⊆ b. A left prime
ideal p of a ring R is called a left Rosenberg point if (p : x) 6 p for any
x ∈ R\p, [8]. The set of all left Rosenberg points of a ring R is called a
left Rosenberg spectrum of R and is denoted by spec(R).

The space spec(R) may by defined in another way: this is the set of
all strongly prime left ideals. Recall that left ideal p of the ring R is called
strongly-prime, if for every x ∈ R\p there exist a finite set V of ring R
such that (p : V x) = {r ∈ R : rV x ⊆ p} ⊆ p. Clearly, every strongly-
prime left ideal of a ring R is a prime left ideal and every maximal
left ideal is strongly-prime. It is known that if R is noetherian, then
Spec(R) ⊆ spec(R).

Now let us recover the information about corresponding analogues of
the above concepts for left modules over a ring R.

The concept of strongly-prime module can be given in two ways.
A nonzero left module M over a ring R is called strongly-prime, if

for any nonzero x, y ∈M there exists a finite subset {a1, a2, . . . , an} ⊆ R
such that AnnR{a1x, a2x, . . . , anx} ⊆ AnnR{y}, (ra1x = ra2x = · · · =
ranx = 0), r ∈ R implies ry = 0.

In [1], the authors introduced such a concept of strongly-prime sub-
module. A nonzero left module M over a ring R is called strongly-prime,
if for any nonzero x ∈M there exists a finite subset {a1, a2, . . . , an} ⊆ R
such that AnnR{a1x, a2x, . . . , anx} = 0. If in this concept we put M = R,
we obtain the concept of a strongly-prime ring. Such strongly-prime rings
were studied in [4].

A submodule P of some module M is called strongly-prime, if the
quotient module M/P is a strongly-prime R-module. The set of all
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strongly-prime submodules of module M is called the left prime spectrum
of M and is denoted by spec(M). In particular, a left ideal p ⊂ R is called
strongly-prime if the quotient module R/p is a strongly-prime R-module.
In terms of elements, left ideal p ⊂ R is strongly-prime if for every u /∈ p

there exists such elements {a1, ..., an} ⊆ R and a natural number n = n(u)
such that ra1u, . . . , ranu ∈ p, r ∈ R implies r ∈ p.

2. Preorder on the set of modules and cyclic left spectrum

of module

It is easy to see that if R is a left noetherian ring and p ∈ Spec(R),
then R/p is a left noetherian prime ring. This implies that it is sufficient
to prove that in a left noetherian prime ring R zero ideal belongs to
spec(R). But taking into account the assumption that R is a prime Goldie
ring, for any 0 6= x ∈ R any two-sided ideal RxR is essential, thus there
exists a regular element a =

∑n
i=1 rixsi ∈ RxR (Using Goldie theorem).

Let V = {r1, . . . , rn} and y ∈ (0 : V x), then ya =
∑
yrixsi = 0. Since a

is regular, it follows that y = 0, hence 0 ∈ spec(R) indeed.
Clearly, it is necessary to demonstrate how to calculate prime left

ideals in an easy example. For this purpose we use the following example.

Example 1. Consider the matrix ring R = M2(k) over a (commutative)
field k.

It is well known that Spec(R) = {0}. Let L be a nonzero left R-ideal
and 0 6= r ∈ L. Since all nonzero left ideals of the ring R are maximal,
L = Rr. Multiplying r by the matrix units e11 and e12 resp., it easily
follows that we may assume r to be of the form r =

(
a b
0 0

)
, for some

nonzero string ( a b ) ∈ k2. One thus finds L = R
(
a b
0 0

)
= [a, b]k.

Moreover, [a, b]k = [a′, b′]k if and only if there exists such c ∈ k that
a = ca′ and b = cb′. Then spec(R) = {[a, b]k | a, b ∈ k} may be identified
with the projective line P 1

k (with "generic point" (0) = [0, 0]k). (See [6])
As in [8] we introduce a preorder 6 on the set of all left ideals by

putting K 6 L for a pair of left R-ideals L and K if and only if there
exists a finite subset V of the ring R such that (K : V ) ⊆ L.

Let us try to establish a preorder on the modules. Let R be a regular
module over itself with generator 1. Then M = R · 1 is a cyclic module.

Theorem 1. Every cyclic module is isomorphic to the quotient module
of a regular module by the annihilator of a generator R ·m = R/Ann(m),
where Ann(m) is the left annihilator of a generator m.
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Consider some submodules of a cyclic module M which is presented as
Rm = R/Ann(m) for the generatorm. Let L,K be some submodules. We
can represent L = A/Ann(m) and K = B/Ann(m) for some left ideals
A and B of a ring R. Then we define L = A/Ann(m) 6 K = B/Ann(m)
if and only if A 6 B as the Rosenberg ideals. All properties are carried
out. Thus the spectrum of a cyclic module is the set of all ideals that are
in the spectrum of ring R.

It is well known that any module is the sum of its cyclic submodules.
Then the cyclic spectrum of a arbitrary module M is defined as the union
of all spectra of its cyclic submodules. The cyclic spectrum of module
M is denoted by Cspec(M). Then we can define L 6 K ⇐⇒ Cspec(L) ⊆
Cspec(K) for all submodules of the module M and obtain a preorder on
the family of such submodules.

Example 2. Let M = {( ab ) |a, b ∈ k} be module of columns with height 2
over ring R = M2(k), where k is commutative field.

This module is cyclic with generator e = ( 1
0 ), that is, M = R× ( 1

0 ).
Then Ann(( 1

0 )) = {
(

0 b
0 d

)
|b, d ∈ k}, thus M/Ann(( 1

0 )) ∼= {( a 0
c 0 ) |a, c ∈ k}.

The maximal submodule is {(( 1
0 ))}, hence cyclic spectrum consists of one

point.

Lemma 1. Let L and K be left cyclic R-modules. Then L 6 K if and
only if there exists a cyclic left R-module X, a monomorphism X ֋ Ln

and an epimorphism X ։ K. In other words, there exists a diagram
(L)n ֋ X ։ K.

Proof. Recall the definition of preorder for submodules of a cyclic module.
Let L, K be some submodules. We can represent L = A/Ann(m) and
K = B/Ann(m) for some left ideals A and B of the ring R. Then we
define L = A/Ann(m) 6 K = B/Ann(m) iff A 6 B as Rosenberg ideals.
Thus consider two cyclic modules L and K. They are fully represented by
their ideals A and B. Than if A 6 B by the definition, than there exists
a finite subset V ⊆ R, such that (A : V ) 6 B. Put V = {v1, . . . , vn} and
let X = R~v be a cyclic module, where ~v = {v1, . . . , vn} ∈ (L)n. Than we
have

(0 : ~v) = ∩ni=1(A : vi) = (A : V ) ⊆ B,

which implies that there exists a surjection X ։ K.

On the other hand, assume that there exists a diagram (L)n ֋α

X ։β K. Thus we can find such element x ∈ X, that β(x) = ~1. Put
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α(x) = (~v1, . . . , ~vn) ∈ (L)n, where (~v1, . . . , ~vn) ∈ A for some vi ∈ R.
Put V = {v1, . . . , vn} and than we have

(A : V ) = ∩ni=1(A : vi) = (0 : ~v) = (0 : x) ⊆ B,

so A 6 B and L 6 K.

Usually from the preorder 6 we obtain an equivalence relation ∼
as follows: K ∼ L iff K 6 L and L 6 K. The equivalence class of the
submodule L will be denoted by [L].

Lemma 2 (11). If P is a strongly-prime module, then for any element
x ∈M the following properties are equivalent:

(1) x /∈ P;

(2) (P : x) 6 P;

(3) (P : x) ∈ [P].

Lemma 3. Let M be cyclic module. If P ∈ Cspec(M) and if L and K
are submodules such that L ∩K 6 P, then either L 6 P or K 6 P.

Proof. Let L � P and K � P and let L∩K 6 P. Thus, by the definition,
there exist ideals A, B and p of the ring R, such that L = A/Ann(m),
K = B/Ann(m) and P = p/Ann(m). Then there exists a finite subset
V of the ring R, such that (A∩B : V ) ⊆ p. Since A � p, this implies that
(A : F ) * p for some finite subset F of the ring R. Thus, if we take F = V ,
we obtain the fact, that (A : V ) * p. Now, if x ∈ (A : V )− p, then there
exists a finite set W ⊆ R with the property that (p : Wx) ⊆ p. Since
K � p, we have b � p, get fact that (B : F ) � p for any finite set F ⊆ R.
In particular, this holds for F = WxV , thus we can find an element
y ∈ (B : WxV ) − p. Finally, x ∈ (A : V ) implies that yWxV ⊆ B,
and y belongs to the set (B : WxV ). Certainly, yWxV ⊆ B, then
yWxV ⊆ A ∩B and yWx ⊆ (A ∩B : V ) ⊆ p. Thus, y ∈ (p : Wx) ⊆ p,
that contradicts to the fact, that y /∈ p.

Similarly

Lemma 4. If P ∈ Cspec(R) and if L and K are submodules such that
LK 6 P, then either L 6 P or K 6 P.

Recall the operation of multiplication of the submodules of cyclic
module R/c. Any submodule of cyclic module can be viewed as the
quotient-module of some left ideal by some other left ideal. Let we have
two such submodules L ∼= a/c and K ∼= b/c. Then L ·K = a/c ·b/c = ab/c.
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Lemma 5. Let P and Q be strongly-prime submodules of the cyclic
module M . Then the following holds:

(1) If P ∼ Q, then P ∩Q is a strongly-prime module and P ∼ P ∩Q;

(2) If P ∩Q is a strongly-prime module, then either P ⊆ Q or P ⊇ Q

or P ∼ Q.

Proof. Let P and Q be strongly-prime submodules of a cyclic module
M . Thus, for every submodule of a cyclic module there exist ideals
P = p/Ann(m) and Q = q/Ann(m), where P 6 Q if and only if p 6 q as
Rosenberg ideals. Similarly, we can formulate the definition of equivalence
relation. Thus let p ∼ q and x /∈ p∩ q. Let x /∈ p, thus there exists a finite
subset V ⊆ R, such that (p : V x) ⊆ p. If x /∈ q, then (q : Wx) ⊆ q for some
finite subset W of the ring R. Let U = V ∪W , then (p ∩ q : Ux) ⊆ p ∩ q.
If x ∈ q, then (q : V x) = R, hence (p ∩ q : V x) ⊆ p. Since p ∼ q by the
assumption, p 6 q, and thus (p : U) ⊆ q for some finite subset U ⊆ R,
and since we may assume that 1 ∈ U , we obtain

(p ∩ q : UV x) = ((p ∩ q : V x) : U) ⊆ (p : U) ⊆ q.

Moreover, since V ⊆ UV , we also have

(p ∩ q : UV x) ⊆ (p ∩ q : V x) ⊆ p,

hence (p ∩ q : UV x) ⊆ p ∩ q, thus p ∩ q is a strongly prime ideal. Clearly
p ∩ q 6 p. On the other hand, since p 6 q, there exists a finite subset
V ⊆ R, with (p : V ) ⊆ q. We may obviously assume that 1 ∈ V , thus we
have (p : V ) ⊆ p. Hence (p : V ) ⊆ p ∩ q, so p 6 p ∩ q and p ∼ p ∩ q.

Let us now assume that p∩q is a strongly-prime ideal while p * q and
p + q. Sinc such a p * q there exists an element x ∈ p− q. Thus x /∈ p∩ q
and we may find a finite subset V ⊆ R such that (p ∩ q : V x) ⊆ p ∩ q.
Since (p : V x) = R, this yields (q : V x) ⊆ p ∩ q ⊆ p, hence p 6 q. By
symmetry p > q, and thus p ∼ q.

We easy obtain the following corollary:

Corollary 1. Let P1, . . . ,Pn be a finite family of strongly-prime modules,
such that P1 ∼ · · · ∼ Pn, then ∩ni=1Pi is a strongly-prime module and
P1 ∼ ∩

n
i=1Pi.

For any left module M , it’s submodule N is called strongly two-sided,
if left annihilator of every element of N is two-sided ideal. Clearly, new
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submodule is two-sided. Thus the set of such submodules is not empty,
because the zero submodule is strongly two-sided submodule. The sum of
all strongly two-sided submodules is called the bound of the submodule N .
In other words, the bound of the module is the largest submodule among
those that have two-sided left annihilators for all their elements. In the
case when M = N we are talking about the concept of a bound of the
module. As follows, the bound of the module M is the largest strongly
two-sided submodule of the module M . Denote the bound of a submodule
N by b(N), the bound of the module M by b(M).

Lemma 6. For every strongly-prime left submodule P of the module M
we have b(p) ∈ Cspec(M).

Proof. Let x, y ∈ M by elements, such that xRy ⊆ b(P). Assume that
y /∈ b(P). Then there exists such an element s ∈ R with ys /∈ P. For
every r ∈ R, (xr)R(ys) ⊆ (xRy)s ⊆ b(P)s ⊆ b(P) ⊆ P. Hence rx ∈ P.
Thus xR ⊆ b(P), which proves the assertion.

Lemma 7. If L 6 K are left R-modules, then b(L) ⊆ b(K). Conversely,
if R is a left noetherian fully-bounded ring, and if b(L) ⊆ b(K), then
L 6 K.

Proof. Since L 6 K, there exists a representation L = A/Ann(m) and
K = B/Ann(m) for some left ideals A and B of the ring R. Then A 6 B.
Thus there exist a finite subset V ⊆ R, that (A : V ) ⊆ B. Then for every
elements r ∈ b(L) and s ∈ R, we have rs ∈ A, therefor r ∈ (A : s). Thus
r ∈ (A : V ) = ∩s∈V (A : s). Since the former is contained in B, we have
b(L) ⊆ K, hence b(L) ⊆ b(K).

On the other hand, if R is a left noetherian fully-bounded ring, then
there exists a finite subset V = {v1, . . . , vn} ⊆ R such that b(L) =
∩ni=1(A : vi) = (A : V ). Hence (A : V ) = b(A) ⊆ b(B) ⊆ B, and A 6 B,
therefore L 6 K.

Corollary 2. Let L and K be left modules such that L ∼ K, then b(L) =
b(K). Moreover if R is a left noetherian fully-bounded ring, then the
converse is also true.

3. Functoriality of cyclic spectrum of module

The cyclic spectrum construction can be regarded as a contravariant
functor from the category of modules to the category of sets,

CSpec: Mod→ Set .
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A contravariant functor CSpec is a rule assigning to each module M
over an associative ring R the set CSpec(M), the cyclic spectrum, i.e. the
set of submodules that are related in that spectrum, and to each module
homomorphism f : M1 →M2 the map of sets

Cspec(M1)→ Cspec(M2),

P 7→ f−1(P ).

Consider the endomorphism ring E = End(M), and also consider
the center of that ring, denoted by C = {c ∈ E | cr = rc,∀r ∈ E}.
Consider the construction of partial algebra over the ring C. It is the
set Q with a reflexive, symmetric binary relation ⊥ ⊆ Q × Q (called
commeasurability), partial addition and multiplication operations "+"
and "·", that are functions I → Q, a scalar multiplication operation
E ×Q→ Q, and elements 0, 1 ∈ C, such that the following axioms are
satisfied:

(1) for all q ∈ Q, a⊥0 and a⊥1;

(2) the relation ⊥ is preserved by the partial binary operations: for all
q1, q2, q3 ∈ Q, with qi⊥qj (1 6 i, j 6 3) and for all λ ∈ C, one has
(q1 + q2)⊥q3, (q1 · q2)⊥q3 and (λq1)⊥q2;

(3) if qi⊥qj for 1 6 i, j 6 3, then the values of all polynomials in q1, q2

and q3 form a commutative algebra.

Commeasurability subalgebra of a partial C-algebra Q is a subset
Z ⊆ Q consisting of pairwise commeasurable elements that is closed
under C-scalar multiplication and the partial binary operations of Q.

Given functors K : A → B and S : A → C, we recall that the (right)
Kan extension of S along K is a functor L : B → C with a natural
transformation ε : LK → S such that for any other functor F : B → C
with a natural transformation η : FK → S there is a unique natural
transformation δ : F → L, such that η = ε ◦ (δK).

Theorem 2. The functor Cspec: Modop → Set, with the identity
natural transformation Cspec |Comm Modop → CSpec is the Kan extension
of the functor Cspec: Comm Modop → Set along the embedding
Comm Modop ⊆ Modop.

Proof. Let F : Mod → Set be a contravariant functor with a
fixed natural transformation η : F |Comm Mod → Spec. Consider func-
tor C-Spec: Comm Mod → CSpec. We need to show that there



294 Cyclic left and torsion-theoretic spectra

is a unique natural transformation δ : F → CSpec, that induces
η : F |Comm Mod → CSpec upon a restriction to Comm Mod ⊆ Mod. To
construct it, fix ring R and module M over it. For every submodule
N ⊆ M over ring R the inclusion N ⊆ M given a morphisms of sets
F (M) → F (N), and η provides a morphisms ηN : F (N) → CSpec(N);
these compose to give morphisms F (M)→ CSpec(N). By naturality of
the morphisms involved, these maps of F (M) collectively form a cone
over the diagram obtained for submodules of module. By the universal
property of limit, there exists a unique arrow making corresponding
diagram commutative for all N ⊆M .

Defined morphisms δM form the components of a natural transfor-
mation δ : F → CSec. By construction, δ induces η when restricted
to Comm Mod. Uniquness of δ is guaranteed by the uniqueness of the
indicated arrow used to define δM above.

4. Localisations

Recall some definitions. By a torsion-theoretic spectrum we mean the
space of all prime torsion theories (or prime Gabriel filters of a main
ring) in the category of left R-modules with Zarisky topology. Recall
that prime torsion theory π ∈ R − tors is a torsion theory, for which
π = χ(R/I) for some critical ideal I of the ring R, where R − tors is
class of all torsion theories of the category R-mod and χ(R/I) is the
torsion theory, cogenerated by module E(R/I). If τ is torsion theory of
the category R-mod, then left R-module M is called torsion free module
if and only if there exist R from M into some member of τ . Class of all
torsion free modules for some τ is denote by Fτ . Further information
about the prime torsion theories can be fund in [5].

Remark 1. The class of all torsion theories R-tors can be partially
ordered by setting τ 6 τ ′ if and only if Tτ ⊆ Tτ ′ , namely, the class of
all torsion modules of one torsion theory is contained in the class of all
torsion modules of other torsion theory.

Introduce the notion of torsion-theoretic spectrum of a module M . Use
the concepts of torsion-theoretic spectrum of a ring R introduced above.
Introduce the concept of support of module M : supp(M) = {σ|σ(M) 6= 0}.
Torsion-theoretic spectrum of module M , R-Sp(M) is defined as R-sp(R)∩
supp(M).

If M is a left R-module, denote by ξ(M) the smallest torsion theory
such that M will be a torsion module, by χ(M) the largest torsion theory,
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that M will be a torsion-free module. Clearly, Tχ(M) consists of R-modules
N such that HomR(N,E(M)) = 0, where E(M) is the injective hull of a
module M .

Lemma 8. If σ is a torsion theory and P is a left Rosenberg point of a
cyclic module M , then M/P is either a σ-torsion module or a σ-torsion
free module.

Proof. Assume that M/P /∈ Fσ. If P is a left Rosenberg point, then there
exists ideal p of a ring R such that P = p/Ann(m). Pick an element
0 = x̄ ∈ σ(R/p). Thus, there exists a finite subset V of the ring R with
(p : V x) ⊆ p. Obviously, V x̄ ⊆ σ(R/p), hence, for every element v ∈ V
there exists left ideal Lv ∈ L(σ) such that Lvvx ⊆ p. Let L = ∩v∈LLv,
then L ∈ L(σ) and LV x ⊆ p. Hence L ⊆ (p : V x) ⊆ p and p ∈ L(σ), and
therefore M/P is σ-torsion module.

Proposition 1. If M is a fully bounded left noetherian module and
P ∈ Cspec(M), then the torsion theory τP = χ(M/P) cogenerated by
module M/P is prime.

Proof. Obviously, P /∈ L(τP), therefore M/P is a τP-torsion free module.
Thus, since χ(M/P) is the largest torsion theory for which M/P is
torsion free module. We have χ(M/P) 6 τP. Conversely, assume that
L(χ(M/P)) * L(τP). Take L ∈ L(χ(M/P))−L(τP), then L 6 P. Thus,
by the definition, A 6 p for some ideals A and p of the ring R. Thus there
exists a finite subset U ⊆ R such that ∩u∈U (A : u) = (A : U) ⊆ p. Hence
p ∈ L(χ(M/P)), contradicting the definition of χ(M/P).

The previous statements imply the following result.

Theorem 3. The mapping Φ: Cspec(M)→M-sp, where Φ(P)=χ(M/P)
is continuous and surjective.
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Constructing R-sequencings and terraces

for groups of even order
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Abstract. The problem of finding R-sequencings for abelian
groups of even orders has been reduced to that of finding R∗-
sequencings for abelian groups of odd orders except in the case
when the Sylow 2-subgroup is a non-cyclic non-elementary-abelian
group of order 8. We partially address this exception, including all
instances when the group has order 8t for t congruent to 1, 2, 3
or 4 (mod 7). As much is known about which odd-order abelian
groups are R∗-sequenceable, we have constructions of R-sequencings
for many new families of abelian groups. The construction is gen-
eralisable in several directions, leading to a wide array of new R-
sequenceable and terraceable non-abelian groups of even order.

1. Introduction

There are several problems, usually arising from methods to construct
combinatorial objects, that require elements of a finite group to be listed
in a way that satistfies various constraints. In this paper we consider
R-sequenceability and terraceability, the combinatorial consequences of
which include constructions of graph decompositions, quasi-complete Latin
squares and neighbor-balanced designs, among others.

First we look at R-sequenceability and R∗-sequenceability; secondly
we see how we can relax some of the constraints to give R∗-terraces, and
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Key words and phrases: 2-sequencing; Bailey’s Conjecture; R-sequencing; ter-

race.
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from there terraces. These results allow us to construct R-sequencings
and terraces for many groups that were not previously known to possess
them, edging closer to answering the longstanding questions of exactly
which groups are R-sequenceable or terraceable.

We often need to consider circular lists, where the first element is taken
to be to the right of the last element. As in [10], in such a case we add
a hooked arrow (a1, a2, . . . , an ←֓) and calculate subscripts modulo the
length of the list. Some groups we will refer to throughout the paper: Let Zr
be the additively written cyclic group on the symbols {0, 1, . . . , r − 1},
let D2r be the dihedral groups of order 2r defined by

D2r = 〈u, v : ur = e = v2, vu = u−1v〉,

let Q4r be the dicyclic group of order 4r defined by

Q4r = 〈u, v : u2r = e, v2 = ur, vu = u−1v〉,

and let A4 be the alternating group on 4 symbols.
Let G be a group of order n and let a = (a1, a2, . . . , an−1 ←֓) be

a circular arrangement of the non-identity elements of G. Define b =
(b1, b2, . . . , bn−1 ←֓) by bi = a−1

i ai+1 for each i. If the elements of b are
also all of the non-identity elements of G then b is a rotational sequencing
or R-sequencing of G and a is the corresponding directed rotational terrace
or directed R-terrace of G. If G has an R-sequencing then it is said to
be R-sequenceable. If, in addition, we have that a2an−1 = a1 = an−1a2

then a is a directed R∗-terrace, b is an R∗-sequencing and G is said to be
R∗-sequenceable.

Inspired by a map-colouring problem of Ringel, R-sequenceability was
introduced by Friedlander, Gordon and Miller in [5]. Various different
definitions, all equivalent to the above, are used in the literature; see, for
example, [1, 5, 9, 12,17].

Example 1. The following is a directed R∗-terrace for Z11:

(5, 6, 9, 3, 7, 4, 2, 1, 8, 10 ←֓).

Its R∗-sequencing is

(1, 3, 5, 4, 8, 9, 10, 7, 2, 6 ←֓).

Much is known about the R-sequenceability of abelian groups. Fried-
lander, Gordon and Miller [5] conjecture that the only abelian groups that
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are not R-sequenceable are those with exactly one involution (which they
prove cannot be R-sequenced). For even-order abelian groups the only
groups for which the conjecture is open are those with non-cyclic Sylow
2-subgroups of order 8. Some new infinite families of groups whose Sylow
2-subgroups are isomorphic to Z4×Z2 are shown to be R-sequenceable in
Section 3, including those of order 8t with an R∗-sequenceable subgroup
of order t with t congruent to 1, 2, 3 or 4 (mod 7).

In the non-abelian case several infinite families of R-sequenceable
groups are known, including dihedral and dicyclic groups D2n and Q4n

when n is even and n > 2. See [11] for a recent survey of results. More are
added in Section 3, including groups of the form H1×H2× · · · ×Hs×K,
where each Hi is one of, Z2

2, Z3
2, D8, Z6 × Z2, D12 or A4 and K is R∗-

sequenceable.

Again, let G be a group of order n, but now let a = (a1, a2, . . . , an) be
a linear arrangement of the elements of G. Define b = (b1, b2, . . . , bn−1)
by bi = a−1

i ai+1 for each i. If b contains one occurrence of each involution
of G and exactly two occurrences of elements from each set

{g, g−1 : g2 6= e}

then a is a terrace for G and b is its associated 2-sequencing.

Example 2. The following is a terrace for Z11:

(0, 2, 1, 8, 10, 5, 6, 9, 3, 7, 4).

Its 2-sequencing is

(2, 10, 7, 2, 6, 1, 3, 5, 4, 8).

Terraces were introduced by Bailey [4] as a tool for constructing quasi-
complete Latin squares; similar ideas had been used earlier by Williams [21]
(restricted to cyclic groups) and Gordon [7] (in the case of directed terraces;
those whose 2-sequencings have no repeated entries, in which case they
are called sequencings). Bailey’s Conjecture is that all groups other than
non-cyclic elementary abelian 2-groups are terraced (it is known that
non-cyclic elementary abelian 2-groups cannot be terraced [4]). This was
proven for abelian groups in [16] and many nonabelian groups are known
to have terraces. See [11] for more details on these topics. In Section 4 we
add more groups, including direct products comprised of arbitrarily many
non-cyclic, non-dicyclic groups of order 12, an R∗-sequenceable group and,
optionally, a group of odd order.
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For our constructions we are interested in direct and central factors of
a group. If a group G can be written as a direct product H ×K then H
is a direct factor of G. More generally, suppose H E G and let

CG(H) = {g ∈ G : gh = hg for all h ∈ H}

be the centralizer of H in G. If G = HCG(H) then H is a central factor
of G. Direct factors are also central factors but central factors are not
necessarily direct factors.

In the next section we give the main construction on which all the re-
sults rely. In Section 3 we see how it can be used to produce R-sequencings
and in Section 4 we consider how it can be adapted to produce terraces.

2. The construction

We present the main construction for a circular sequence of the non-
identity elements of our target group G, which has order n = 4mt and is
of the form H ×K with |H| = 4m and |K| = t.

Given a circular sequence a = (a1, a2, . . . , a4m−1 ←֓) of the non-
identity elements of H, a permutation σ ∈ S4m−1, and a circular sequence
k = (k1, k2, . . . , kt−1 ←֓) of the non-identity elements of K with kt−1k2 =
k1 = k2kt−1, we construct a sequence in H×K from 4m+1 subsequences.
Let b = (b1, b2, . . . , b4m−1 ←֓) be the quotients associated with a; that
is, bi = a−1

i ai+1 for each i. Similarly, let ℓ = (ℓ1, ℓ2, . . . , ℓt−1 ←֓) be the
quotients associated with k; so ℓi = k−1

i ki+1 for each i.

In practice, a will always be a directed R-terrace. In the next section k
will be a directed R∗-terrace and in Section 4 it will be a weaker object,
an “R-terrace".

The first three subsequences each have distinct characteristics. These
are followed by 2m − 1 that follow one pattern and then 2m − 2 that
follow a slightly different one. The final subsequence has just one element.
We define them in turn, noting the internal quotients that they generate
as we go, and then consider the quotients generated at the joins.

Note that in calculating the quotients we make use of the condition
kt−1k2 = k1 = k2kt−1. In particular, we use that k2 = ℓt−1 and k−1

t−1 = ℓ1.
Also, recall that for circular lists subscripts are calculated modulo the
length of the list.

The first subsequence is

(e, k1), (e, k2), . . . , (e, kt−2)
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which has internal quotients

(e, ℓ1), (e, ℓ2), . . . , (e, ℓt−3).

The second subsequence is

(aσ(1)−2m, kt−1), (aσ(1)−2m+1, k1), (aσ(1)−2m+2, k1),

(aσ(1)−2m+3, k1), . . . , (aσ(1), k1), (aσ(1)+1, k1),

(aσ(1)+2, k2), (aσ(1)+3, k3), . . . , (aσ(1)+t−2, kt−2)

which has internal quotients

(bσ(1)−2m, ℓt−1), (bσ(1)−2m+1, e), (bσ(1)−2m+2, e),

(bσ(1)−2m+3, e), . . . , (bσ(1), e), (bσ(1)+1, ℓ1),

(bσ(1)+2, ℓ2), (bσ(1)+3, ℓ3), . . . , (bσ(1)+t−3, ℓt−3).

The third subsequence is

(aσ(2)−2m+1, kt−1), (aσ(1)−2m+2, e), (aσ(1)−2m+3, e),

(aσ(1)−2m+4, e), . . . , (aσ(2), e), (aσ(2)+1, e),

(aσ(2)+2, k2), (aσ(3)+3, k3), . . . , (aσ(2)+t−2, kt−2)

which has internal quotients

(bσ(2)−2m+1, ℓ1), (bσ(2)−2m+2, e), (bσ(2)−2m+3, e),

(bσ(2)−2m+4, e), . . . , (bσ(2), e), (bσ(2)+1, ℓt−1),

(bσ(2)+2, ℓ2), (bσ(2)+3, ℓ3), . . . , (bσ(2)+t−3, ℓt−3).

For i in the range 4 6 i 6 2m+ 2, the ith subsequence is

(aσ(i−1), kt−1), (aσ(i−1)+1, e), (aσ(i−1)+2, k2),

(aσ(i−1)+3, k3), (aσ(i−1)+4, k4), . . . , (aσ(i−1)+t−2, kt−2)

which has internal quotients

(bσ(i−1), ℓ1), (bσ(i−1)+1, ℓt−1), (bσ(i−1)+2, ℓ2),

(bσ(i−1)+3, ℓ3), (bσ(i−1)+4, ℓ4), . . . , (bσ(i−1)+t−3, ℓt−3).
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For i in the range 2m+ 3 6 i 6 4m, the ith subsequence is

(aσ(i−1), kt−1), (aσ(i−1)+1, k1), (aσ(i−1)+2, k2),

(aσ(i−1)+3, k3), (aσ(i−1)+4, k4), . . . , (aσ(i−1)+t−2, kt−2)

which has internal quotients

(bσ(i−1), ℓt−1), (bσ(i−1)+1, ℓ1), (bσ(i−1)+2, ℓ2),

(bσ(i−1)+3, ℓ3), (bσ(i−1)+4, ℓ4), . . . , (bσ(i−1)+t−3, ℓt−3).

Note that the only difference in the structure of these subsequences
compared to the previous ones is in the second coordinate of the second
element, meaning that the only changes in structure in the quotients are
in the second coordinates of the first and second elements. Also note that
there are no subsequences of this form when m = 1.

The final subsequence consists of the single element (e, kt−1). Of course,
this gives rise to no internal quotients.

The quotients generated where the subsequences join are

(aσ(1)−2m, ℓt−2), (a−1
σ(1)+t−1aσ(2)−2m+1, ℓt−2),

(a−1
σ(2)+t−1aσ(3), ℓt−2), (a−1

σ(3)+t−1aσ(4), ℓt−2), . . . ,

(a−1
σ(4m−2)+t−1aσ(4m−1), ℓt−2), (a−1

σ(4m−1)+t−1, ℓt−2)

(the fourth to the penultimate one, inclusive, are excluded when m = 1).
Finally, (e, ℓt−1) is the quotient generated between the last subsequence
and the first.

When we come to prove that the main construction gives directed
R∗-terraces and other similar objects, we will see that the permutation σ
is responsible for lining up the subsequences in such a way that all of the
properties we need are satisfied. In order to do this successfully, we also
need constraints on the permutation.

Say that σ ∈ S4m−1 is admissible if σ(2) = σ(1)− 2m and

{σ(3), σ(4), . . . , σ(2m+ 1)} = {σ(2) + 1, σ(2) + 2, . . . , σ(2) + 2m− 1}

where all calculations are performed modulo 4m− 1.
For a positive integer t, the pair a and σ are t-compatible if the following

4m elements are distinct (i.e. are all of H):

aσ(1)−2m, a
−1
σ(1)+t−1aσ(2)−2m+1, a

−1
σ(4m−1)+t−1
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and

a−1
σ(i)+t−1aσ(i+1)

for each i with 1 < i < 4m− 1.

3. R-sequencings

We can now prove the main results for R-sequencings. Theorem 1
gives the case where G has a direct factor of order a multiple of 4, which
is sufficient for the abelian group case, and Theorem 4 gives the variant
for a central factor.

Theorem 1. Let G = H ×K with |H| = 4m and |K| = t. If H has an
R-sequencing with a t-compatible σ ∈ S4m−1 and K is R∗-sequenceable
then G is R∗-sequenceable.

Proof. Let a be the directed R-terrace of H and k be the directed R∗-
terrace of K, with the usual notation for their elements and quotients.
Apply the main construction to get a circular sequence of elements in G
and their quotients. We check that all elements of H appear with each
element of K (with the exception that (e, e) does not appear) in each of
the sequence and its quotients.

The elements that appear with k1 in the sequence are:

e, aσ(1)−2m+1, aσ(1)−2m+2, . . . , aσ(1), aσ(1)+1,

aσ(2m+2)+1, aσ(2m+3)+1, . . . , aσ(4m−1)+1.

When m > 1, the admissibility of σ implies that the two sets

{σ(2m+ 2), σ(2m+ 3), . . . , σ(4m− 1)}

and

{σ(1) + 1, σ(1) + 2, . . . , σ(1) + 2m− 2}

are equal as each has all of the numbers from 1 to 4m− 1 except for

{σ(2), σ(2) + 1, σ(2) + 2, . . . , σ(2) + 2m}

(recall that these calculations are performed modulo 4m− 1). Applying
this to the last 2m−2 elements we see that the sequence contains all of the
elements of H. When m = 1 we have the elements aσ(1)−1, aσ(1), aσ(1)+1

which are distinct.
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The elements that appear with kj , for 2 6 j 6 t− 2 are:

e, aσ(1)+j , aσ(2)+j , . . . , aσ(4m−1)+j

which comprise all of the elements of H.

The elements that appear with kt−1 are:

aσ(1)−2m, aσ(2)−2m+1, aσ(3), aσ(4), . . . , aσ(4m−1).

Applying the first clause of the admissibility definition to the first two
elements we see that these are all of the non-identity elements of H.

The elements that appear with e are:

aσ(2)−2m+2, aσ(2)−2m+3, aσ(2)−2m+4, . . . , aσ(2),

aσ(2)+1, aσ(3)+1, aσ(4)+1, . . . , aσ(2m+1)+1.

Applying the second clause of the admissibility definition to the last 2m−1
elements we see that these are all of the non-identity elements of H.

Turning to the sequence of quotients, the elements that appear with
ℓ1 are:

e, bσ(1)+1, bσ(2)−2m+1, bσ(3), bσ(4), . . . , bσ(2m+1),

bσ(2m+2)+1, bσ(2m+3)+1, . . . , bσ(4m−1)+1.

The admissibility of σ implies that

{σ(2), σ(2m+ 2), σ(2m+ 3), . . . , σ(4m− 1)} =

{σ(1) + 1, σ(2m+ 2) + 1, σ(2m+ 3) + 1, . . . , σ(4m− 1) + 1}.

Coupled with the first clause of the admissibility definition applied to the
third element we see that the sequence contains all of the elements of H.

The elements that appear with ℓj , for 2 6 j 6 t− 3 are:

e, bσ(1)+j , bσ(2)+j , . . . , bσ(4m−1)+j .

These are all of the elements of H.

The elements that appear with ℓt−2 are:

aσ(1)−2m, a
−1
σ(1)+t−1aσ(2)−2m+1, a

−1
σ(2)+t−1aσ(3),

a−1
σ(3)+t−1aσ(4), . . . , a

−1
σ(4m−2)+t−1aσ(4m−1), aσ(4m−1)+t−1.
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As a and σ are t-compatible, these are all of the elements of H.

The elements that appear with ℓt−1 are:

bσ(1)−2m, bσ(2)+1, bσ(3)+1, . . . , bσ(2m+1)+1,

bσ(2m+2), bσ(2m+3), . . . , bσ(4m−1), e.

We again use that

{σ(2), σ(2m+ 2), σ(2m+ 3), . . . , σ(4m− 1)} =

{σ(1) + 1, σ(2m+ 2) + 1, σ(2m+ 3) + 1, . . . , σ(4m− 1) + 1}

and the first clause of the admissibility definition, this time applied to
the first element. Doing so, we see that the sequence contains all of the
elements of H.

The elements that appear with e are:

bσ(1)−2m+1, bσ(1)−2m+2, . . . , bσ(1), bσ(2)−2m+2, bσ(2)−2m+3, . . . , bσ(2).

Using the first clause of the admissibility definition we see that these are
all of the non-identity elements of H.

This shows that our sequence is a directed R-terrace. Finally, observe
that the first two elements of our sequence are (e, k1) and (e, k2) and the
last is (e, kt−1). Therefore, that k is a directed R∗-terrace of K implies
that our sequence is a directed R∗-terrace of G.

Theorem 2. Let A be an abelian group such that A ≡ S × T where S
is a Sylow 2-subgroup that is isomorphic to Z4 × Z2 and T has order
congruent to 1, 2, 3 or 4 (mod 7). If T is R∗-sequenceable then A is
R∗-sequenceable.

Proof. To apply Theorem 1 for each desired value of t we require an
R-sequencing for Z4 × Z2 along with a t-compatible σ. The following
sequences and permutations do what is required:

t ≡ 1 (mod 7), σ = (1, 6, 7),

a = (0, 1), (2, 1), (1, 0), (2, 0), (3, 1), (3, 0), (1, 1).

t ≡ 2 (mod 7), σ = (1, 4)(2, 7, 5),

a = (1, 0), (2, 0), (1, 1), (0, 1), (2, 1), (3, 0), (3, 1).
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t ≡ 3 (mod 7), σ = (1, 6, 7),

a = (0, 1), (1, 0), (2, 0), (1, 1), (3, 0), (3, 1), (2, 1).

t ≡ 4 (mod 7), σ = (1, 7)(2, 3, 6),

a = (1, 0), (1, 1), (2, 0), (3, 0), (2, 1), (0, 1), (3, 1).

We can therefore construct the R-sequencing for A.

A computer search has shown that there are no satisfactory a and σ
for other values of t (mod 7). We can now find R-sequencings for new
families of abelian groups whose Sylow 2-subgroups are non-cyclic of
order 8, the only open cases in the even-order question for abelian groups:

Corollary 1. Let K be an abelian group with |K| > 5. If |K| is congruent
to 1, 3, 9 or 11 (mod 14) and the Sylow 3-subgroups of K are isomorphic

to Zα3 × Zα9 × Zβ27 × Zγ81 or Zα3 × Zα9 × Zβ27 × Zγ81 × Z3t, where t > 1 and
t ≡ α+ β (mod 2), then Z4 × Z2 ×K is R∗-sequenceable. In particular,
if |K| is congruent to one of 1, 11, 17, 23, 25, 29, 31, or 37 (mod 42)
then Z4 × Z2 ×K is R∗-sequenceable.

Proof. The group K is R∗-sequenceable [5,10,16] and hence we can apply
Theorem 1 with H = Z4×Z2. The last sentence describes the cases where
the Sylow 3-subgroups of K are trivial.

Further, any progress on finding R∗-sequencings for odd-order groups
with Sylow 3-subgroups other than those described in Corollary 1 can
now be translated directly into solving more even-order cases by the same
method. For example, it is known that for any abelian 3-group T there are
infinitely many R∗-sequenceable abelian groups whose Sylow 3-subgroups
are isomorphic to T [10].

Theorem 1 generalises the methods of [8] and [16] which are limited to
the cases H = Z2

2 and H = Z3
2. However, when m = 1 and t ≡ 0 (mod 3)

it is impossible to achieve t-compatibility.
In this case, Headley [8] uses a slightly different construction which

also works in our more general set-up; we will refer to this as the Headley
construction. Given a circular sequence a = [a1, a2, a3] of the non-identity
elements of H and a circular sequence k = [k1, k2, . . . , kt−1] of the elements
of K with kt−1k2 = k1 = k2kt−1, we again construct a sequence in H ×K.
The first line, the second and third line combined, and the fourth line
each have t elements and the fifth line has t− 1. Recall that subscripts
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in a are calculated modulo 3; we leave them unreduced in order to make
the structure clearer:

(e, k1), (e, k2), . . . , (e, kt−2), (a2, kt−1), (a1, e),
(a3, k2), (a1, k3), (a2, k4), . . . , (at−6, kt−4),
(a1, kt−3), (a3, kt−2), (a3, kt−1), (a2, k1), (a1, k1),
(a3, k1), (a2, k2), (a3, k3), . . . , (at−3, kt−3), (a2, kt−2), (a1, kt−1), (a3, e),
(a2, e), (a1, k2), (a2, k3), . . . , (a2, kt−3), (a1, kt−2), (e, kt−1).

Theorem 3. Let G = H × K with |H| = 4 and |K| = t, where t ≡ 0
(mod 3). If H has an R-sequencing and K is R∗-sequenceable then G is
R∗-sequenceable.

Proof. Headley’s construction as described above gives the required di-
rected R∗-terrace when a is a directed R-terrace for H and k is a directed
R∗-terrace for K. Checking the sequence and the quotients is a similar
(but more straightforward) process to the proof of Theorem 1.

Following the approach of [15], we may relax the condition that H be
a direct factor to it being a central factor if we add in conditions on the
directed R∗-terrace of its quotient group.

Theorem 4. Let G be a group of order 4mt with central factor H of
order 4m. If H has a directed R-terrace a with a t-compatible σ ∈ S4m−1

and G/H has a directed R∗-terrace [K1,K2, . . . ,Kt−1] such that there
are elements k2 ∈ K2 and kt−1 ∈ Kt−1 that commute, then G is R∗-
sequenceable. If m = 1 and t ≡ 0 (mod 3) then the requirement for a
t-compatible permutation σ may be dropped.

Proof. Let k1 = k2kt−1 and for each i with 3 6 i 6 t − 2 choose ki ∈
Ki ∩CG(H) (as HCG(H) = G, the set Ki ∩CG(H) must be non-empty).
Each element of G is expressible in the form hki for a unique h ∈ H and
we have that kih = hki for all i and all h ∈ H.

Now apply the main construction or Headley’s construction as appro-
priate to a and [k1, k2, . . . , kt−1], with elements (h, k) of G replaced with
hk throughout. Thanks to the commutativity of the elements of H with
the ki, the argument goes through exactly as in Theorem 1 or 3.

We now turn to which groups it is possible to use in the role of H
in Theorems 1 and 4. We present here one possible pair of directed R-
terrace a and permutation σ for the values of t modulo 4m− 1 for which
they exist for the groups D8, Z6 × Z2, D12 and A4. The group Z2

2 with
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t 6≡ 0 (mod 3) is covered in [8] and Z3
2 is covered in [16]. Recall that

cyclic groups of even order and Q8 and Q12 are not R-sequenceable.
These directed R-terraces and permutations were found using the

group-theory software package GAP [6].

The case H = D8.

t ≡ 0 (mod 7), σ = (1, 6), a = u, v, u3, u2, u2v, uv, u3v.
t ≡ 1 (mod 7), σ = (1, 6), a = v, u3v, u2, u, uv, u3, u2v.
t ≡ 2 (mod 7), σ = (1, 7)(2, 3, 6), a = u, v, u2, u3, u3v, uv, u2v.
t ≡ 3 (mod 7), σ = (1, 6, 7), a = v, u3v, u2, u, uv, u3, u2v.
t ≡ 4 (mod 7), σ = (1, 7)(2, 3, 6), a = v, u, u2v, u2, u3, uv, u3v.
t ≡ 5 (mod 7), σ = (1, 5, 2)(3, 4), a = v, u2v, u3v, u2, u3, uv, u.
t ≡ 6 (mod 7), σ = (1, 5, 2), a = v, u, u2v, u2, u3, uv, u3v.

The case H = Z6 × Z2.

t ≡ 0 (mod 11), σ = (1, 7, 2)(4, 5, 6)(10, 11),

a = (2, 0), (4, 0), (2, 1), (3, 0), (5, 1), (3, 1), (4, 1), (1, 0), (1, 1), (0, 1), (5, 0).

t ≡ 1 (mod 11), σ = (1, 6, 3, 2, 11, 8, 9, 7)(4, 5),

a = (1, 0), (0, 1), (2, 1), (5, 1), (2, 0), (4, 1), (3, 1), (4, 0), (5, 0), (3, 0), (1, 1).

t ≡ 2 (mod 11), σ = (1, 2, 7, 8, 6)(3, 10, 5, 11, 4, 9),

a = (1, 0), (2, 1), (2, 0), (1, 1), (5, 1), (3, 0), (5, 0), (4, 0), (0, 1), (3, 1), (4, 1).

t ≡ 3 (mod 11), σ = (1, 6, 5, 2, 11, 9, 8, 10, 7, 3),

a = (1, 0), (4, 0), (2, 1), (3, 1), (5, 0), (0, 1), (4, 1), (3, 0), (2, 0), (5, 1), (1, 1).

t ≡ 4 (mod 11), σ = (2, 6, 7, 8)(3, 9)(4, 11)(5, 10),

a = (1, 0), (5, 0), (0, 1), (4, 0), (1, 1), (3, 1), (4, 1), (3, 0), (2, 0), (2, 1), (5, 1).

t ≡ 5 (mod 11), σ = (1, 10, 3, 8, 11)(2, 4, 9)(5, 7),

a = (0, 1), (1, 0), (2, 0), (4, 1), (4, 0), (3, 1), (2, 1), (5, 1), (1, 1), (5, 0), (3, 0).

t ≡ 6 (mod 11), σ = (1, 8, 9, 10, 11)(3, 7, 6),

a = (1, 0), (2, 0), (1, 1), (5, 0), (4, 0), (0, 1), (2, 1), (5, 1), (3, 1), (3, 0), (4, 1).
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t ≡ 7 (mod 11), σ = (1, 7, 5, 2)(3, 6, 4)(8, 11),

a = (0, 1), (2, 0), (1, 0), (3, 0), (3, 1), (1, 1), (4, 1), (5, 1), (4, 0), (2, 1), (5, 0).

t ≡ 8 (mod 11), σ = (1, 3, 9, 5, 2, 8, 7, 11, 4)(6, 10),

a = (1, 0), (0, 1), (5, 1), (3, 0), (4, 0), (1, 1), (4, 1), (2, 1), (2, 0), (3, 1), (5, 0)

t ≡ 9 (mod 11), σ = (1, 3, 2, 8, 4, 10, 6)(5, 9)(7, 11),

a = (1, 0), (4, 0), (2, 1), (3, 1), (5, 0), (0, 1), (4, 1), (3, 0), (2, 0), (5, 1), (1, 1).

t ≡ 10 (mod 11), σ = (1, 2, 7, 8, 6, 9, 3, 11, 5)(4, 10),

a = (2, 0), (2, 1), (0, 1), (3, 0), (4, 0), (5, 1), (4, 1), (1, 1), (5, 0), (1, 0), (3, 1).

The case H = D12.

t ≡ 0 (mod 11), σ = (1, 7, 5, 4, 6, 3, 2)(8, 9, 11, 10),

a = v, u, u4v, uv, u5v, u3, u4, u2, u2v, u3v, u5.

t ≡ 1 (mod 11), σ = (1, 4, 2, 9, 7, 11, 8, 5, 10, 6),

a = u3, v, u, u3v, uv, u2v, u4, u2, u5, u5v, u4v.

t ≡ 2 (mod 11), σ = (2, 6, 10, 5, 11, 3, 8)(4, 7, 9),

a = u2, u, u5, v, u4v, u3v, u3, u5v, u2v, u4, uv.

t ≡ 3 (mod 11), σ = (1, 6, 2, 11, 7, 5, 3, 4)(8, 10),

a = v, u4v, u, u2v, u4, u5, u2, uv, u3v, u3, u5v.

t ≡ 4 (mod 11), σ = (1, 5)(2, 10, 9, 7, 4, 3, 11, 6),

a = v, u5v, u2, u4, u3, u2v, u4v, uv, u, u3v, u5.

t ≡ 5 (mod 11), σ = (1, 10, 3, 6, 8, 11, 2, 4, 9),

a = v, u2, u5, u5v, u4, u3, u2v, u4v, u, u3v, uv.

t ≡ 6 (mod 11), σ = (1, 10, 11, 3, 6, 5, 9, 2, 4, 8),

a = u2, u, u3, v, u4, u5v, u5, u3v, u2v, u4v, uv.
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t ≡ 7 (mod 11), σ = (2, 6, 9, 4, 8)(3, 10)(5, 11),

a = v, u5v, uv, u3, u3v, u2, u4v, u2v, u5, u4, u.

t ≡ 8 (mod 11), σ = (2, 6, 10)(3, 11, 4, 9, 5, 8),

a = u, v, u2v, uv, u4v, u2, u5v, u4, u3, u3v, u5.

t ≡ 9 (mod 11), σ = (1, 4, 10, 8, 5, 11, 6, 3, 2, 9, 7),

a = u2, u4, v, u5, u3v, u2v, u3, u, uv, u4v, u5v.

t ≡ 10 (mod 11), σ = (2, 6, 8)(3, 9, 5, 7, 10)(4, 11),

a = u3, v, u4v, uv, u5, u5v, u, u2v, u3v, u4, u2.

The case H = A4.

t ≡ 0 (mod 11), σ = (1, 6, 5)(2, 11, 7, 3, 4)(8, 10, 9),

a = (2, 3, 4), (1, 2)(3, 4), (1, 3, 2), (1, 3)(2, 4), (1, 4, 2), (1, 3, 4),

(1, 2, 3), (1, 4, 3), (1, 2, 4), (2, 4, 3), (1, 4)(2, 3).

t ≡ 1 (mod 11), σ = (1, 8)(4, 5, 6)(9, 10, 11),

a = (2, 3, 4), (1, 2, 4), (1, 4, 3), (1, 3, 4), (1, 3, 2), (1, 2)(3, 4),

(1, 2, 3), (1, 3)(2, 4), (2, 4, 3), (1, 4, 2), (1, 4)(2, 3).

t ≡ 2 (mod 11), σ = (1, 3)(2, 8, 4, 9, 6, 10, 7)(5, 11),

a = (1, 2)(3, 4), (2, 3, 4), (1, 3)(2, 4), (1, 3, 4), (1, 4, 2), (1, 2, 3),

(1, 4, 3), (1, 4)(2, 3), (1, 2, 4), (1, 3, 2), (2, 4, 3).

t ≡ 3 (mod 11), σ = (1, 9, 2, 3, 7, 4, 8, 11, 10)(5, 6),

a = (2, 3, 4), (2, 4, 3), (1, 2, 4), (1, 4, 2), (1, 2, 3), (1, 4, 3),

(1, 3, 4), (1, 3, 2), (1, 4)(2, 3), (1, 3)(2, 4), (1, 2)(3, 4).
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t ≡ 4 (mod 11), σ = (1, 5, 2, 10, 8, 6, 11, 7)(3, 4),

a = (2, 3, 4), (1, 2, 4), (1, 3, 2), (1, 3)(2, 4), (1, 2, 3), (1, 4, 2),

(1, 4, 3), (1, 3, 4), (1, 4)(2, 3), (2, 4, 3), (1, 2)(3, 4).

t ≡ 5 (mod 11), σ = (1, 3)(2, 8, 4, 9, 7)(5, 11)(6, 10),

a = (2, 3, 4), (1, 2, 3), (1, 3, 4), (1, 2)(3, 4), (2, 4, 3), (1, 3, 2),

(1, 4, 2), (1, 4, 3), (1, 2, 4), (1, 4)(2, 3), (1, 3)(2, 4).

t ≡ 6 (mod 11), σ = (1, 2, 7, 9, 4, 8, 6, 10, 3)(5, 11),

a = (2, 3, 4), (1, 2, 4), (1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 3),

(1, 3)(2, 4), (1, 3, 2), (1, 4)(2, 3), (1, 4, 2), (1, 2)(3, 4).

t ≡ 7 (mod 11), σ = (1, 8, 11)(3, 7, 5)(4, 6),

a = (2, 3, 4), (1, 2, 4), (1, 4, 2), (1, 2)(3, 4), (2, 4, 3), (1, 3)(2, 4),

(1, 2, 3), (1, 3, 4), (1, 4, 3), (1, 4)(2, 3), (1, 3, 2).

t ≡ 8 (mod 11), σ = (1, 5, 3)(2, 10, 6, 11, 8, 9, 7),

a = (2, 3, 4), (2, 4, 3), (1, 2, 4), (1, 4, 2), (1, 3)(2, 4), (1, 3, 4),

(1, 2, 3), (1, 4, 3), (1, 3, 2), (1, 4)(2, 3), (1, 2)(3, 4).

t ≡ 9 (mod 11), σ = (1, 6, 2, 11, 10, 7, 4, 3),

a = (1, 2)(3, 4), (2, 3, 4), (1, 3, 2), (1, 4)(2, 3), (1, 2, 3), (1, 4, 3),

(2, 4, 3), (1, 2, 4), (1, 3, 4), (1, 4, 2), (1, 3)(2, 4).

t ≡ 10 (mod 11), σ = (1, 7, 3, 4, 2)(9, 10),

a = (1, 2)(3, 4), (2, 3, 4), (1, 3)(2, 4), (1, 3, 4), (2, 4, 3), (1, 2, 3),

(1, 4, 3), (1, 4)(2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2).

These directed R-terraces along with Theorems 1, 3 and 4 allow us to
show the R-sequenceability of many new groups. The following result of
Wang and Leonard extends the scope further still:
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Theorem 5. [19] If K is an R∗-sequenceable group of even order and N
is a nilpotent group of odd order then K ×N is R∗-sequenceable.

Proof. Follows immediately from Corollaries 2 and 6 of [19].

Theorem 6. Groups of the form H1 ×H2 × · · · ×Hs ×K ×N , where
each Hi is one of the groups Z2

2, Z3
2, D8, Z6 × Z2, D12 or A4, the group

K is R∗-sequenceable and N is a nilpotent group of odd order, are R∗-
sequenceable.

Proof. Repeatedly apply Theorem 1 and/or 3 to construct a directed
R∗-terrace for H1 ×H2 × · · · ×Hs ×K. Apply Theorem 5 to complete
the proof.

Groups that are known to be R∗-sequenceable include: abelian groups
with non-trivial non-cyclic Sylow 2-subgroups of orders other than 8
[5, 8]; abelian groups of odd order or with Sylow 2-subgroups isomorphic

to Z3
2 whose Sylow 3-subgroups are isomorphic to Zα3 × Zα9 × Zβ27 or

Zα3 × Zα+1
9 × Zβ27 [5, 16]; the abelian groups described in Corollary 1;

nonabelian groups whose order is the product of two odd primes [20];
dihedral groups of order 4k, unless k < 4 or k ≡ 0 or 1 (mod 6) [18]; and
dicyclic groups of order congruent to 16 or 32 (mod 48) [18].

4. Terraces

In this section we follow the approach of [12, 15] whereby we relax
the requirement of directedness in the R∗-terrace for K and see that
R-terraces emerge from the construction. Further, if these R-terraces have
an additional property then we may turn them into terraces.

Let G be a group of order n and let a = (a1, a2, . . . , an−1, ←֓) be
a circular arrangement of the non-identity elements of G. Define b =
(b1, b2, . . . , bn−1 ←֓) by bi = a−1

i ai+1 for each i. If b contains one occur-
rence of each involution of G and exactly two occurrences of elements
from each set {g, g−1 : g2 6= e} then a is a rotational terrace or R-terrace
and b is a rotational 2-sequencing or R-2-sequencing.

As in the directed definition, if ai−1ai+1 = ai = ai+1ai−1 then a is
an R∗-terrace and b is an R∗-2-sequencing. By re-indexing if necessary,
we may assume this value of i in an R∗-terrace is 1, in which case the
R∗-terrace is standard.

Given a standard R∗-terrace with this notation, suppose there is a
value r such that br = a−1

r+1. Then r is a right match-point of b. We



M. A. Ollis 313

will require standard R∗-terraces whose associated R∗-2-sequencings have
a right match-point r with 2 6 r 6 n − 3. An equivalent object is an
extendable terrace: a basic terrace (e, a2, . . . , an) is extendable if an =
a2

2 and aj−1aj+1 = aj = aj+1aj−1 for some j with 5 6 j < n. The
circular sequence (a1, a2, . . . , an−1 ←֓) is a standard R∗-terrace whose
R∗-2-sequencing has a right match-point r where 2 6 r 6 n − 3 if and
only if

(e, ar+1, ar+2, . . . , an−1, a1, a2, . . . , ar)

is an extendable terrace [15]. This relationship is illustrated in Examples 1
and 2: the standard R∗-terrace in Example 1 has 5 as a match-point
which can be used to give the extendable terrace in Example 2.

We can now give the main theorem for constructing terraces.

Theorem 7. Let G = H ×K with |H| = 4m and |K| = t. If H has a
directed R-terrace with a t-compatible σ ∈ S4m−1 and K has an extendable
terrace then G has an extendable terrace.

Proof. First, from the extendable terrace, construct an R∗-terrace k for K
that has a right match-point in position r, where 2 6 r 6 t− 3. Let a be
the directed R-terrace and apply the main construction to a and k. We
claim that this gives an R∗-terrace for G that has a right match-point in
position r and hence that G has an extendable terrace.

Compared to the proof of Theorem 1, all that changes is that some
non-involutions g ∈ K may appear as ℓi and ℓj , with i 6= j, in the R∗-2-
sequencing of K and, if this is the case for a given g, then g−1 does not
appear in the R∗-2-sequencing of K.

The consequence for our purported R-2-sequencing is that, for any
given non-involution h ∈ H, rather than having each of the four elements
of the form (h±1, g±1) once, we have (h, g) and (h−1, g) twice and neither
(h, g−1) nor (h−1, g−1) appears. This does not break the constraints of
being an R-2-sequencing. Similarly, if h ∈ H is an involution then we
have (h, g) twice and (h, g−1) does not appear.

Finally, as the first t− 2 elements of the R∗-terrace are

(e, k1), (e, k2), . . . , (e, kt−2),

the right match-point at position r of the R∗-2-sequencing is maintained.

As with the R-sequencing result, we have an analogue for central
factors:
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Theorem 8. Let G be a group of order 4mt with central factor H of
order 4m. If H has a directed R-terrace a with a t-compatible σ ∈ S4m−1

and G/H has an extendable terrace (H,K2,K3, . . . ,Kt) with j as the
position of the element that is the product of its neighbours and such
that there are elements kj−1 ∈ Kj−1 and kj+1 ∈ Kj+1 that commute,
then G has an extendable terrace. If m = 1 and t ≡ 0 (mod 3) then the
requirement for a t-compatible permutation σ may be dropped.

Proof. Turn the extendable terrace for G/H into its equivalent standard
R∗-terrace and the argument then mirrors that of Theorem 4. It is possible
to ensure that the match-point condition is met by careful choice of the ki.
As in Theorem 7, the standard R∗-terrace for G that emerges has an
equivalent extendable terrace.

These results allow the construction of terraces for many infinite
families of groups for which terraces were not previously known, even
more so in conjunction with this powerful result for constructing new
terraces from existing ones:

Theorem 9. [2, 3] Let G be a group with a normal subgroup N . If N
has odd order and G/N has a terrace then G has a terrace. If N has odd
index and N has a terrace then G has a terrace.

For example:

Corollary 2. Let G be of the form H1 ×H2 × · · · ×Hs ×K ×N , where
each Hi is one of Z2

2, Z3
2, D8, Z6 × Z2, D12 or A4, the group K has an

extendable terrace, and |N | is odd. Then H1 ×H2 × · · · ×Hs ×K has an
extendable terrace and G has a terrace.

Proof. To show that H1 ×H2 × · · · ×Hs ×K has an extendable terrace,
repeatedly apply Theorem 7 or, if Hi

∼= Z2
2, Theorem 8 when necessary.

Use Theorem 9 to complete the proof.

Groups that are known to have an extendable terrace include: Zs,
where s > 7 and s is not twice an odd number [12,14]; abelian 2-groups
of order at least 8 that are not elementary abelian [12,14]; Zs2 ×Zp where
s > 2 and p is an odd prime [12–15]; non-abelian groups of order 12, 16
or 20 [15]; D8s for s > 1 [15]; and these two additional families of groups
of orders 8s, with s > 1 [15] (the first are the semidihedral groups; the
second don’t seem to have an accepted name in the literature):

SD8s = 〈u, v : u4s = e = v2, vu = u2s−1v〉,

M8s = 〈u, v : u4s = e = v2, vu = u2s+1v〉.
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In [15] it is suggested that groups with many involutions might be the
most promising place to look for a counterexamples to Bailey’s Conjecture.
Many new such groups are now known to be terraced; for example, Zr2 ×
Ds

8 ×D
t
12 provided that r 6= 1 and t > 0.
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Quasi-Euclidean duo rings

with elementary reduction of matrices

O. Romaniv, A. Sagan

Communicated by V. V. Kirichenko

Abstract. We establish necessary and sufficient conditions
under which a class of quasi-Euclidean duo rings coincides with a
class of rings with elementary reduction of matrices. We prove that
a Bezout duo ring with stable range 1 is a ring with elementary
reduction of matrices. It is proved that a semiexchange quasi-duo
Bezout ring is a ring with elementary reduction of matrices iff it is
a duo ring.

Introduction

The problem of the factorization of square matrices over rings was
considered in the mid 1960’s and was formulated in this way: (P) to
characterize the integral domain R, under which an arbitrary invertible
square matrix is a product of elementary matrices. An elementary matrix
with elements of the ring R is understood as a square matrix of one of
the following types:

(1) a diagonal matrix with invertible elements on the main diagonal;
(2) a matrix that differs from the unit matrix by the presence of any

nonzero element outside the main diagonal.
If R is a field, according to the Gauss approach, arbitrary invertible

matrix under it may be decomposed into the product of elementary ma-
trices and the structure of the general linear group GLn(R) is thoroughly

2010 MSC: 13F99.
Key words and phrases: Bezout ring, duo ring, stable range, semiexchange ring,

ring with elementary reduction of matrices.
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studied (see [5]). The investigation of the integral domain (particularly
non-commutative) that satisfies the conditions of the problem (P), started
in 1966 with the Cohn’s fundamental work [3], who defined these domains
as the general Euclidean (GE-rings, for shortness), due to the fact that
Euclidean domains were the first well-known examples of GE-rings and
are not the fields. Cohn’s work became the reason of the thorough and
detailed study of the general and special linear group’s structure under
different rings. In 1996 Zabavsky B. V. [13] analyzed the rings with the
elementary reduction of matrices and set up a problem of investigation of
such rings.

A ring R is called a ring with elementary reduction of matrices [13]
in case of an arbitrary matrix over R possesses elementary reduction, i.e.
for an arbitrary matrix A over the ring R there exist such elementary
matrices over R , P1, . . . , Pk, Q1, . . . , Qs of respectful size that

P1 · · ·Pk ·A ·Q1 · · ·Qs = diag(ε1, . . . , εr, 0, . . . , 0), (1)

where Rεi+1R ⊆ Rεi ∩ εiR for any i = 1, . . . , r − 1.

Since in 1949 Kaplansky [7] established the investigation of the elemen-
tary divisors rings (i. e. the rings under which arbitrary matrix resolves
itself to the accepted diagonality (1) into invertible matrices of the ap-
propriate sizes), so the problem of finding the necessary and sufficient
conditions, whereby a given ring is a ring with elementary reduction of
matrices is closely related to the problem of arbitrary square invertible
matrices decomposition into the product of elementary ones.

Main results

A ring R is understood as an associative ring with nonzero unit element
and U(R) is understood as the group of invertible elements of a ring R.
A group generated by elementary matrices of type (2) of order n is called
a group of elementary matrices En(R), while GEn(R) is understood as a
group of elementary matrices of n order over R.

A right (left) Bezout ring is a ring in which every finitely generated
right (left) ideal is principal. A Bezout ring [6] is a ring which is both
right and left Bezout ring. A ring R is called right Hermite if, for any row
(a, b), a, b ∈ R, there exists an invertible matrix P of order 2 over R so
that (a, b)P = (d, 0), where d ∈ R. Left Hermite rings can be defined by
analogy. If the ring is left and right Hermite, then it is called Hermite
ring [7]. A ring is said to be a right (left) duo ring if any right (left) ideal
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of this ring is a 2-sided ideal. If the ring is both left and right duo ring,
then it is called duo ring [4].

A ring R is called a right (left) quasi-duo ring, if any right (left)
maximal ideal in R is a two-sided ideal. If the ring is both left and right
quasi-duo ring, then it is called quasi-duo ring [11].

We say that a ring R has quasi-algorithm, if the function ϕ : R×R→
W (where W is some ordinal) is given so that for any a, b ∈ R (b 6= 0)
one can find elements q, r ∈ R such as a = bq + r and ϕ(b, r) < ϕ(a, b).
If one can find some quasi-algorithm on R then the ring R is called
quasi-Euclidean [1].

A ring R is said to have stable range 1, if for any a, b ∈ R satisfying
aR+ bR = R, there exists such t ∈ R that a+ bt is an invertible element
in R [12]. A ring R is said to have idempotent stable range 1, if for any
a, b ∈ R satisfying aR+ bR = R, there exists such idempotent e ∈ R that
a+ be is invertible [2].

A ring R is called an exchange ring if for any element a ∈ R there
exists an idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R [9].

Proposition 1. A right quasi-Euclidean ring is right Hermite ring.

Proof. By Theorem 8 [1] for any elements a, b ∈ R, a 6= 0, there exists a
finite divisible chain, that

b = aq1 + r1, a = r1q2 + r2, . . . , rn−2 = rn−1qn + rn, rn−1 = rnqn+1.

Then

(a, b)

(
1 −q1

0 1

)(
1 0
−q2 1

)(
1 −q3

0 1

)
. . .

(
1 −qn+1

0 1

)
= (rn, 0).

So for any elements a, b ∈ R there exists matrix P ∈ GE2(R), that
(a, b)P = (rn, 0). Therefore, R is right Hermite ring.

Lemma 1. Let R be a duo ring. Then for any matrix E ∈ En(R), there
exists such matrix E′ ∈ En(R), that

diag(d, . . . , d) · E = E′ · diag(d, . . . , d).

Proof. The proof follows from the fact, that if R is a duo ring, for any
element a ∈ R, there exists such an element a′ ∈ R, that da = a′d.
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Proposition 2. A quasi-Euclidean duo ring R is a ring with elementary
reduction of matrices if and only if a matrix of the form

(
a 0
b c

)
∈M2(R),

where aR+ bR+ cR = R admits elementary reduction.

Proof. The necessity is obvious. To prove the sufficiency, we consider the
case where aR + bR + cR = dR, d /∈ U(R). By virtue of Proposition 1,
there exist such elements a1, b1, c1 ∈ R, that

a = da1, b = db1, c = dc1 and a1R+ b1R+ c1R = R.

Then (
a 0
c b

)
=

(
d 0
0 d

)(
a1 0
b1 c1

)
.

Since the matrix A =

(
a1 0
b1 c1

)
admits elementary reduction, there ex-

ist such elementary matrices P1, . . . , Pk, Q1, . . . , Qs ∈ E2(R) of respectful
size, that

P1 · · ·Pk ·A ·Q1 · · ·Qs = diag(ε1, ε2), (2)

where ε1R ∩Rε1 ⊇ Rε2R.
Multiply equation (2) by the matrix diag(d, d) we obtain:

diag(d, d) · P1 · · ·Pk ·A ·Q1 · · ·Qs = diag(dε1, dε2).

According to Lemma 1 there exist such matrices P ′
1, . . . , P

′
k ∈ E2(R), that

P ′
1 · · ·P

′
k · diag(d, d) ·A ·Q1 · · ·Qs = diag(dε1, dε2).

Therefore, the matrix

(
a 0
b c

)
also admits elementary reduction.

The proof is completed by induction of the order of matrices.

Theorem 1. Let R is quasi-Euclidean duo ring in which any noninvertible
element belongs to most countable set of maximal ideals of R. Then R is
a ring with elementary reduction of matrices.

According to the Proposition 2, the proof of this theorem repeats the
proof given in [14] in the case of commutative rings, therefore we do not
give it.
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Corollary 1. A quasi-Euclidean duo ring in which the set of maximal
ideals is at most countable is a ring with elementary reduction of matrices.

Theorem 2. A Bezout duo ring with stable range 1 is a ring with ele-
mentary reduction of matrices.

Proof. By Theorem 2 [15] ring R is a right Hermite ring. It remains
to be proven that the ring R is a ring with elementary reduction of
matrices. According to the Proposition 1, it is sufficient to prove theorem
for matrices

A =

(
a 0
b c

)
∈M2(R),

where aR+ bR+ cR = dR for any element d ∈ R. Obviously, there exist
such elements a1, b1, c1 ∈ R, that

a = da1, b = db1, c = dc1 and a1R+ b1R+ c1R = R.

Then (
a 0
b c

)
=

(
d 0
0 d

)(
a1 0
b1 c1

)
.

Since R is a right Bezout ring of stable range 1, then for elements
a1, b1, c1 ∈ R there exists such elements s, t ∈ R, that a1s + b1 + c1t =
u ∈ U(R). Multiplying the last equality from the left side on the element
d we get that da1s+ db1 + dc1t = as+ b+ ct = du. Since R is a duo ring,
there exists such element s′ ∈ R, that as = s′a, then s

′

a + b + ct = du.
Considering the matrices P1, P2, P3 ∈ GE2(R)

P1 =

(
1 s′

0 1

)
, P2 =

(
0 1
1 0

)
, P3 =

(
1 0
t 1

)
.

We have

P1P2AP3 =

(
1 s′

0 1

)(
0 1
1 0

)(
d 0
0 d

)(
a1 0
b1 c1

)(
1 0
t 1

)
=

=

(
1 s′

0 1

)(
b c
a 0

)(
1 0
t 1

)
=

(
s′a+ b+ ct c

a 0

)
=

(
du dc1

da1 0

)
= B

Then the matrix B and, hence, the matrix A obviously admits elementary
reduction. Therefore, R is a ring with elementary reduction of matrices.
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Corollary 2. A semilocal quasi-Euclidean duo ring is a ring with ele-
mentary reduction of matrices.

Theorem 3. Let R is Hermite duo ring and, for any a, b ∈ R (b 6= 0),
there exists such s ∈ R, that mspec(s) = mspec(a)\mspec(b). Then R is
a ring with elementary reduction of matrices.

Proof. Let a, b ∈ R be such elements, that aR+ bR = dR, where d ∈ R.
Note that the case d /∈ U(R) is irrelevant. Otherwise, there exist elements
a1, b1 ∈ R, such that a = da1, b = db1 and a1R + b1R = R. As a result,

we obtain

(
a
b

)
=

(
d 0
0 d

)(
a1

b1

)
. By the fact that R is a duo ring, which

would also imply the existence of mutually prime elements, thus there
exists such a′

1, b
′
1 ∈ R, that

(a, b) = (a′
1, b

′
1)

(
d 0
0 d

)
.

Therefore, it is sufficient to prove the statement of the theorem for mutually
prime elements. Thus, assume that aR+ bR = R. It is obvious that

mspec(a) ∩mspec(b) = {0}. (3)

Using the statement of the theorem, there exists element s ∈ R, which
belongs to all maximal ideals of the ring R, except for maximal ideals of
the set mspec(a), that is, we have the following equality

mspec(s) = mspec(0)\mspec(a).

It is obvious that

mspec(s) ∩mspec(a) = {0}. (4)

Let us consider the element a + bs ∈ R and assume that a + bs ∈ M,
whereM is a maximal ideal of the ring R. There are the following possible
cases:

1) a ∈M and b ∈M contradicts with the condition (3).

2) a ∈M and s ∈M contradicts with the condition (4).

Therefore, our initial assumption was incorrect and the condition
a+ bs ∈ U(R) is valid. It also implies that R is a ring of a stable range 1.
Due to Theorem 2 a duo ring R is a ring with an elementary reduction of
matrices.
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We will denote the Jacobson radical of a ring R by J(R). A ring R is
said to be a semiexchange ring [8] if the factor ring R/J(R) is an exchange
ring.

Theorem 4. A semiexchange Bezout duo ring is a ring with elementary
reduction of matrices.

Proof. Let R be a semiexchange Bezout duo ring. Since all idempotent
elements of a duo ring belong to its center, due to Theorem 12 [2], then
R̄ = R/J(R) is a ring with idempotent stable range 1. Since a stable
range 1 lifts modulo J(R), we obtain the result that a ring R also has a
stable range 1. Then, according to Theorem 2, R is a ring with elementary
reduction of matrices.

Theorem 5. Let R be semiexchange quasi-duo Bezout ring. Then R is a
ring with elementary reduction of matrices if and only if it is a duo ring.

Proof. As it was mentioned at the beginning and is proven in [10] being
a quasi-duo elementary divisor ring implies the duo ring condition, so the
necessity is proven.

Sufficiency follows from Theorem 4.

Corollary 3. A distributive semiexchange Bezout ring is a ring with
elementary reduction of matrices if and only if it is a duo ring.
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A morphic ring of neat range one

O. Pihura, B. Zabavsky

Communicated by D. Simson

Abstract. We show that a commutative ring R has neat
range one if and only if every unit modulo principal ideal of a ring
lifts to a neat element. We also show that a commutative morphic
ring R has a neat range one if and only if for any elements a, b ∈ R
such that aR = bR there exist neat elements s, t ∈ R such that
bs = c, ct = b. Examples of morphic rings of neat range one are
given.

The notion of principal ideals being uniquely generated first appeared
in Kaplansky’s classic paper [4]. He had raised the question of when a
ring R satisfies the property of being uniquely generated. He remarked
that for commutative rings, the property holds for principal ideal rings
and artinian rings. In the case of a left quasi morphic ring the property of
being uniquely generated is equivalent to that a ring has stable range one.
The concept of a neat range one ring is introduced by the first named
author in [9]. In this paper we show that for a commutative morphic ring
the condition of a neat range one is equivalent to the a uniquely generated
weak condition relation with a neat elements.

Throughout this paper we assume that R is a commutative ring with
an identity element. To make the paper almost self-contained, we recall
basic definitions and some results used later. We recall that:

(i) R is a Bezout ring, if each finitely generated ideal of R is principal,
see [10].

2010 MSC: 13F99.
Key words and phrases: Bezout ring, neat ring, clear ring, elementary divisor

ring, stable range one, neat range one.
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(ii) Two rectangular matrices A and B are equivalent if there exist
invertible matrices P and Q of appropriate sizes such that B = PAQ,
see [10].

(iii) The ring R is Hermite if every rectangular matrix A over R is
equivalent to an upper or a lower triangular matrix, see [10].

(iv) R is an elementary divisor ring if every square n by n ma-
trix A with coefficients in R can be converted to a diagonal matrix
diag(a11, . . . , ann) such that every aii divides ai+1,i+1, see [4].

(v) a ring R is a ring of stable range one, if for any a, b ∈ R such
that aR+ bR = R there exists t ∈ R such that a+ bt is a unit of R, see
Bass [1].

(vi) An element a ∈ R is defined to be a clean element of R, if a can
be written as the sum of a unit and an idempotent. The ring R is defined
to be a clean ring, if every element of R is clean, see [10].

(vii) An element a ∈ R is defined to be a neat element of R, if R/aR
is a clean ring. The ring R is defined to be a neat ring, if every elements
in a ring R are neat, see [6].

(viii) R is defined to be of neat range one, if for any a, b ∈ R such
that aR+ bR = R there exists t ∈ R such that a+ bt is a neat element of
R, see[9].

(ix) An element a ∈ R is defined to be morphic, if Ann(a) ∼= R/aR,
where Ann(a) denotes the annihilator of a in R. The ring R is defined to
be morphic, if every its element is morphic, see [7].

We recall from [4] that every elementary divisior ring R is both a
Bezout ring and a Hermite ring. Note also that unity elements of R are
neat elements and, hence, every ring of stable range one is a ring of neat
range one.

In our next result we need the following definition.

Definition 1. (a) An element a ∈ R is a unit modulo a principal ideal
cR if ax− 1 ∈ cR for some x ∈ R.

(b) A unit a ∈ R modulo a principal ideal cR lifts to a neat element,
if a− t ∈ bR for a neat element t ∈ R.

Proposition 1. Let R be a commutative ring. Then the following are
equivalent:

1) R has a neat rang one;
2) Every unit lifts to a neat element modulo every principal ideal.

Proof. We assume that R has neat range one. Let a, b, c ∈ R be such that
ab− 1 ∈ cR, i.e. b is a unit modulo the principal ideal cR. We show that
there exists a neat element t ∈ R such that b− t ∈ R.
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Let x ∈ R be such that ab− 1 = cx. Then ab− cx = 1. Since R has
neat range one, there exists an element s ∈ R and a neat element t ∈ R
such that b− cs = t. Therefore b− t ∈ cR where t is a neat element in R.

To prove the implication (2)⇒ (1), assume that every unity of R lifts
to a neat element modulo every principal ideal. We show that R has a
neat range one. Let a, b, c ∈ R such that ab+ cd = 1. Then ab− 1 ∈ cR.
Therefore, by our hypothesis there exists a neat element t ∈ R such that
b− t ∈ cR. Thus b− t = cx for some x ∈ R i.e. b+ c(−x) = t is a neat
element i.e. R has neat range one.

Proposition 2. A morphic ring is a ring of neat range one if and only
if for any pair of elements a, b ∈ R such that aR = bR there are neat
elements s, t ∈ R such that as = b and a = bt.

Proof. In view of Proposition 1 it suffices to show that every unit lifts to
a neat element modulo every principal ideal in R.

Let x be a unit that lifts to a neat element modulo the principal ideal
yR, i.e there exists z ∈ R such that zx− 1 ∈ yR. We would like to show
that there exists a neat elements t ∈ R such that x− t ∈ yR. Since R is
a morphic, there exists a, b such that yR = Ann(a) and xaR = Ann(b).

Obviously, xR ⊂ Ann(ab) and yR ⊆ Ann(ab).

Since zx−1 ∈ yR, we have xR+yR = R and xR+yR = Ann(ab). Then
ab = 0 and a ∈ Ann(b). Also we have Ann(b) = xaR ⊆ aR. Therefore
Ann(b) = xaR = aR. Under the assumption on the ring there exists a
neat element t ∈ R such that xa = ta. This implies that (x − t)a = 0.
We have x− t ∈ Ann(a) = yR. Thus from Proposition 1, the R has neat
range one.

Let aR = bR. Then there exist x, y ∈ R such that a = bx, b = ay.
Therefore b = bxy, b(1− xy) = 0. This shows that 1− xy ∈ Ann(b).

Now xy + (1 − xy) = 1 where xy ∈ xR and 1 − xy ∈ (1 − xy)R.
Therefore xR+ (1− xy)R = R. Since R is assumed to have neat range
one, there exists s ∈ R such that x+ (1− xt)s = t is a neat element in
R. Since 1− xy ∈ Ann(b), we have (x+ (1− xy)s)b = tb, xb = tb where
xb = a. Thus a = tb for some neat element t ∈ R. Similarly we have
b = sa, for some neat element s ∈ R, which completes the proof.

Theorem 1. If R is an elementary divisor ring, then R is a ring of neat
range one.

Proof. By [8] for any elements a, b, c ∈ R such that aR + bR = R there
exists an element t ∈ R such that s = a+ bt = uv, where uR+ cR = R,
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vR + (1 − c)R, uR + vR = R. Let u = u + sR, v = v + sR. Since
uR + vR = R, one has ux + vy = 1 and u2x = u, v2y = v, where
x = x + sR, y = y + sR. Let vy = e, obviously e2 = e and 1 − e = ux.
Since uR + cR = R, we obtain ceβ = e, for some element β ∈ R/sR.
Similarly, (1− c)α(1− e) = 1− e for some element α ∈ R/sR. We proved
that for any element c = c+ sR there exists an idempotent e such that
e ∈ cR and 1− e ∈ (1− cR). We have proved that R/sR is a clean ring
[6] which completes the proof.

As a consequence we obtain the following result.

Theorem 2. If R is an elementary divisor domain and a ∈ R \ {0}, then
the factor-ring R/aR is a morphic ring of neat range one.

Proof. Since every elementary divisor domain is a Bezout ring [4], by [9]
R/aR is a morphic ring. Since every homomorphic image of an elementary
divisor ring is an elementary divisor ring, by Theorem 3,R/aR is a morphic
ring of neat range one, which completes the proof.

We say that R has almost stable range one if every finite proper
homomorphic image R has stable range one. By [5] a Bezout ring of
almost stable range one is an elementary divisor ring.

A well-known Henriksen example of a Bezout domain, namely R =
Z + xQ[x] (see [2]; for a general theorem on pullbacks of Bezout domains
[3]), R is an elementary divisor that does not have almost stable range
one [8].

Let R be an elementary divisor domain which is not of almost stable
range one. Then there exists an element a ∈ R such that in the factor-ring
R = R/aR there exist elements b, c ∈ R such that bR = cR. There exist
noninvertible neat elements s, t ∈ R such that bs = c, ct = b.

References

[1] Bass H. Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.

[2] Henriksen M. Some remarks about elementary divsor rings II, Michigan Math. J.,
1955, 3, pp. 159-163.

[3] Houston E., Taylor J. Arithmetic properties in pulbacks, J. Algebra, 2007, v.310,
pp. 235 – 260.

[4] Kaplansky I. Elementary divisirs and modules, Trans. Amer. Math. Soc., 1949,
v.66, pp. 464–491.

[5] McGovern W. Wm. Bezout rings with almost stable range 1, J. of Pure and Appl.
Algebra, 1982, 24, pp. 25 – 40.



O. Pihura, B. Zabavsky 329

[6] Nicholson W. K. Lifting idempotents and exchange rings, Trans. Amer. Math. Soc.,
1977, v.229, pp. 269 – 278.

[7] Nicholson W.K., Sanchez Campos E. Rings with the dual of the isomorphism
theorem, J. Algebra, 2004, v.271, pp. 391 – 406.

[8] Roitman M. The Kaplansky condition and rings of almost stable range 1, Trans.
Amer. Math. Soc., 2013, v.141, pp. 3013 – 3019.

[9] Zabavsky B.V. Diagonal reduction of matrices over finite stable range, Mat. Stud.,
2014, v.41, pp. 101–108.

[10] Zabavsky B.V. Diagonal reduction of matrices over rings, Mathematical Studies,
Monograph Series, v. XVI, VNTL Publishers, 2012, Lviv, pp 251.

Contact information

O. Pihura Department of Mechanics and Mathematics,
Ivan Franko National Univ., Lviv, Ukraine
E-Mail(s): pihuraoksana@mail.ru

B. V. Zabavsky Department of Mechanics and Mathematics,
Ivan Franko National Univ., Lviv, Ukraine
E-Mail(s): zabavskii@gmail.com

Received by the editors: 07.11.2014
and in final form 20.01.2015.



Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 20 (2015). Number 2, pp. 330–342

© Journal “Algebra and Discrete Mathematics”
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Abstract. We construct a free abelian dimonoid and de-
scribe the least abelian congruence on a free dimonoid. Also we show
that free abelian dimonoids are determined by their endomorphism
semigroups.

1. Introduction

The notion of a dimonoid was introduced by Jean-Louis Loday in [1].
An algebra (D,⊣,⊢) with two binary associative operations ⊣ and ⊢ is
called a dimonoid if for all x, y, z ∈ D the following conditions hold:

(D1) (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(D2) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(D3) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z).

If operations of a dimonoid coincide, the dimonoid becomes a semigroup.

Dimonoids and in particular dialgebras have been studied by many
authors (see, e.g., [2]–[5]), they play a prominent role in problems from
the theory of Leibniz algebras. The first result about dimonoids is the
description of a free dimonoid [1]. T. Pirashvili [4] introduced the notion
of a duplex which generalizes the notion of a dimonoid and constructed
a free duplex. Free dimonoids and free commutative dimonoids were

2010 MSC: 08B20, 17A30, 08A30, 08A35.
Key words and phrases: free abelian dimonoid, abelian dimonoid, congruence,

endomorphism semigroup.
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investigated in [6] and [7] respectively. Free normal dibands and other
relatively free dimonoids were described in [8], [9]. In this paper we study
free abelian dimonoids.

The paper is organized as follows. In Section 2 we give necessary de-
finitions and examples of abelian dimonoids. In Section 3 we construct a
free abelian dimonoid and, in particular, consider a free abelian dimonoid
of rank 1. In Section 4 we define the least congruence on a free dimonoid
such that the corresponding quotient-dimonoid is isomorphic to the free
abelian dimonoid. In Section 5 we prove that free abelian dimonoids are
determined by their endomorphisms.

2. Examples of abelian dimonoids

It is well-known that a non-empty class H of algebraic systems is
a variety if the Cartesian product of any sequence of H-systems is a
H-system, every subsystem of an arbitrary H-system is a H-system and any
homomorphic image of an arbitrary H-system is a H-system (Birkhoff [10]).

A dimonoid (D,⊣,⊢) we call abelian (in the same way as a digroup
in [11]) if for all x, y ∈ D,

x ⊣ y = y ⊢ x.

The class of all abelian dimonoids satisfies the conditions of Birkhoff’s
theorem and therefore it is a variety. A dimonoid which is free in the
variety of abelian dimonoids will be called a free abelian dimonoid.

It should be noted that the class of all abelian dimonoids does not
coincide with the class of all commutative dimonoids [7] (both operations
of such dimonoids are commutative). For example, a non-singleton left
zero and right zero dimonoid [9] is abelian but not commutative.

Let Z be the set of all integers,E = {λ, µ} be an arbitrary two-element
set. Define two binary operations ⊣ and ⊢ on Z × E as follows:

(m,x) ⊣ (n, y) =

{
(m+ n+ 1, x), y = λ,
(m+ n− 1, x), y = µ,

(m,x) ⊢ (n, y) =

{
(m+ n+ 1, y), x = λ,
(m+ n− 1, y), x = µ.

Proposition 1. The algebra (Z × E,⊣,⊢) is an abelian dimonoid.
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Proof. Let (m,x), (n, y), (s, z) ∈ Z × E. If y = z = λ or y = z = µ, we
obtain

((m,x) ⊣ (n, λ)) ⊣ (s, λ) = (m+ n+ s+ 2, x)

= (m,x) ⊣ ((n, λ) ⊣ (s, λ)) or

((m,x) ⊣ (n, µ)) ⊣ (s, µ) = (m+ n+ s− 2, x)

= (m,x) ⊣ ((n, µ) ⊣ (s, µ))

respectively.
For y = λ, z = µ or y = µ, z = λ, we have

((m,x) ⊣ (n, y)) ⊣ (s, z) = (m+ n+ s, x)

= (m,x) ⊣ ((n, y) ⊣ (s, z)).

Therefore, the operation ⊣ is associative. Analogously we can show
that ⊢ is an associative operation too.

Show that the axiom (D1) holds. If y = z = λ or y = z = µ,

(m,x) ⊣ ((n, λ) ⊢ (s, λ)) = (m+ n+ s+ 2, x)

= ((m,x) ⊣ (n, λ)) ⊣ (s, λ) or

(m,x) ⊣ ((n, µ) ⊢ (s, µ)) = (m+ n+ s− 2, x)

= ((m,x) ⊣ (n, µ)) ⊣ (s, µ).

For y = λ, z = µ or y = µ, z = λ, we obtain

(m,x) ⊣ ((n, y) ⊢ (s, z)) = (m+ n+ s, x)

= ((m,x) ⊣ (n, y)) ⊣ (s, z).

The axiom (D3) is checked similarly. Now we consider the axiom (D2).
Let x = z = λ or x = z = µ. Then

(m,λ) ⊢ ((n, y) ⊣ (s, λ)) = (m+ n+ s+ 2, y)

= ((m,λ) ⊢ (n, y)) ⊣ (s, λ) or

(m,µ) ⊢ ((n, y) ⊣ (s, µ)) = (m+ n+ s− 2, y)

= ((m,µ) ⊢ (n, y)) ⊣ (s, µ).

If x = λ, z = µ or x = µ, z = λ, then

(m,x) ⊢ ((n, y) ⊣ (s, z)) = (m+ n+ s, y)

= ((m,x) ⊢ (n, y)) ⊣ (s, z),

which completes the verification of (D2).
The fact that (Z×E,⊣,⊢) is abelian can be checked immediately.
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An element e of an arbitrary dimonoid (D,⊣,⊢) is called a bar-unit
(see, e.g., [1]) if for all g ∈ D,

e ⊢ g = g = g ⊣ e.

In contrast to monoids a dimonoid may have many bar-units. For
example, for the dimonoid from Proposition 1 we have

(−1, λ) ⊢ (m,x) = (m,x) = (m,x) ⊣ (−1, λ),

(1, µ) ⊢ (m,x) = (m,x) = (m,x) ⊣ (1, µ)

for any (m,x) ∈ Z ×E. Thus, (−1, λ) and (1, µ) are bar-units. Moreover,
another bar-units of (Z × E,⊣,⊢) do not exist.

Let G be an arbitrary additive abelian group, X1, X2, . . . , Xn (n > 2)
be non-empty subsets of G and Xα = G for some α ∈ {1, 2, . . . , n}. For
all t = (t1, t2, . . . , tn) ∈

∏n
i=1Xi we put t+ = t1 + t2 + . . .+ tn.

Take arbitrary x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈
∏n
i=1Xi

and define two binary operations ⊣α and ⊢α on
∏n
i=1Xi by

x ⊣α y = (x1, . . . , xα + y+, . . . , xn),

x ⊢α y = (y1, . . . , yα + x+, . . . , yn).

Proposition 2. For every α ∈ {1, 2, . . . , n} the algebra (
∏n
i=1Xi,⊣α,⊢α)

is an abelian dimonoid.

Proof. Let x, y, z ∈
∏n
i=1Xi. Then

(x ⊣α y) ⊣α z = (x1, . . . , xα + y+, . . . , xn) ⊣α (z1, z2, . . . , zn)

= (x1, . . . , xα + y+ + z+, . . . , xn)

= (x1, x2 . . . , xn) ⊣α (y1, . . . , yα + z+, . . . , yn)

= x ⊣α (y ⊣α z),

(x ⊢α y) ⊢α z = (y1, . . . , yα + x+, . . . , yn) ⊢α (z1, z2, . . . , zn)

= (z1, . . . , zα + x+ + y+, . . . , zn)

= (x1, x2 . . . , xn) ⊢α (z1, . . . , zα + y+, . . . , zn)

= x ⊢α (y ⊢α z).

Thus, operations ⊣α and ⊢α are associative.



334 Free abelian dimonoids

Show that axioms (D1)− (D3) hold:

(x ⊣α y) ⊣α z = (x1, . . . , xα + y+ + z+, . . . , xn)

= (x1, x2, . . . , xn) ⊣α (z1, . . . , zα + y+, . . . , zn)

= x ⊣α (y ⊢α z),

(x ⊢α y) ⊣α z = (y1, . . . , yα + x+, . . . , yn) ⊣α (z1, z2, . . . , zn)

= (y1, . . . , yα + z+ + x+, . . . , yn)

= (x1, x2 . . . , xn) ⊢α (y1, . . . , yα + z+, . . . , yn)

= x ⊢α (y ⊣α z),

(x ⊣α y) ⊢α z = (x1, . . . , xα + y+, . . . , xn) ⊢α (z1, z2, . . . , zn)

= (z1, . . . , zα + x+ + y+, . . . , zn)

= x ⊢α (y ⊢α z).

Therefore, (
∏n
i=1Xi,⊣α,⊢α) is a dimonoid. Moreover,

x ⊣α y = (x1, . . . , xα + y+, . . . , xn) = y ⊢α x

for all x, y ∈
∏n
i=1Xi.

Let (S, ◦) be an arbitrary semigroup. A semigroup (S, ∗), where x∗y =
y ◦ x for all x, y ∈ S, is called a dual semigroup to (S, ◦).

A semigroup (S, ◦) is called left commutative (respectively, right com-
mutative) if it satisfies the identity x ◦ y ◦ a = y ◦ x ◦ a (respectively,
a ◦ x ◦ y = a ◦ y ◦ x).

Proposition 3. Let (S, ◦) be an arbitrary right commutative semigroup
and (S, ∗) be a dual semigroup to (S, ◦). Then the algebra (S, ◦, ∗) is an
abelian dimonoid.

Proof. The proof follows from Lemma 3 of [9].

Proposition 4. Let (S, ∗) be an arbitrary left commutative semigroup
and (S, ◦) be a dual semigroup to (S, ∗). Then the algebra (S, ◦, ∗) is an
abelian dimonoid.

Proof. The proof follows from Lemma 4 of [9].

An important example of abelian dimonoids is the class of abelian
digroups (see [11]). The idea of the notion of a digroup first appeared in
the work of Jean-Louis Loday [1].
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3. The free abelian dimonoid

Let X be an arbitrary set and N be the set of all natural num-
bers. Denote by FCm(X) the free commutative monoid on X with the
identity ε. Words of FCm(X) we write as w = wα1

1 wα2
2 . . . wαn

n , where
w1, w2, . . . , wn ∈ X are pairwise distinct, and α1, α2, . . . , αn ∈ N ∪ {0}.
Here w0

i , 1 6 i 6 n, is the empty word ε and w1 = w for all w ∈ X.
We put

FAd(X) = X × FCm(X)

and define two binary operations ⊣ and ⊢ on FAd(X) as follows:

(x, u) ⊣ (y, v) = (x, uyv),

(x, u) ⊢ (y, v) = (y, xuv).

Note that for every element t of an arbitrary abelian dimonoid (D,≺,≻)
the degrees

tn≺ = t ≺ t ≺ . . . ≺ t︸ ︷︷ ︸
n

, tn≻ = t ≻ t ≻ . . . ≻ t︸ ︷︷ ︸
n

coincide. Therefore, we will write tn instead of tn≺ (= tn≻).

Theorem 1. The algebra (FAd(X),⊣,⊢) is the free abelian dimonoid.

Proof. Let (x, u), (y, v), (z, w) ∈ FAd(X). Then

((x, u) ⊣ (y, v)) ⊣ (z, w) = (x, uyv) ⊣ (z, w)

= (x, uyvzw) = (x, u) ⊣ ((y, v) ⊣ (z, w)),

((x, u) ⊢ (y, v)) ⊢ (z, w) = (y, xuv) ⊢ (z, w)

= (z, yxuvw) = (x, u) ⊢ ((y, v) ⊢ (z, w)).

Thus, operations ⊣ and ⊢ are associative. In addition,

((x, u) ⊣ (y, v)) ⊣ (z, w) = (x, uyvzw)

= (x, u) ⊣ (z, yvw) = (x, u) ⊣ ((y, v) ⊢ (z, w)),

((x, u) ⊢ (y, v)) ⊣ (z, w) = (y, xuvzw)

= (x, u) ⊢ (y, vzw) = (x, u) ⊢ ((y, v) ⊣ (z, w)),

((x, u) ⊣ (y, v)) ⊢ (z, w) = (x, uyv) ⊢ (z, w)

= (z, yxuvw) = (x, u) ⊢ ((y, v) ⊢ (z, w)).

So, (FAd(X),⊣,⊢) is a dimonoid and, obviously, it is abelian.
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For all (t, w) ∈ FAd(X), where w = wα1
1 wα2

2 . . . wαn
n , we obtain the

following representation:

(t, w) = (t, ε) ⊣ (w1, ε)
α1 ⊣ . . . ⊣ (wn, ε)

αn .

This representation we call a canonical form of elements of the dimonoid
(FAd(X),⊣,⊢). It is clear that such representation is unique up to an
order of (wi, ε), 1 6 i 6 n. Moreover, 〈X × ε〉 = (FAd(X),⊣,⊢).

Show that the dimonoid (FAd(X),⊣,⊢) is free abelian. Let (D′,⊣′,⊢′)
be an arbitrary abelian dimonoid, ξ be any mapping of X × ε into D′.
Further, we naturally extend ξ to a mapping Ξ of FAd(X) into D′ using
the canonical representation of elements of (FAd(X),⊣,⊢), that is,

(t, w)Ξ = (t, ε)ξ ⊣′ ((w1, ε)ξ)
α1 ⊣′ . . . ⊣′ ((wn, ε)ξ)

αn

for any (t, w) ∈ FAd(X), where w = wα1
1 wα2

2 . . . wαn
n .

It is easy to see that Ξ is a homomorphism of (FAd(X),⊣) into (D′,⊣′).
Using that (D′,⊣′,⊢′) is an abelian dimonoid too, we obtain

((t, u) ⊢ (s, v))Ξ = ((s, v) ⊣ (t, u))Ξ

= (s, v)Ξ ⊣′ (t, u)Ξ = (t, u)Ξ ⊢′ (s, v)Ξ

for all (t, u), (s, v) ∈ FAd(X).

Observe that the cardinality of a set X is the rank of the constructed
free abelian dimonoid (FAd(X),⊣,⊢) and this dimonoid is uniquely de-
termined up to an isomorphism by |X|.

Now we consider the structure of a free abelian dimonoid of rank 1.

Lemma 1. Operations of the free abelian dimonoid (FAd(X),⊣,⊢) co-
incide if and only if |X| = 1.

Proof. Assume that operations of (FAd(X),⊣,⊢) coincide and x, y ∈ X
are distinct. Then for all u, v ∈ FCm(X),

(x, u) ⊣ (y, v) = (x, uyv) 6= (y, xuv) = (x, u) ⊢ (y, v),

which contradicts the fact that ⊣ = ⊢.

Let X = {x}, then for all (x, u), (x, v) ∈ FAd(X) we have

(x, u) ⊣ (x, v) = (x, uxv) = (x, u) ⊢ (x, v).
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Let (S, ◦) be an arbitrary semigroup and a ∈ S. Define on S a new
binary operation ◦a by

x ◦a y = x ◦ a ◦ y

for all x, y ∈ S.
Clearly, (S, ◦a) is a semigroup, it is called a variant of (S, ◦).

Proposition 5. The free abelian dimonoid (FAd(X),⊣,⊢) of rank 1
is isomorphic to the variant (N0,+1) of the additive semigroup of all
non-negative integers.

Proof. Let X = {x}, then FAd(X) = {(x, xn)|n ∈ N0}. By Lemma 1,
for (FAd(X),⊣,⊢) we have ⊣ = ⊢. Define a mapping ϕ of (FAd(X),⊣,⊢)
into (N0,+1) by

ϕ : (x, xn) 7→ n

for any (x, xn) ∈ FAd(X).

It is clear that ϕ is a bijection. In addition, for all (x, xn), (x, xm) ∈
FAd(X) we obtain

((x, xn) ⊣ (x, xm))ϕ = (x, xn+m+1)ϕ = n+m+ 1

= n+1 m = (x, xn)ϕ+1 (x, xm)ϕ.

4. The least abelian congruence

Let (D,⊣,⊢) be an arbitrary dimonoid, ρ be an equivalence relation
on D which is stable on the left and on the right with respect to each of
operations ⊣,⊢. In this case ρ is called a congruence on (D,⊣,⊢).

If f : D1 → D2 is a homomorphism of dimonoids, then the correspon-
ding congruence on D1 will be denoted by △f . For a congruence ρ on a
dimonoid (D,⊣,⊢) the corresponding quotient-dimonoid is denoted by
(D,⊣,⊢)/ρ. A congruence ρ on a dimonoid (D,⊣,⊢) is called abelian if
(D,⊣,⊢)/ρ is an abelian dimonoid.

As usual N denotes the set of all positive integers, and let n ∈ N . For
an arbitrary setX by X̃ we denote the copy ofX, that is, X̃ = {x̃ | x ∈ X}
and put

Y (1)
n = X̃ ×X × . . .×X︸ ︷︷ ︸

n

, Y (2)
n = X × X̃ ×X × . . .×X︸ ︷︷ ︸

n

,

Y (3)
n = X ×X × X̃ × . . .×X︸ ︷︷ ︸

n

, . . . , Y (n)
n = X ×X × . . .× X̃︸ ︷︷ ︸

n

.
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We denote the union of n different copies Y
(i)
n , 1 6 i 6 n, of Xn by

Yn and assume Fd(X) =
⋃
n>1 Yn. Define operations ≺ and ≻ on Fd(X)

as follows:

(x1,. . . ,x̃i,. . . ,xm) ≺ (y1,. . . ,ỹj , . . . , yn) = (x1, . . . , x̃i, . . . , xm, y1, . . . , yn),

(x1,. . . ,x̃i,. . . ,xm) ≻ (y1,. . . ,ỹj , . . . , yn) = (x1, . . . , xm, y1, . . . , ỹj , . . . , yn)

for all (x1, . . . , x̃i, . . . , xm), (y1, . . . , ỹj , . . . , yn) ∈ Fd(X).
According to [1], (Fd(X),≺,≻) is the free dimonoid on X. Elements

of Fd(X) are called words, X̃ is the generating set of (Fd(X),≺,≻).
Let (Fd(X),≺,≻) be the free dimonoid on X and w ∈ Fd(X). The

canonical form of w = (w1, . . . , w̃l, . . . , wk) is its representation in the
shape:

w = w̃1 ≻ . . . ≻ w̃l ≺ . . . ≺ w̃k.

We call k as the length of w and denote it by l(w). For any x ∈ X by
qx̃(w) we denote the quantity of all elements x̃ ∈ X̃ that are included in
the canonical form w̃1 ≻ . . . ≻ w̃l ≺ . . . ≺ w̃k of w.

Define a binary relation σ on Fd(X) as follows: u = (u1, . . . , ũi, . . . , un)
and v = (v1, . . . , ṽj , . . . , vm) of Fd(X) are σ-equivalent if for all x ∈ X,

qx̃(u) = qx̃(v) and ui = vj .

We note that qx̃(u) = qx̃(v) for all x ∈ X implies l(u) = l(v).

For example, for u = (a, b̃, a, c), v = (a, ã) and w = (c, a, a, b̃) we have
qã(p) = 2 for all p ∈ {u, v, w}, l(v) = 2 and (u,w) ∈ σ.

Theorem 2. The binary relation σ is the least abelian congruence on the
free dimonoid (Fd(X),≺,≻).

Proof. It is easy to see that σ is an equivalence relation. Assume that
u = (u1, . . . , ũi, . . . , un), v = (v1, . . . , ṽj , . . . , vm) ∈ Fd(X) such that uσv
and w = (w1, . . . , w̃k, . . . , wl) ∈ Fd(X). Then

u ≺ w = (u1, . . . , ũi, . . . , un, w1, . . . , wl),

v ≺ w = (v1, . . . , ṽj , . . . , vm, w1, . . . , wl),

u ≻ w = (u1, . . . , un, w1, . . . , w̃k, . . . , wl),

v ≻ w = (v1, . . . , vm, w1, . . . , w̃k, . . . , wl).

Since ui = vj and

qx̃(u ≺ w) = qx̃(v ≺ w), qx̃(u ≻ w) = qx̃(v ≻ w)
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for any x ∈ X, we have (u ≺ w)σ(v ≺ w) and (u ≻ w)σ(v ≻ w).
Analogously we can show that (w ≺ u)σ(w ≺ v) and (w ≻ u)σ(w ≻ v).
Thus, σ is a congruence.

In addition, we note that (u ≺ v)σ(v ≻ u) for all u, v ∈ Fd(X),
therefore (Fd(X),≺,≻)/σ is abelian. A class of (Fd(X),≺,≻)/σ which
contains w we denote by [w].

Further, we show that the quotient-dimonoid (Fd(X),≺,≻)/σ is iso-
morphic to the free abelian dimonoid (FAd(X),⊣,⊢) (see Theorem 1).

Define a mapping ϕ of (Fd(X),≺,≻)/σ into (FAd(X),⊣,⊢) by

[w]ϕ = (wk, w1 . . . wk−1wk+1 . . . wl)

for all words w = (w1, . . . , w̃k, . . . , wl) ∈ Fd(X) with l(w) > 2, and
[w]ϕ = (w1, ε) for any w = w̃1 ∈ Fd(X). It is clear that ϕ is a bijection.

For all [u], [v] ∈ (Fd(X),≺,≻)/σ, where u = (u1, . . . , ũi, . . . , un),
v = (v1, . . . , ṽj , . . . , vm), we have

([u] ≺ [v])ϕ = [(u1, . . . , ũi, . . . , un, v1, . . . , vm)]ϕ

= (ui, u1 . . . ui−1ui+1 . . . unv1 . . . vm)

= (ui, u1 . . . ui−1ui+1 . . . un) ⊣ (vj , v1 . . . vj−1vj+1 . . . vm)

= [u]ϕ ⊣ [v]ϕ.

Since dimonoids (Fd(X),≺,≻)/σ and (FAd(X),⊣,⊢) are abelian,

([u] ≻ [v])ϕ = ([v] ≺ [u])ϕ = [v]ϕ ⊣ [u]ϕ = [u]ϕ ⊢ [v]ϕ

for all [u], [v] ∈ (Fd(X),≺,≻)/σ.
Thus, (Fd(X),≺,≻)/σ is free abelian and the composition η♮◦ϕ, where

η♮ : (Fd(X),≺,≻)→ (Fd(X),≺,≻)/σ is the natural homomorphism, is
an epimorphism of (Fd(X),≺,≻) on (FAd(X),⊣,⊢) inducing the least
abelian congruence on Fd(X). From the definition of η♮ ◦ϕ it follows that
△η♮◦ϕ = σ.

5. Determinability

One of the venerable algebraic problems the first instance of which
was considered by E. Galois (see [12]) is the determinability of an al-
gebraic structure by its endomorphism semigroup. The determinability
problem for free algebras in a certain variety was raised by B. Plotkin [13].
For free groups this problem was solved by E. Formanek [14]. An analo-
gous problem for free semigroups and free monoids was decided in [15].
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Some characteristics for the enomorphism monoid of a free dimonoid
of rank 1 were obtained in [16]. Determinability of free trioids by their
endomorphism semigroups was proved in [17].

Recall that an algebra A of some class Ω is determined by its endo-
morphism semigroup in the class Ω if for any algebra B ∈ Ω the condition
End(A) ∼= End(B) implies A ∼= B. Note that the converse implication is
obvious.

Let FX = (FAd(X),⊣,⊢) be the free abelian dimonoid on X and
(t, u) ∈ FAd(X), u = uα1

1 uα2
2 . . . uαn

n . From Theorem 1 it follows that an
arbitrary endomorphism Ξ ∈ End(FX) has form:

(t, u)Ξ = (t, ε)ξ ⊣ ((u1, ε)ξ)
α1 ⊣ . . . ⊣ ((un, ε)ξ)

αn ,

where ξ : X × ε→ FAd(X) is any mapping.
An endomorphism θ(t,u) ∈ End(FX) we call constant if (x, ε)θ(t,u) =

(t, u) for all x ∈ X.

Lemma 2.

(i) An endomorphism f of the free abelian dimonoid FX is constant if
and only if ψf = f for all ψ ∈ Aut(FX).

(ii) An endomorphism f of the free abelian dimonoid FX is constant
idempotent if and only if f = θ(x,ε) for some x ∈ X.

Proof. (i) Suppose that an endomorphism f ∈ End(FX) is constant and
ψ ∈ Aut(FX). Then f = θ(t,u) for some (t, u) ∈ FAd(X), in addition,

(x, ε)(ψθ(t,u)) = ((x, ε)ψ) θ(t,u) = (t, u) = (x, ε)θ(t,u)

for any x ∈ X. Thus, ψθ(t,u) = θ(t,u).
Conversely, let ψf = f for all ψ ∈ Aut(FX) and some f ∈ End(FX).

For fixed x ∈ X we obtain

(x, ε)f = (x, ε) (ψf) = ((x, ε)ψ) f = (y, ε)f,

where (y, ε) = (x, ε)ψ. Since {(x, ε)ψ | ψ ∈ Aut(FX)} = X × ε, we have
(a, ε)f = (b, ε)f for all a, b ∈ X. From here f = θ(t,u) for (t, u) = (x, ε)f .

(ii) Let f ∈ End(FX) be a constant idempotent endomorphism. Then
f = θ(x,u), (x, u) ∈ FAd(X), and θ2

(x,u) = θ(x,u). Since θ(x,u)θ(x,u)
= θ2

(x,u),

we have

θ(x,u) = θ(x,u)θ(x,u) = θ(x,u)θ(x,u)
= θ(x,ul(u)+1xl(u)).

It means that (x, u) = (x, ul(u)+1xl(u)), whence l(u) = 0, i.e., u = ε.
Clearly, θ2

(x,ε) = θ(x,ε) for all x ∈ X.
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Theorem 3. Let FX = (FAd(X),⊣,⊢) and FY = (FAd(Y ),⊣,⊢) be free
abelian dimonoids such that End(FX) ∼= End(FY ). Then FX and FY are
isomorphic.

Proof. Let Ψ be an arbitrary isomorphism of End(FX) into End(FY ). In
according to the statements of Lemma 2 for some constant idempotent
endomorphism θ(x,ε), x ∈ X, of the free abelian dimonoid FX and for all
α ∈ Aut(FX), we have αθ(x,ε) = θ(x,ε). Taking into account that Ψ is a
homomorphism, we obtain

θ(x,ε)Ψ =
(
αθ(x,ε)

)
Ψ = αΨ θ(x,ε)Ψ.

Since Aut(FX)Ψ = Aut(FY ), by the statement (i) of Lemma 2 we
have θ(x,ε)Ψ is a constant endomorphism of FY . Then θ(x,ε)Ψ = θ(y,v) for
some (y, v) ∈ FAd(Y ), in addition, θ(y,v) is an idempotent of End(FY ).
By the statement (ii) of Lemma 2, v = ε′, where ε′ is the empty word of
FCm(Y ) (see Section 3).

Define a map ξ : X → Y putting xξ = y if and only if θ(x,ε)Ψ = θ(y,ε′).
It is clear that ξ is a bijection. Thus, abelian dimonoids FX and FY are
isomorphic.

Using similar arguments, the fact that the free dimonoid also is
uniquely determined up to an isomorphism by its endomorphism semi-
group can be proved.
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