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Efim Zelmanov

To the 60th anniversary

On September 7, 2015, a distinguished mathematician, one of the
founders of our journal, Efim Isaakovich Zelmanov, turned 60. He was
born in Khabarovsk, Soviet Union (now Russian Federation), while his
mother grew up in the Ukrainian city Zhytomyr.

Efim’s impressive mathematical abilities appeared in his school time.
He attended Novosibirsk State University, obtaining his Master’s degree
in 1977. He received his Ph.D. from Novosibirsk State University in
1980 having had his research supervised by the prominent algebraists
Professors L.A. Bokut and A.I. Shirshov. He defended his Doctor of
Sciences dissertation (habilitation) at Leningrad (St. Petersburg) State
University in 1985. In 1980–1989, Efim Zelmanov held research positions
(by increasing levels: Junior, Senior, and Leading Researcher) at the
Institute of Mathematics of the USSR Academy of Science at Novosibirsk
(Academgorodok). In 1989–1992, he worked for different universities in
the USA, Canada, Germany, and UK. In 1990, Zelmanov was appointed
a professor at the University of Wisconsin-Madison in the United States.
In 1994, he was appointed to the University of Chicago. In 1995–2002,
he held a professorship at Yale University. In 2002, Efim Zelmanov was
appointed as the Rita L. Atkinson Chair in Mathematics at University of
California, San Diego. His honors include: Fields Medal (1994), College de
France Medal (1991), and Andre Aizenstadt Prize (1996). Efim Zelmanov
was elected to American Academy of Arts and Sciences (1996), the U.S.
National Academy (2001), he is a Fellow of the American Mathematical
Society (2012). He is Foreign Member of the Spanish Royal Academy of
Sciences (1997), of the Korean Academy of Sciences and Technology (2008),
and of the Brazilian Academy of Sciences (2012). He was awarded by the
Honorary Doctor degree in Hagen (Germany), Oviedo (Spain), and Kyiv
(Ukraine) Universities.
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Professor Zelmanov was invited to speak at the International Con-
gresses of Mathematicians in Warsaw (1983), Kyoto (1990), and Zurich
(1994).

The thesis Efim Zelmanov presented for his Ph.D. was on nonassocia-
tive algebra, namely on Jordan algebras in the infinite dimensional case.
He showed that Glennie’s identity generates (in a certain sense) all iden-
tities that hold in the algebra. This and his consequent works completely
changed the entire content of Jordan algebras. He was able to extend
the known results from the classical theory of finite dimensional Jordan
algebras to infinite dimensional Jordan algebras. Zelmanov’s results on
Jordan algebras were presented in his invited lecture at the International
Congress of Mathematicians at Warsaw in 1983.

Lie rings were the next step in the study of non-associative rings.
In 1987 Zelmanov solved one of the most famous open questions in the
theory of Lie algebras at that time. He proved that the Engel identity
adn(y) = 0 implies that the algebra is necessarily nilpotent. Similar to
the case of Jordan algebras, Zelmanov was able to extend important
properties of finite dimensional Lie algebras to the infinite dimensional
case.

The mentioned results (and the results obtained by Zelmanov later)
on Lie and Jordan algebras dramatically changed the theory of non-
associative algebras. They made Efim Zelmanov a leading expert in
non-associative algebras. He and his coauthors were able to also make
a fundamental contribution to associative algebras, super-algebras, asso-
ciated modules and representations. Self-similar algebras and growth of
algebras are among of the topics of Zelmanov’s recent research.

In 1991, Zelmanov made one more significant step in his mathematical
career by solving the famous Restricted Burnside Problem. This problem
has its roots in one of the most remarkable mathematical problems known
as the Burnside Problem introduced by Burnside in 1902. A version of
this problem, formulated by Magnus in the 1930’s is called the Restricted
Burnside Problem. Prominent mathematicians such as Hall, Higman,
Kostrikin and many others put significant efforts toward solving this
problem. Using previously known results and his own results on Lie and
Jordan algebras, Efim Zelmanov obtained a complete solution to the
problem, which made a significant impact on the subsequent development
of group theory. This constitutes a remarkable example of the effectiveness
of the applications of ring theory and, more generally, of purely algebraic
methods, to group theory. The result of Zelmanov yields that if a group
G is finitely generated, residually finite, and satisfies the identity Xn = 1,
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then it is finite. Thus in the residually finite case (which is one of the
most important cases in applications) the situation is completely opposite
to the situation in the case of arbitrary finitely generated groups (the
Burnside Problem was solved by Adjan and Novikov in 1967).

In 1994, Zelmanov was awarded the Fields Medal for his works on
Lie and Jordan algebras and on the solution of the Restricted Burnside
Problem.

In 1991, Efim Zelmanov began his work on pro-p-groups. These groups
play a crucial role in Number Theory because the Galois groups of field
extensions are profinite groups and the primary p-case is the most signifi-
cant via its relation to p-adic fields. In this area, very soon Efim Zelmanov
obtained his remarkable result. He solved the Platonov Problem, a version
of the Burnside Problem for compact topological groups. He proved that
a compact torsion group is locally finite. After this work, pro-p groups
began playing a significant role in Zelmanov’s research.

Graded algebras, constructions of Golod-Shavarevich type, Kac-Moody
algebras and their subalgebras, superalgebra versions of Lie, Jordan and
other type of algebras, modules over them, representations, growth, etc.,
is a broad spectrum of the topics included in the research interest of
E. Zelmanov. In 2010 he came up with the idea of self-similarity in theory
of rings and successfully implemented it. The field of his interests goes far
beyond algebra. It includes theoretical physics, random processes, discrete
mathematics and much more.

Additionally to his research and teaching, Efim Zelmanov performs
tremendous outreach activity. The broader impact of his dedication to
the international mathematics community is difficult to overestimate.
He served and is serving numerous national and international important
committees (including those for the assignment of the Field Medal and
the Abel Prize). He plays an important role in mathematical life in many
countries, including USA, Germany, China, France, UK, South Korea,
Brazil, and many others. Efim Zelmanov plays a tremendous role in
supporting mathematical life in Ukraine. He regularly participates in and
helps to organize mathematics conferences that take place in Ukraine,
and in various ways supports many Ukrainian mathematicians.

E. Zelmanov’s contribution to mathematics goes far beyond his remark-
able research, teaching and outreach achievements. In different periods
of time, as an editor of many major mathematics journals including
‘The Annals of Mathematics’, ‘The Journal of Algebra’, ‘The Journal of
the American Mathematical Society’, ‘The Bulletin of Mathematical Sci-
ence’ for which he is the Editor in Chief, ‘Groups Geometry and Dynamics’,
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and ‘Algebra and Discrete Mathematics’, he strongly raised the bar of
the quality of publications.

Professor Zelmanov is a great speaker and lecturer. He is one of the
most popular presenters not only in the USA but in the world. He has
a rare and excellent type of humor which makes his presentations and
communication with him a great pleasure for everybody. He is a very
caring person and wonderful friend, always ready to extend his help and
support to his numerous friends and colleagues.

Efim Zelmanov has a wonderful family. He and his lovely wife Lena
are loving and caring parents and grandparents.

Professor Zelmanov is one of the top researchers in the world, distin-
guished leader of the world mathematics community, and one of the most
pleasant and nice people.

We most warmly congratulate him and wish him Siberian health,
much happiness, new great discoveries, and wonderful students.

The Editorial Board
of Algebra and Discrete
Mathematics Journal
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Universal property of skew P BW extensions

Juan Pablo Acosta and Oswaldo Lezama

Communicated by V. A. Artamonov

Abstract. In this paper we prove the universal property of
skew PBW extensions generalizing this way the well known univer-
sal property of skew polynomial rings. For this, we will show first a
result about the existence of this class of non-commutative rings.
Skew PBW extensions include as particular examples Weyl alge-
bras, enveloping algebras of finite-dimensional Lie algebras (and its
quantization), Artamonov quantum polynomials, diffusion algebras,
Manin algebra of quantum matrices, among many others. As a corol-
lary we will give a new short proof of the Poincaré-Birkhoff-Witt
theorem about the bases of enveloping algebras of finite-dimensional
Lie algebras.

1. Introduction

Most of constructions in algebra are characterized by universal prop-
erties from which it is easy to prove important results about the con-
structed object. This is the case of the universal property of the tensor
product; another well known example is the universal property for the
localization of rings and modules by multiplicative subsets. A key exam-
ple in non-commutative algebra is the skew polynomial ring R[x;σ, δ];
the universal property in this case says that if B is a ring with a ring
homomorphism ϕ : R → B and in B there exists and element y such
that yϕ(r) = ϕ(σ(r))y + ϕ(δ(r)) for every r ∈ R, then there exists an

2010 MSC: Primary: 16S10, 16S80; Secondary: 16S30, 16S36.
Key words and phrases: skew polynomial rings, skew P BW extensions, P BW

bases, quantum algebras.
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unique ring homomorphism ϕ̃ : R[x;σ, δ] → B such that ϕ̃(x) = y and
ϕ̃(r) = ϕ(r) (see [9]). In this paper we prove the universal property of
skew PBW extensions generalizing the universal property of skew poly-
nomial rings. For this, we will prove first a theorem about the existence
of skew PBW extensions similar to the corresponding result on skew
polynomial rings. As application we will get the Poincaré-Birkhoff-Witt
theorem about the bases of enveloping algebras of finite-dimensional Lie
algebras. This famous theorem says that if K is a field and G is a finite-
dimensional Lie algebra with K-basis {y1, . . . , yn}, then a K-basis of the
universal enveloping algebra U(G) is the set of monomials yα1

1 · · · y
αn
n ,

αi > 0, 1 6 i 6 n (see [4], [6]).
Skew PBW extensions were defined firstly in [7], and their homological

and ring-theoretic properties have been studied in the last years (see [1],
[3], [8], [10]). Skew polynomial rings of injective type, Weyl algebras, en-
veloping algebras of finite-dimensional Lie algebras (and its quantization),
Artamonov quantum polynomials, diffusion algebras, Manin algebra of
quantum matrices, are particular examples of skew PBW extensions (see
[8]). In this first section we recall the definition of skew PBW extensions
and some very basic properties needed for the proof of the main theorem.

Definition 1.1. Let R and A be rings. We say that A is a skew PBW
extension of R (also called a σ − PBW extension of R) if the following
conditions hold:

(i) R ⊆ A.
(ii) There exist finite elements x1, . . . , xn ∈ A such A is a left R-free

module with basis

Mon(A) := {xα = xα1
1 · · ·x

αn
n | α = (α1, . . . , αn) ∈ N

n}.

In this case it says also that A is a left polynomial ring over R
with respect to {x1, . . . , xn} and Mon(A) is the set of standard
monomials of A. Moreover, x0

1 · · ·x
0
n := 1 ∈Mon(A).

(iii) For every 1 6 i 6 n and r ∈ R − {0} there exists ci,r ∈ R − {0}
such that

xir − ci,rxi ∈ R. (1.1)

(iv) For every 1 6 i, j 6 n there exists ci,j ∈ R− {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (1.2)

Under these conditions we will write A := σ(R)〈x1, . . . , xn〉.
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The following proposition justifies the notation and the alternative
name given for the skew PBW extensions.

Proposition 1.2. Let A be a skew PBW extension of R. Then, for every
1 6 i 6 n, there exists an injective ring endomorphism σi : R→ R and a
σi-derivation δi : R→ R such that

xir = σi(r)xi + δi(r),

for each r ∈ R.

Proof. See [7], Proposition 3.

Observe that if σ is an injective endomorphism of the ring R and δ is
a σ-derivation, then the skew polynomial ring R[x;σ, δ] is a trivial skew
PBW extension in only one variable, σ(R)〈x〉.

Some extra notation will be used in the rest of the paper.

Definition 1.3. Let A be a skew PBW extension of R with endomor-
phisms σi, 1 6 i 6 n, as in Proposition 1.2.

(i) For α = (α1, . . . , αn) ∈ N
n, σα := σα1

1 · · ·σ
αn
n , |α| := α1 + · · ·+ αn.

If β = (β1, . . . , βn) ∈ N
n, then α+ β := (α1 + β1, . . . , αn + βn).

(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|.

(iii) If f = c1X1 + · · ·+ ctXt, with Xi ∈Mon(A) and ci ∈ R−{0}, then
deg(f) := max{deg(Xi)}

t
i=1.

The skew PBW extensions can be characterized in a similar way as
was done in [5] for PBW rings.

Theorem 1.4. Let A be a left polynomial ring over R w.r.t. {x1, . . . , xn}.
A is a skew PBW extension of R if and only if the following conditions
hold:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exist unique
elements rα := σα(r) ∈ R− {0} and pα,r ∈ A such that

xαr = rαx
α + pα,r, (1.3)

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. Moreover, if r is left
invertible, then rα is left invertible.
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(b) For every xα, xβ ∈ Mon(A) there exist unique elements cα,β ∈ R
and pα,β ∈ A such that

xαxβ = cα,βx
α+β + pα,β , (1.4)

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α + β| if
pα,β 6= 0.

Proof. See [7], Theorem 7.

2. Existence theorem for skew PBW extensions

If A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension of the ring R, then
as was observed in the previous section, A induces unique endomorphisms
σi : R → R and σi-derivations δi : R → R, 1 6 i 6 n. Moreover, by

(1.2), there exist cij , dij , a
(k)
ij ∈ R such that xjxi = cijxixj + a

(1)
ij x1 +

· · · + a
(n)
ij xn + dij , with 1 6 i, j 6 n. However, note that if i < j, since

Mon(A) is a R-basis, then 1 = cj,ici,j , i.e., for every 1 6 i < j 6 n, cji

is a right inverse of ci,j univocally determined. In a similar way, we can

check that a
(k)
ji = −cjia

(k)
ij , dji = −cjidij . Thus, given A there exist unique

parameters cij , dij , a
(k)
ij ∈ R such that

xjxi = cijxixj +a
(1)
ij x1+· · ·+a

(n)
ij xn+dij , for every 1 6 i < j 6 n. (2.1)

Definition 2.1. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension.

σi, δi, cij , dij , a
(k)
ij , 1 6 i < j 6 n, defined as before, are called the param-

eters of A.

Conversely, given a ring R and parameters σi, δi, cij , dij , a
(k)
ij , 1 6 i <

j 6 n, we will construct in this section a skew PBW extension with
coefficient ring R and satisfying the following equations

1) For i < j in I and k in I, xjxi = cijxixj + Σka
(k)
ij xk + dij ,

2) For i ∈ I and r ∈ R, xir = σi(r)xi + δi(r),

where I := {1, . . . , n}.

Definition 2.2. LetR be a ring andW be the free monoid in the alphabet
X ∪ R, with X := {xi : i ∈ I}. Let w be a word of W , the complexity
of w, denoted c(w), is a triple of nonnegative integers (a, b, c), where a
is the number of x’s in w, b is is the number of inversions involving only
x’s, and c is the number of inversions of the type (xi, r).
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These triples are ordered with the lexicographic order, i.e., (a, b, c) 6
(d, e, f) if and only if a < d, or, a = d and b < e, or, a = d, b = e and
c 6 f . This is a well order. Let T be the set of elements of W such that
c(w) = (a, 0, 0) and ZT be the linear extension of T in Z〈X ∪ R〉 (the
Z-free algebra in the alphabet X ∪R).

Definition 2.3. Let R be a ring, {cij}i<j , {dij}i<j and {a
(k)
ij }i<j,k be

elements of R indexed by i, j, k in I. Let σi, δi : R→ R be two functions
for each i ∈ I. Suppose that cij is left invertible and that σi(r) 6= 0 for
r 6= 0. We define the function p

p : W → Z〈X ∪R〉, with X := {xi : i ∈ I},

by induction in the complexity, as follows:

1) If w ∈ T then p(w) = w.

2) If w = v1xirv2, with r ∈ R, v1 ∈W and rv2 ∈ T then

p(w) = p(v1σi(r)xiv2) + p(v1δi(r)v2).

3) If w = v1xjxiv2, where v1 ∈W , xiv2 ∈ T with i < j, then

p(w) = p(v1cijxixjv2) + Σkp(v1a
(k)
ij xkv2) + p(v1dijv2).

The linear extension of p to Z〈X∪R〉 → Z〈X∪R〉 is also denoted p. The im-
age of p is contained in ZT . Let Mon := {Πn

k=1xik
: i1 6 · · · 6 in, n > 0},

and FR(Mon) be the left free R−module with basis Mon. We define
q : ZT → FR(Mon) as the bilinear extension of q(r1 . . . rmxi1 . . . xin) :=
(Πm

k=1rk)xi1 . . . xin . Finally, we define h : Z〈X ∪ R〉 → FR(Mon) as
h := qp.

Theorem 2.4 (Existence). Let R, I,X, ak
ij , cij , σi, δi, h, p, q be as in Defi-

nition 2.3. Then, there exists a skew PBW extension A of R with variables
X := {xi : i ∈ I} such that

(a) xir = σi(r)xi + δi(r).

(b) xjxi = cijxixj + Σka
(k)
ij xk + dij , for i < j in I.

if and only if

(1) For every i in I, σi is a ring endomorphism of R and δi is σi-
derivation.
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(2) h(xjxir) = h(p(xjxi)r), for i < j in I and r ∈ R.

(3) h(xkxjxi) = h(p(xkxj)xi), for i < j < k in I.

Proof. (=⇒) Numeral (1) is the content of Proposition 1.2. Conditions (2)
and (3) follow from (a) and (b) and the associativity xj(xir) = (xjxi)r
and xk(xjxi) = (xkxj)xi.

(⇐=) Define t : FR(Mon)→ Z〈X∪R〉 as t(Σrx̄x̄) := Σrx̄x̄ ∈ Z〈X∪R〉,
where Σrx̄x̄ is the unique expression of an element in FR(Mon) as a sum
over a finite set, x̄ ∈Mon and rx̄ 6= 0 is an element of R.

We define a product in FR(Mon) by

f ⋆ g = h(t(f)t(g)), f, g ∈ FR(Mon),

and we will prove in Lemma 2.8 below that h(ab) = h(a) ⋆ h(b), with
a, b ∈ Z〈X ∪ R〉. From this we get that h : Z〈X ∪ R〉 → FR(Mon) is
a surjection that preserves sums, products and h(1) = 1. This makes
FR(Mon) a ring, which is a skew PBW extension of R by the definition
of the product ⋆.

To complete the proof we proceed to prove Lemma 2.8, but for this,
we have to show first some preliminary propositions under the hypothesis
(1)-(3).

Proposition 2.5. For a, b ∈ W and r, s ∈ R the following equalities
hold:

(i) h(a0b) = 0.

(ii) h(a(−r)b) = −h(arb).

(iii) h(a(r + s)b) = h(arb+ asb).

(iv) h(a1b) = h(ab).

(v) h(a(rs)b) = h(arsb).

Proof. (i) and (ii) follow from (iii) since r 7→ h(arb) is a group homomor-
phism from the additive group of R into FR(Mon).

(iii) is proven by induction on c(a(r+s)b) and applying the definition of
h. Here the conditions δi(a+b) = δi(a)+δi(b) and σi(a+b) = σi(a)+σi(b)
in the hipothesis (1) of Theorem 2.4 are used.

(iv) is proven by induction on c(a1b) and making use of part (i). The
relevant hypothesis are σi(1) = 1 and δi(1) = 0 which are part of the
hypothesis (1) in Theorem 2.4.

(v) This part is proven by induction on c(a(rs)b) and making use
of (iii). The relevant hypothesis are σi(ab) = σi(a)σi(b) and δi(ab) =
σi(a)δi(b) + δi(a)b.
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Proposition 2.6. Let y, z ∈ Z〈X ∪ R〉 and a ∈ ZT . Then h(yaz) =
h(ytq(a)z).

Proof. This is because we can obtain tq(a) from a with a finite number
of operations described in Proposition 2.5. Indeed if a ∈ ZT then by
definition of T we heave a = Σnuu where the sum is over u ∈ T , nu ∈ Z

and u = r1,u . . . rm,uxj1 . . . xjk
(j1, . . . jk and m, k depend on u) here

rs ∈ R and 1 6 j1 6 · · · 6 jk 6 n. Then by definition of t, q we
have tq(a) = Σx∈Aa(x)x where A = {x ∈ Mon(X) : a(x) 6= 0}, and
a(x) = Σu∈B(x)nuΠsrs,u ∈ R where B(x) = {u ∈ T : xj1 . . . xjk

= x}.
Using the Proposition 2.5 (i) we obtain that

h(ytq(a)z) = h(yΣx∈Mon(X)a(x)xz).

Using that h is linear we get

h(yΣx∈Mon(X)a(x)xz) = Σx∈Mon(x)h(ya(x)xz).

Using Proposition 2.5 (i),(ii),(iii) we get that

h(ya(x)xz) = Σu∈B(x)nuh(y(Πsrs,u)xz).

Further, using Proposition 2.5 (iv)(v) we get that

h(y(Πsrs,u)xz) = h(yr1,u . . . rm,uxz) = h(yuz).

Proposition 2.7. If x, y, z ∈ Z〈X ∪R〉 then h(xp(y)z) = h(xyz).

Proof. The identity is linear in x, y, z, so we may assume they are words.
Next we proceed by induction on c(xyz). First assume that the first
inversion from right to left in xyz is in y, say y = w1xjsw2 with s = xi

with i < j or s ∈ R, and sw2 ∈ T . Then

h(xyz) = h(xw1p(xjs)w2z) = h(xp(w1p(xjs)w2)z) = h(xp(y)z)

by the definition of p and induction.
Now assume that the first inversion of xyz is not contained in yz, or

xyz ∈ T , in this case y ∈ T and p(y) = y.
Next, assume that the first inversion of xyz is contained in z say

z = w1xjsw2 with sw2 ∈ T and s = xi with i < j or s ∈ R. Then

h(xyz) = h(xyw1p(xjs)w2) = h(xp(y)w1p(xjs)w2) = h(xp(y)z)

by definition of h and induction.
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Now assume that the first inversion of xyz has a part in y and a part
in z, say y = y′xj and z = sz′ with z ∈ T and s = xi with i < j or s ∈ R.
Assume further that the first inversion of y exists and is contained in y′,
say y′ = w1xks

′w2 with s′w2 ∈ T an s′ = xi with i < k or s′ ∈ R. Then

h(xyz) = h(xy′p(xjs)z
′) = h(xp(y′)p(xjs)z

′)

= h(xp(w1p(xks
′)w2)p(xjs)z

′) = h(xw1p(xks
′)w2p(xjs)z

′)

= h(xw1p(xks
′)w2xjsz

′) = h(xp(w1p(xks
′)w2xj)sz′)

= h(xp(y)z)

by definition of h and induction applied alternatively. So the last case is
y = y′xkxj with k > j and z = sz′ with s = xi with i < j or s ∈ R and
z ∈ T . In this case

h(xyz) = h(xy′xkp(xjs)z
′) = h(xy′p(xkp(xjs))z

′)

by definition of h and induction, also observe

h(xy′p(xkp(xjs))z
′) = h(xy′p(p(xkxj)s)z′)

because qp(p(xkxj)s) = qp(xkp(xjs) by hipothesis (2) and (3) in Theorem
2.4, and also by Proposition 2.6. Also

h(xy′p(p(xkxj)s)z′) = h(xy′p(xkxj)sz′) = h(xp(y′p(xkxj))z)

by induction applied twice, and h(xp(y′p(xkxj))z) = h(xp(y)z) by defini-
tion of p, as required.

Lemma 2.8. h(ab) = h(a) ⋆ h(b), for a, b ∈ Z〈X ∪R〉.

Proof. h(a) ⋆ h(b) = h(tqp(a)tqp(b)) = h(p(a)p(b)) = h(ab), the first
equality is from the definition of ⋆, the second equality is from Proposition
2.6 twice and the third equality is Proposition 2.7 twice.

3. The universal property

In this section we will prove the main theorem about the character-
ization of skew PBW extensions by a universal property in a similar
way as this is done for skew polynomial rings. This problem was studied
in [2] where skew PBW extensions were generalized to infinite sets of
generators.
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Theorem 3.1 (Main theorem: The universal property).
Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension with parameters

σi, δi, cij , dij , a
(k)
ij , 1 6 i, j 6 n. Let B be a ring with homomorphism

ϕ : R→ B and elements y1, . . . , yn ∈ B such that

(i) yiϕ(r) = ϕ(σi(r))yi + ϕ(δi(r)), for every r ∈ R.

(ii) yjyi = ϕ(cij)yiyj + ϕ(a(1)
ij )y1 + · · ·+ ϕ(a(n)

ij )yn + dij .

Then, there exists an unique ring homomorphism ϕ̃ : A→ B such that
ϕ̃ι = ϕ and ϕ̃(xi) = yi, where ι is the inclusion of R in A.

Proof. Since A is a free R-module with basis Mon(A), we define the
R-homomorphism

ϕ̃ : A→ B, r1x
α1 + · · ·+ atx

αt 7→ ϕ(r1)yα1 + · · ·+ ϕ(at)y
αt ,

where yθ := yθ1
1 · · · y

θn
n , with θ := (θ1, . . . , θn) ∈ N

n. Note that ϕ̃(1) = 1.
ϕ̃ is multiplicative: In fact, applying induction on the degree |α+ β|

we have

ϕ̃(axαbxβ) = ϕ̃(a[σα(b)xαxβ + pα,bx
β ])

= ϕ̃[aσα(b)[cα,βx
α+β + pα,β ] + apα,bx

β]

= ϕ(a)ϕ(σα(b))ϕ(cα,β)yα+β + ϕ(a)ϕ(σα(b))ϕ(pα,β)(y)

+ ϕ(a)ϕ(pα,b)(y)yβ,

where ϕ(pα,β)(y) is the element in B obtained replacing each monomial
xθ in pα,β by yθ and every coefficient c by ϕ(c). In a similar way we
have for ϕ(pα,b)(y) (observe that the degree of each monomial of pα,bx

β

is < |α+ β|). On the other hand, applying (i) and (ii) we get

ϕ̃(axα)ϕ̃(bxβ) = ϕ(a)yαϕ(b)yβ

= ϕ(a)[ϕ(σα(b))yα + ϕ(pα,b)(y)]yβ

= ϕ(a)ϕ(σα(b))yαyβ + ϕ(a)ϕ(pα,b)(y)yβ

= ϕ(a)ϕ(σα(b))[ϕ(cα,β)yα+β + ϕ(pα,β)(y)]

+ ϕ(a)ϕ(pα,b)(y)yβ

= ϕ(a)ϕ(σα(b))ϕ(cα,β)yα+β + ϕ(a)ϕ(σα(b))ϕ(pα,β)(y)

+ ϕ(a)ϕ(pα,b)(y)yβ .

It is clear that ϕ̃ι = ϕ and ϕ̃(xi) = yi. Moreover, note that ϕ̃ is the
only ring homomorphism that satisfy these two conditions.
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Corollary 3.2. Let R be a ring and A = σ(R)〈x1, . . . , xn〉 be a skew

PBW extension of R with parameters σi, δi, cij , dij , a
(k)
ij , 1 6 i, j 6 n. Let

B be a ring with homomorphism ϕ : R→ B and elements y1, . . . , yn ∈ B
such that the conditions (i)-(ii) in Theorem 3.1 are satisfied with respect

to the system of parameters σi, δi, cij , dij , a
(k)
ij , 1 6 i, j 6 n, of the ring

R. If B satisfies the universal property, then B ∼= A = σ(R)〈x1, . . . , xn〉.
Moreover, the monomials yα1

1 · · · y
αn
n , αi > 0, 1 6 i 6 n are a R-basis

of B.

Proof. By the universal property of A there exists ϕ̃ such that ϕ̃ι = ϕ;
by the universal property of B there exists ι̃ such that ι̃ϕ = ι. Note that
ι̃ϕ̃ι = ι and ϕ̃ι̃ϕ = ϕ. The uniqueness gives that ι̃ϕ̃ = iA and ϕ̃ι̃ = iB.
Moreover, in the proof of Theorem 3.1 we observed that ϕ̃ is not only a
ring homomorphism but also a R-homomorphism, whence

ϕ̃(Mon(A)) = {yα1
1 · · · y

αn
n |αi > 0, 1 6 i 6 n}

is a R-basis of B.

Corollary 3.3. Let R be a ring and A = σ(R)〈x1, . . . , xn〉 be a skew

PBW extension of R with parameters σi, δi, cij , dij , a
(k)
ij , 1 6 i, j 6 n. Let

B be a ring that satisfies the following conditions with respect to the
system of parameters σi, δi, cij , dij , a

(k)
ij , 1 6 i, j 6 n, of the ring R.

(i) There exists a ring homomorphism ϕ : R→ B.

(ii) There exist elements y1, . . . , yn ∈ B such that B is a left free B-
module with basis Mon(y1, . . . , yn), and the product is given by
r · b := ϕ(r)b, r ∈ R, b ∈ B.

(iii) The conditions (i) and (ii) in Theorem 3.1 hold.

Then B ∼= A = σ(R)〈x1, . . . , xn〉.

Proof. According to the universal property of A, there exists a ring
homomorphism ϕ̃ : A → B given by r1x

α1 + · · · + atx
αt 7→ ϕ(r1)yα1 +

· · ·+ ϕ(at)yαt ; from (ii) we get that ϕ̃ is bijective.

4. The Poincaré-Birkhoff-Witt theorem

Using the results of the previous sections, we will give now a new short
proof of the Poincaré-Birkhoff-Witt theorem about the bases of enveloping
algebras of finite-dimensional Lie algebras. Recall that if K is a field and G
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is a Lie algebra with K-basis Y := {y1, . . . , yn}, the enveloping algebra of
G is the associative K-algebra U(G) defined by U(G) = K{y1, . . . , yn}/I,
where K{y1, . . . , yn} is the free K-algebra in the alphabet Y and I the
two-sided ideal generated by all elements of the form yjyi − yiyj − [yj , yi],
1 6 i, j 6 n, where [ , ] is the Lie bracket of G (see [9]).

Theorem 4.1 (Poincaré-Birkhoff-Witt theorem). The standard mono-
mials yα1

1 · · · y
αn
n , αi > 0, 1 6 i 6 n, conform a K-basis of U(G).

Proof. For the ring K we consider the following system of variables and
parameters:

X := {x1, . . . , xn}, σi := iK , δi := 0, ci,j := 1, dij := 0,

[xi, xj ] = a
(1)
ij x1 + · · ·+ a

(n)
ij xn, 1 6 i, j 6 n.

(4.1)

We want to prove that conditions (1)–(3) in Theorem 2.4 hold. Condition
(1) trivially holds. For (2) we have

h(xjxir) = h(xjrxi) = h(rxjxi) = rxixj + r[xj , xi];

h(p(xjxi)r) = h(xixjr) + h([xj , xi]r) = h(xirxj) + r[xj , xi]

= rxixj + r[xj , xi].

Condition (3) of Theorem 2.4 also holds: In fact,

h(p(xkxj)xi) = h(xjxkxi) + h([xk, xj ]xi)

= h(xjxixk) + h(xj [xk, xi]) + h([xk, xj ]xi)

= xixjxk + h([xj , xi]xk) + h(xj [xk, xi]) + h([xk, xj ]xi)

= xixjxk + (h(xk[xj , xi]) + h([[xj , xi], xk])) + (h([xk, xi]xj)

+ h([xj , [xk, xi]])) + (h(xi[xk, xj ]) + h([[xk, xj ], xi]))

= h(xkxjxi) + h([[xj , xi], xk] + [xj , [xk, xi]] + [[xk, xj ], xi])

= h(xkxjxi).

The last equality holds by the Jacobi identity, the second to the last
equality follows regrouping the terms and applying the definition of h to
h(xkxjxi).

From Theorem 2.4 we conclude that there exists a skew PBW exten-
sion A = σ(K)〈x1, . . . , xn〉 that satisfies (4.1), in particular, the monomials
xα1

1 · · ·x
αn
n , αi > 0, 1 6 i 6 n, conform a K-basis of A. But note that

U(G) satisfies the hypothesis in Corollary 3.2, so U(G) ∼= A and U(G) has
K-basis yα1

1 · · · y
αn
n , αi > 0, 1 6 i 6 n.
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Abstract. Properties of Lie and Jordan rings (denoted
respectively by RL and RJ) associated with an associative ring
R are discussed. Results on connections between the differentially
simplicity (respectively primeness, semiprimeness) of R, RL and RJ

are obtained.

1. Introduction

Throughout here, R is an associative ring (with respect to the addition
“+” and the multiplication “ · ”) with an identity, DerR is the set of all
derivations in R. On the set R we consider two operations: the Lie
multiplication “[−,−]” and the Jordan multiplication “(−,−)” defined
by the rules

[a, b] = a · b− b · a

and
(a, b) = a · b+ b · a

for any a, b ∈ R. Then

RL = (R,+, [−,−])

is a Lie ring and
RJ = (R,+, (−,−))

2010 MSC: Primary 16W25, 16N60; Secondary 17B60, 17C50.
Key words and phrases: Derivation, semiprime ring, Lie ring.
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is a Jordan ring (see [13] and [14]) associated with the associative ring R.
Recall that an additive subgroup A of R is called:

• a Lie ideal of R if
[a, r] ∈ A,

• a Jordan ideal of R if
(a, r) ∈ A

for all a ∈ A and r ∈ R. Obviously, A is a Lie (respectively Jordan) ideal
of R if and only if AL (respectively AJ) is an ideal of RL (respectively
RJ).

In all that follows ∆ will be any subset of DerR (in particular, ∆ = {0})
and δ ∈ DerR. A subset K of R is called ∆-stable if d(a) ∈ K for all
d ∈ ∆ and a ∈ K. An ideal I of a (Lie, Jordan or associative) ring A is
said to be a ∆-ideal if I is ∆-stable. A (Lie, Jordan or associative) ring
A is said to be:

• simple (respectively ∆-simple) if there no two-sided ideals (respec-
tively ∆-ideals) other 0 or A,

• prime (respectively ∆-prime) if, for all two-sided ideals (respectively
∆-ideals) K,S of A, the condition KS = 0 implies that K = 0 or
S = 0 (if ∆ = {δ} and A is ∆-prime, then we say that A is δ-prime),

• semiprime (respectively ∆-semiprime) if, for any two-sided ideal
(respectively ∆-ideal) K of A, the condition K2 = 0 implies that
K = 0,

• primary if, for any two-sided ideals K,S of A, the condition KS = 0
implies that K = 0 or S is nilpotent.

Every non-commutative ∆-simple ring is ∆-prime and every ∆-prime
ring is ∆-semiprime. We say that R is Z-torsion-free if, for any r ∈ R
and integers n, the condition nr = 0 holds if and only if r = 0. If the
implication

2r = 0⇒ r = 0

is true for any r ∈ R, then R is said to be 2-torsion-free. Let

Fp(R) = {a ∈ R | a has an additive order pk

for some non-negativek = k(a)}

be the p-part of R, where p is a prime. Then Fp(R) is a ∆-ideal of R. If
R is ∆-semiprime, then

pFp(R) = 0.
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In particular, in a ∆-prime ring R it holds Fp(R) = 0 (and so the
characteristic charR = 0) or Fp(R) = R (and therefore charR = p).
Obviously that the additive group R+ of a ∆-prime ring R is torsion-free
if and only if charR = 0. Recall that a ring R is said to be of bounded
index m, if m is the least positive integer such that xm = 0 for all nilpotent
elements x ∈ R. We say that a ring R satisfies the condition (X) if one of
the following holds:

(1) R or R/P(R) is Z-torsion-free, where P(R) is the prime radical of
R,

(2) R is of bounded index m such that an additive order of every nonzero
torsion element of R, if any, is strictly larger than m.

As noted in [16, p.283], a Z-torsion-free δ-prime ring is semiprime. In
this way we prove the following

Proposition 1. For a ring R the following hold:

(1) if R is a ∆-semiprime ring with the condition (X), then it is
semiprime,

(2) if R is both semiprime (respectively satisfies the condition (X)) and
∆-prime, then R is prime.

Relations between properties of an associative ring R, a Lie ring RL

and a Jordan ring RJ was studied by I.N. Herstein and his students (see
[7, 8, 11] and bibliography in [9] and [5]); he has obtained, for a ring R
of characteristic different from 2, that the simplicity of R implies the
simplicity of a Jordan ring RJ [7, Theorem 1], and also that every Lie
ideal of a simple Lie ring R is contained in the center Z(R) [7, Theorem
3]. K. McCrimmon [20, Theorem 4] has proved that R is a simple algebra
if and only if RJ is a simple Jordan algebra. Our result is the following

Theorem 1. For a 2-torsion-free ring R the following statements are
true:

(1) R is a ∆-simple ring if and only if RJ is a ∆-simple Jordan ring,

(2) R is a ∆-prime ring if and only if RJ is a ∆-prime Jordan ring,

(3) R is a ∆-semiprime ring if and only if RJ is a ∆-semiprime Jordan
ring.
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Let us d ∈ ∆. Since C(R) and annC(R) are ∆-ideals, the rule

d : R/ annC(R) ∋ r + annC(R) 7→ d(r) + annC(R) ∈ R/ annC(R)

determines a derivation d of the quotient ring R/ annC(R). Then

∆ = {d | d ∈ ∆} ⊆ Der(R/ annC(R)).

Inasmuch d(Z(R)) ⊆ Z(R), the rule

d̂ : RL/Z(R) ∋ r + Z(R) 7→ d(r) + Z(R) ∈ RL/Z(R)

determines a derivation d̂ of the Lie ring RL/Z(R). Then

∆̂ = {d̂ | d ∈ ∆} ⊆ Der(RL/Z(R)).

Since the center Z(R) is a nonzero Lie ideal of an associative ring R with
an identity, a Lie ring RL is not ∆-simple. Our next result is the following

Theorem 2. Let R be a 2-torsion-free ring. Then the following are true:

(1) if the quotient ring RL/Z(R) is a ∆̂-simple Lie ring, then R is
non-commutative and R/ annC(R) is a ∆-simple ring,

(2) if R is a ∆-simple ring, then RL/Z(R) is a ∆̂-simple Lie ring or
R is commutative,

(3) if RL/Z(R) is a ∆̂-semiprime Lie ring, then R is non-commutative
and the quotient ring R/ annC(R) is a ∆-semiprime ring,

(4) if R is a ∆-semiprime ring, then RL/Z(R) is a ∆̂-semiprime Lie
ring or R is commutative,

(5) if RL/Z(R) is a ∆̂-prime Lie ring, then R is non-commutative and
R/ annC(R) is a ∆-prime ring,

(6) if R is a ∆-prime ring, then RL/Z(R) is a ∆̂-prime Lie ring or R
is commutative.

Throughout, let Z(R) denote the center of R, [A,B] (respectively
(A,B)) an additive subgroup of R generated by all commutators [a, b]
(respectively (a, b)), where a ∈ A and b ∈ B, C(R) the commutator ideal
of R, N(R) the set of nilpotent elements in R, charR the characteristic of
R, annl I = {a ∈ R | aI = 0} the left annihilator of I in R, annr I = {a ∈
R | Ia = 0} the right annihilator of I in R, ann I = (annr I) ∩ (annl I),
CR(I) = {a ∈ R | ai = ia for all i ∈ I} the centralizer of I in R and
∂a(x) = [a, x] for a, x ∈ R.

All other definitions and facts are standard and it can be found in
[10], [17] and [19].
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2. Differentially prime right Goldie rings

Let agree that
d0 = idR

is the identity endomorphism for d ∈ ∆.

Lemma 1. The following conditions are equivalent:

(1) R is a ∆-semiprime ring,

(2) for any ∆-ideals A,B of R the implication

AB = 0⇒ A ∩B = 0

is true,

(3) if a ∈ R is such that

aRδm1
1 . . . δmk

k (a) = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k),
then a = 0.

Proof. A simple modification of Proposition 2 from [17, §3.2].

Lemma 2. The following conditions are equivalent:

(1) R is a ∆-prime ring,

(2) a left annihilator annl I of a left ∆-ideal I of R is zero,

(3) a right annihilator annr I of a right ∆-ideal I of R is zero,

(4) if a, b ∈ R are such that

aRδm1
1 . . . δmk

k (b) = 0

for any integers k > 1,mj > 0 and derivations δj ∈ ∆ (j = 1, . . . , k),
then a = 0 or b = 0.

Proof. A simple consequence of Lemma 2.1.1 from [10].

If I is an ideal of a ring R, then

CR(I) = {x ∈ R | x+ I is regular in the quotient ring R/I}

(see [19, Chapter 2, §1]). The next lemma extends Proposition 1 of [15].
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Lemma 3. Let R be a right Goldie ring and δ ∈ DerR. If R is δ-prime,
then:

(a) the set N = N(R) of nilpotent elements of R is its prime radical,

(b)
⋂k

i=1 δ
−1(N) = 0 for some integer k,

(c) CR(0) = CR(N).

Proof. From Theorem 2.2 of [16] (see the part (ii)⇒ (iii) of its proof), we
obtain (a) and (b). By Proposition 4.1.3 of [19], CR(0) ⊆ CR(N). By the
same argument as in [16, p.284], we can obtain that CR(0) = CR(N).

Corollary 1. If R is a commutative δ-prime Goldie ring and δ ∈ DerR,
then N(R) contains all zero-divisors of R.

By Corollary 1.4 of [6], if I is a δ-prime ideal of a right Noetherian
ring R and R/I has characteristic 0, then I is prime. The following lemma
is an extension of Lemma 2.5 from [6].

Lemma 4. Let R be a 2-torsion-free commutative Goldie ring and δ ∈
DerR. If R is δ-prime, then it is an integral domain.

Proof. Assume that a ∈ annN(R), b ∈ N(R) and r ∈ R. Then

0 = δ2(arb) = δ(δ(a)rb+ aδ(r)b+ arδ(b))

= δ2(a)rb+ 2δ(a)δ(r)b+ 2δ(a)rδ(b) + aδ2(r)b+ 2aδ(r)δ(b) + arδ2(b)

and so
2δ(a)Rδ(b) ⊆ N(R).

This means that δ(a) ∈ N(R) or δ(b) ∈ N(R). Hence N(R) is δ-stable.
By Lemma 3, N(R) is a ideal and therefore N(R) = 0. By Lemma 1.2 of
[4], R is prime and consequently it is an integral domain.

Proof of Proposition 1.
(1) By Proposition 1.3 of [6] and Theorem 1 of [1], the prime radical

P(R) is a ∆-ideal and so P(R) = 0 is zero.
(2) Since P(R) = 0, R is prime by Lemma 1.2 from [4].

By Theorem 4 of [22], a ∆-simple ring R of characteristic 0 is prime.
Since every non-commutative ∆-simple ring is ∆-prime, in view of Propo-
sition 1 we obtain the following

Corollary 2. Let R be a semiprime ring (respectively a ring R satisfy
the condition (X)). If R is ∆-simple, then it is prime.
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3. Differential analogues of Herstein’s results

For the proof of Theorem 2 we need the next results. In the proofs
below we use the same consideration, as in [12, Chapter 1, §1], and present
them here in order to have the paper more self-contained. Let agree that
everywhere in this section k > 1 and mi > 0 are integers (i = 1, . . . , k).

Lemma 5. Let R be a ∆-semiprime ring, A and B its ∆-ideals. Then
the following statements hold:

(i) if AB = 0, then BA = 0.

(ii) annl A = annr A.

(iii) A ∩ annr A = 0.

Proof. (i) Indeed, BA is a ∆-ideal and (BA)2 = 0 and so BA = 0.
(ii) We denote (annr A)A by X. Since X is a ∆-ideal and X2 = 0, we

deduce that X = 0. This means that

annr A ⊆ annl A.

The inverse inclusion we can prove similarly.
(iii) Since A ∩ annr A is a nilpotent ∆-ideal, the assertion holds.

Henceforth

Xa = {[δm1
1 . . . δmk

k (a), x] | x ∈ R, δi ∈ ∆, mi > 0
and k > 1 are integers (i = 1, . . . , k)}.

It is clear that [a, x] ∈ Xa.

Lemma 6. Let R be a ∆-semiprime ring and a ∈ R. Then the following
statements hold:

(i) if

a[δm1
1 . . . δmk

k (a), R] = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k),
then a ∈ Z(R),

(ii) if I is a right ∆-ideal of R, then Z(I) ⊆ Z(R),

(iii) if I is a commutative right ∆-ideal of R and I is nonzero, then
I ⊆ Z(R). If, moreover, R is ∆-prime, then it is commutative.
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Proof. (i) Let x, y ∈ R and d, δ ∈ ∆. Since

[b, xy] = [b, x]y + x[b, y] (3.1)

for any b ∈ Xa and a[b, xy] = 0, we conclude that ax[b, y] = 0. This gives
that ayx[b, y] = 0 and yax[b, y] = 0 and consequently

(R[a, y]R)2 = 0. (3.2)

In addition,
0 = d(a[b, x]) = d(a)[b, x].

Multiplying (3.1) by d(a) on left we get d(a)x[b, y] = 0. Moreover,

0 = δ(ax[d(b), y]) = δ(a)x[d(b), y]

and, by the similar argument, we obtain that

δm1
1 . . . δmk

k (a)x[δm1
1 . . . δmk

k (a), y] = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k). As
in the proof of the condition (3.2), we deduce that

(R[δm1
1 . . . δmk

k (a), y]R)2 = 0.

Then

I =
∞∑

k=1

∑

δ1...δk∈∆
y∈R

R[δm1
1 . . . δmk

k (a), y]R

is a sum of nilpotent ideals and therefore it is a nil ideal. Since I is a
∆-ideal, we conclude that I = 0 and, as a consequence, a ∈ Z(R).

(ii) Let a ∈ Z(I) and y ∈ R. Then, for δ1, . . . , δk ∈ ∆, we have

δm1
1 . . . δmk

k (a) ∈ Z(I)

and ay ∈ I. This gives that

a(δm1
1 . . . δmk

k (a)y) = δm1
1 . . . δmk

k (a)(ay) = a(yδm1
1 . . . δmk

k (a)),

and thus
a[δm1

1 . . . δmk

k (a), y] = 0.

By (i), a ∈ Z(R) is central.
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(iii) By (ii), I ⊆ Z(R). Assume that R is ∆-prime, u, v ∈ R and
a ∈ I. Then au ∈ I and so au ∈ Z(R). Since

a(uv) = (au)v = v(au) = (va)u = a(vu),

we see that

[u, v] ∈ annr I.

By Lemma 2(3), [u, v] = 0 and hence R is commutative.

Lemma 7. Let R be a ∆-prime ring and a ∈ R. If a ∈ CR(I) for some
nonzero right ∆-ideal I of R, then a ∈ Z(R).

Proof. Let us y ∈ R and b ∈ I. Then by ∈ I and so bay = a(by) = bya.
This yields that

I[a, y] = 0 = [a, y]I.

By Lemma 2(3), [a, y] = 0. Hence a ∈ Z(R).

Lemma 8. The left annihilator annl(Xa) is a left ∆-ideal of R.

Proof. Immediate from the definition.

Lemma 9. If R is a ∆-semiprime ring, then CR([R,R]) ⊆ Z(R).

Proof. Let us a ∈ CR([R,R]), d, δ ∈ ∆ and x, y ∈ R. Putting x for a and
xd(a) for xy in (3.1) we obtain

[x, xd(a)] = [x, x]d(a) + x[x, d(a)]

and, as a consequence, [a, x[x, d(a)]] = 0 and [a, x][x, d(a)] = 0. Then,
by the same reasons as in the proof of Lemma 6(i), we obtain that
[a, x] ∈ annl(Xa) and A = annl(Xa) is a ∆-ideal. Then

[δ(a), x][d(a), x] = δ([a, x][d(a), x]) = 0.

Since A ∩ annl A = 0, we deduce that is a nilpotent ∆-ideal and so
a ∈ Z(R).

Lemma 10. Let R be a 2-torsion-free ∆-semiprime ring. If a ∈ R
commutes with all elements of Xa, then a ∈ Z(R).
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Proof. Let r, x, y ∈ R and d ∈ ∆. It is clear that ∂2
a(x) = 0. From

∂2
a(xy) = 0 it follows that

2∂a(x)∂a(y) = 0

and so ∂a(x)∂a(y) = 0. Since

0 = ∂a(x)∂a(rx) = ∂a(x)∂a(r)x+ ∂a(x)r∂a(x) = ∂a(x)r∂a(x),

we deduce that ∂a(x)R∂a(x) = 0 and (∂a(x)R)2 = 0. Moreover, a[b, x] =
[b, x]a for any [b, x] ∈ Xa and therefore

d(a)[b, x] + a[d(b), x] + a[b, d(x)] = [b, x]d(a) + [d(b), x]a+ [b, d(x)]a.

From this it holds that

d(a)[b, x] = [b, x]d(a).

This means that CR(Xa) is ∆-stable and (∂d(a)(x)R)2 = 0. As a conse-
quence,

I =
∞∑

k=1

∑

x∈R
mk>0

δ1,...,δk∈∆

∂δ
m1
1 ...δ

mk
k

(a)(x)R

is a sum of nilpotent ideals and so I is a nil ideal. Since I is a ∆-ideal,
we deduce that I = 0. Hence a ∈ Z(R).

The next lemma is an extension of Lemma 1 from [11] in the differential
case.

Lemma 11. Let R be a 2-torsion-free ∆-semiprime ring, T its Lie ∆-
ideal. If [T, T ] ⊆ Z(R), then T ⊆ Z(R).

Proof. Let x ∈ R and t ∈ T .
1) If [T, T ] = 0, then [t, x] ∈ T and so [t, [t, x]] = 0. By Lemma 10,

T ⊆ Z(R).
2) Now assume that 0 6= [a, b] ∈ [T, T ] for some a, b ∈ T . Then

∂a(b) ∈ Z(R) and ∂2
a(R) ⊆ Z(R).

Moreover, we have that

Z(R) ∋ ∂2
a(bx) = ∂a(∂a(b)x+ b∂a(x))

= ∂2
a(b)x+ 2∂a(b)∂a(x) + b∂2

a(x)

= 2∂a(b)∂a(x) + b∂2
a(x)
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and hence
[2∂a(b)∂a(x) + b∂2

a(x), b] = 0.

Then

0 = 2∂b(∂a(b))∂a(x) + 2∂a(b)∂b(∂a(x)) + ∂b(b)∂
2
a(x) + b∂b(∂

2
a(x))

= 2∂a(b)∂b(∂a(x))
(3.3)

and
∂a(ba) = ∂a(b)a+ b∂a(a) = ∂a(b)a.

Replacing ba for x in (3.3) we have

0 = 2∂a(b)∂b(∂a(b)a) = 2∂a(b)(∂b(∂a(b)) + ∂a(b)∂b(a)) = −2∂a(b)3

and thus ∂a(b)3 = 0. Then R∂a(b) is a nilpotent ideal in R and, as a
consequence, ∑

a,b∈T

R∂a(b)

is a nonzero nil ∆-ideal, a contradiction.

Lemma 12. If U is a Lie ∆-ideal of a ring R and I(U) = {u ∈ R |
uR ⊆ U}, then I(U) is the largest ∆-ideal of R such that I(U) ⊆ U .

Proof. Let u, v ∈ I(U), x, y ∈ R and δ ∈ ∆. Clearly that I(U) is an
additive subgroup ofR, I(U) ⊆ U and (ux)y = u(xy) ∈ (ux)R = u(xR) ⊆
uR ⊆ U that is ux ∈ I(U). From

u(xy)− (yu)x = (ux)y − y(ux) = [ux, y] ∈ U

(and so (yu)x ∈ U) it holds that yu ∈ I(U). Hence U is a two-sided ideal
of R. Moreover,

δ(u)x+ uδ(x) = δ(ux) ∈ δ(U) ⊆ U

and uδ(x) ∈ uR ⊆ U . Therefore δ(u)x ∈ U . This means that I(U) is a ∆-
ideal of R. If A is a ∆-ideal of R that is contained in U , then AR ⊆ A ⊆ U
and hence A ⊆ I(U).

Lemma 13. Let U be a Lie ∆-ideal of R. If U is an associative subring
of R, then [U,U ] = 0 or U contains a nonzero ∆-ideal of R.
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Proof. Assume that x ∈ R and [U,U ] 6= 0. Then [u, v] 6= 0 for some
u, v ∈ U and

[u, vx] = u(vx)− (vx)u = (uv − vu)x+ v(ux− xu).

Since [u, x], [u, vx] ∈ U and v[u, x] ∈ U , we deduce that [u, v]x ∈ U . This
means that [u, v] ∈ I(U). In view of Lemma 12, I(U) is a nonzero ∆-ideal
of R that is contained in U .

Proposition 2. If U is a Lie ∆-ideal of R, then [U,U ] = 0 or there
exists a nonzero ∆-ideal IU of R such that [IU , R] ⊆ U .

Proof. By Lemma 3 of [7],

T (U) = {t ∈ R | [t, R] ⊆ U}

is both a Lie ideal and an associative subring of R and U ⊆ T (U).
Moreover, for δ ∈ ∆, we have

[δ(t), R] + [t, δ(R)] = δ([t, R]) ⊆ δ(U) ⊆ U

and so [δ(t), R] ⊆ U . Hence T (U) is ∆-stable. If [U,U ] 6= 0, then, by
Lemmas 12 and 13,

IU = I(T (U)) ⊆ T (U)

is a nonzero ∆-ideal of R such that [IU , R] ⊆ U .

Lemma 14. Let U be a Lie ∆-ideal of a ring R. If [U,U ] = 0, then the
centralizer CR(U) is a Lie ∆-ideal and an associative subring of R.

Proof. Is immediately.

We extend Theorem 1.3 of [9] in the following

Proposition 3. Let R be a ∆-simple ring of characteristic 2. If U is a
Lie ∆-ideal of R, then one of the following holds:

(1) [R,R] ⊆ U ,

(2) U ⊆ Z(R),

(3) R contains a subfield P such that U ⊆ P and [P,R] ⊆ P .
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Proof. If [U,U ] 6= 0, then [R,R] ⊆ U by Proposition 2. Therefore we
assume that [U,U ] = 0. By Lemma 14, CR(U) is a Lie ∆-ideal and an
associative subring of R such that U ⊆ CR(U).

a) If CR(U) is non-commutative, then CR(U) = R by Lemma 13.
Hence U ⊆ Z(R).

b) Now assume that the centralizer CR(U) is commutative. If c ∈
CR(U) and x ∈ R, then

c2 ∈ CR(U) and [c2, x] = [[c, x], x] = 2c[c, x] = 0.

This gives that c2 ∈ Z(R). By Theorem 2 of [22], Z(R) is a field. As a
consequence, c2 (and so c) is invertible in CR(U). Hence CR(U) is a field.

Corollary 3. Let R be a ∆-simple ring. If U is a Lie ∆-ideal of R, then
one of the following holds:

(1) [R,R] ⊆ U ,

(2) U ⊆ Z(R),

(3) charR = 2 and R contains a subfield P such that U ⊆ P and
[P,R] ⊆ P .

4. Jordan properties

Lemma 15. Let R be a ∆-simple ring of characteristic 6= 2, U its proper
Jordan ∆-ideal and a ∈ U . If [a,R] ⊆ U , then a = 0.

Proof. Let us x, y ∈ R. Since [a, x] ∈ U and (a, x) ∈ U , we obtain that
2ax ∈ U and, as a consequence, ax ∈ U and (ax, y) ∈ U . Moreover, from
axy ∈ U it follows that yax ∈ U . This means that RaR ⊆ U . Since
d(a) ∈ U for any d ∈ ∆, in view of [21, Lemma 1.1] we obtain that

∞∑

k=1

∑

δ1,...,δk∈∆
(m1,...,mk)∈Nk

Rδm1
1 . . . δmk

k (a)R

is a proper ∆-ideal of R that is contained in U . Hence a = 0.

Remark 1. Let R be a 2-torsion-free ring, U its Jordan ∆-ideal. If ∆
contains all inner derivations of R, then U is an ideal of R.
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In fact, we have

2xa = [a, x] + (a, x) ∈ U

for any a, b, x ∈ U and so xa ∈ U . By the same argument, we can conclude
that ax ∈ U .

Proof of Theorem 1.
(1) (⇐) If A is a nonzero proper ∆-ideal of a ring R, then AJ is a

nonzero proper ∆-ideal of RJ , a contradiction.
(⇒) Let U be a proper Jordan ∆-ideal of R, a, b ∈ U and x ∈ R. By

Lemma 1 of [7], [(a, b), x] ∈ U , and, by Lemma 15, we see that

(a, b) = 0. (4.4)

In particular, 2a2 = 0 and, as a consequence, a2 = 0 and 2axa =
(a, (a, x)) = 0. It follows that axa = 0. Since

0 = (a+ b)x(a+ b) = axb+ bxa

and

0 = (b, (a, x)) = b(ax+ xa) + (ax+ xa)b = bax+ bxa+ axb+ xba,

we deduce that bax+ xab = 0. But ab = −ba and so bax− xba = 0. This
means that ba ∈ Z(R). Then (RabR)2 = 0. Since

I =
∞∑

k=1

∑

a,b∈U, δ1,...,δk∈∆
(m1,...,mk)∈Nk

Raδm1
1 . . . δmk

k (b)R

is a ∆-ideal of R that is a sum of nilpotent ideals, we obtain that I = 0.
Therefore

0 = (b, x)a = (bx+ xb)a = bxa+ xba = 2bxa.

We conclude that URU = 0. From (RUR)2 = 0 and δ(RUR) ⊆ RUR for
any δ ∈ ∆ it holds that U = 0.

(2) (⇐) If A,B are ∆-ideals of R such that AB = 0, then (BA)2 = 0
and so BA is a Jordan ideal of R satisfying the condition

(BA,BA) = 0.
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Thus the condition (4.4) is true for U = BA. As in the proof of the part
(1), we obtain that BA = 0. Then AJ , BJ are ∆-ideals of a Jordan ring
RJ such that

(AJ , BJ) = 0.

Hence A = 0 or B = 0.
(⇒) Let a1, a2 ∈ A and x, y ∈ R. Suppose that RJ is not ∆-prime

and therefore there exist nonzero Jordan ∆-ideals A,B of R such that

(A,B) = 0.

By the same reasons as above, we conclude that A ∩ B = 0. Then, by
Lemma 1 of [7], we have [(a1, a2), x] ∈ A and hence

[(a1, a2), x]± ((a1, a2), x) ∈ A.

Therefore x(a1, a2)y ∈ A. Thus R contains ∆-ideals R(A,A)R ⊆ A and
R(B,B)R ⊆ B such that

R(A,A)R(B,B)R ⊆ A ∩B = 0.

Hence (A,A) = 0 or (B,B) = 0 and this leads to a contradiction.
(3) (⇐) If A is a nonzero ∆-ideal of R such that A2 = 0, then AJ is

a nonzero ∆-ideal of the Jordan ring RJ such that

(AJ , AJ) = 0,

a contradiction.
(⇒) Suppose that R has a nonzero Jordan ∆-ideal U such that

(U,U) = 0.

Then the condition (4.4) is true for any a, b ∈ U . As in the proof of the
part (1), we obtain that U = 0.

�

If R is a ring, then on the set R we can to define a left Jordan
multiplication “〈−,−〉” by the rule

〈a, b〉 = 2ab

for any a, b ∈ R. Then the equalities

〈〈〈a, a〉, b〉, a〉 = 〈〈a, a〉, 〈b, a〉〉 and 〈〈a, b〉, a〉 = 〈a, 〈b, a〉〉
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are true and hence
RlJ = (R,+, 〈−,−〉)

is a non-commutative Jordan ring (which is called a left Jordan ring
associated with an associative ring R). It is clear that, for commutative
ring R, we have

RJ = RlJ .

If A is an additive subgroup of R that 〈a, r〉, 〈r, a〉 ∈ A for any a ∈ A and
r ∈ R, then A is called an ideal of RlJ . If δ ∈ ∆ and a, b ∈ R, then

δ(〈a, b〉) = δ(2ab) = 2δ(a)b+ 2aδ(b) = 〈δ(a), b〉+ 〈a, δ(b)〉

and therefore δ ∈ Der(RlJ). By the other hand, if δ ∈ Der(RlJ), then

2δ(ab) = δ(〈a, b〉) = 〈δ(a), b〉+ 〈a, δ(b)〉 = 2(δ(a)b+ aδ(b)).

If R is a 2-torsion-free ring, then δ ∈ DerR. Similarly, as in Theorem 1,
we can prove the following

Proposition 4. For a 2-torsion-free ring R the following conditions are
true:

(1) R is a ∆-simple ring if and only if RlJ is a ∆-simple Jordan ring,

(2) R is a ∆-prime ring if and only if RlJ is a ∆-prime Jordan ring,

(3) R is a ∆-semiprime ring if and only if RlJ is a ∆-semiprime Jordan
ring.

5. Proofs

The next lemma in the prime case is contained in [18, Lemma 7].

Lemma 16 ([2, Lemma 1.7]). Let R be a ring. If [[R,R], [R,R]] = 0,
then the commutator ideal C(R) is nil.

Corollary 4. If R is a non-commutative ∆-semiprime ring, then [R,R]
is non-commutative.

Proof of Theorem 2.
(1) It is clear that a ring R is non-commutative. If A is a nonzero

proper ∆-ideal of R, then AL is a nonzero proper ∆-ideal of RL. Therefore
A ⊆ Z(R) and, as a consequence, A · C(R) = 0.



O. D. Artemovych, M. P. Lukashenko 29

(2) Suppose that a ∆-simple ring R is non-commutative and U is
its nonzero proper Lie ∆-ideal. By Proposition 2, [U,U ] = 0. Then, by
Lemma 11, U ⊆ Z(R). Hence the quotient ring RL/Z(R) is ∆̂-simple.

(3) Let A be a nonzero ∆-ideal of R such that A2 = 0. Then AL is a
nonzero ∆-ideal of a Lie ring RL and, moreover,

[AL, AL] = 0.

By Lemma 11, A ⊆ Z(R) and hence A · C(R) = 0.
(4) Suppose that R is non-commutative. Let A be a nonzero Lie

∆-ideal of R such that [A,A] = 0. Then, by Lemma 11, A ⊆ Z(R) and,
as a consequence, the Lie ring RL/Z(R) is ∆̂-semiprime.

(5) Let A,B be nonzero ∆-ideals of R such that AB = 0. Obviously,
[A,B] ⊆ Z(R). Then A ⊆ Z(R) or B ⊆ Z(R).

(6) Assume that R is non-commutative and A,B are nonzero Lie
∆-ideals of R such that

[A,B] = 0.

Then A ∩B ⊆ Z(R). Since A ∩B ⊆ annC(R) in a ∆-prime ring R, we
have that the intersection A ∩ B = 0 is zero. If T (A) = R (see proof
of Proposition 2), then [R,R] ⊆ A and B ⊆ CR([R,R]). By Lemma 9,
B ⊆ Z(R). So we assume that T (A) 6= R. If [T (A), T (A)] = 0, then
[A,A] = 0 and, by Lemma 11, A ⊆ Z(R). Suppose that [T (A), T (A)] 6= 0.
By Lemma 13, T (A) contains a nonzero ∆-ideal I of R. Since

[I,B] ⊆ A ∩B = 0,

we conclude that B ⊆ Z(R) by Lemma 7.

The map
∂a : R ∋ x 7→ [a, x] ∈ R

is called an inner derivation of a ring R induced by a ∈ R. The set IDerR
of all inner derivations of R is a Lie ring. Every prime Lie ring is primary
Lie.

Lemma 17. There is the Lie ring isomorphism

IDerR ∋ ∂a 7→ a+ Z(R) ∈ RL/Z(R).

Proof. Evident.

Corollary 5. Let R be a ring. Then the following statements hold:
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(1) IDerR is a simple Lie ring if and only if RL/Z(R) is a simple Lie
ring,

(2) IDerR is a prime Lie ring if and only if RL/Z(R) is a prime Lie
ring,

(3) IDerR is a semiprime Lie ring if and only if RL/Z(R) is a semipri-
me Lie ring,

(4) IDerR is a primary Lie ring if and only if RL/Z(R) is a primary
Lie ring.
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[1] K. I. Beidar, A. V. Mikhaĺ’ev, Ortogonal completeness and minimal prime ideals

(in Russian), Trudy Sem. Petrovski, 10, 1984, pp.227-234.

[2] H. E. Bell, A. A. Klein, Combinatorial commutativity and finiteness conditions
for rings, Comm. Algebra, 29, 2001, pp.2935-2943.

[3] J. Bergen, I. N. Herstein, E. W. Kerr, Lie ideals and derivations of prime rings, J.
Algebra, 71, 1981, pp.259-267.

[4] J. Bergen, S. Montgomery, D. S. Passmann, Radicals of crossed products of en-
veloping algebras, Israel J. Math., 59, 1987, pp.167-184.

[5] M. Brešar, M. A. Chebotar and W.S. Martindale, 3rd, Functional identities, Birkh́’
auser Verlag, Basel Boston Berlin, 2000.

[6] K. R. Goodearl, R. B. Warfield, Jr., Primitivity in differential operator rings, Math.
Z., 180, 1982, pp.503-523.

[7] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J.
Math., 77, 1955, pp.279-285.

[8] I. N. Herstein, The Lie ring of a simple associative ring, Duke Math. J., 22, 1955,
pp.471-476.

[9] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago
London, 1965.

[10] I. N. Herstein, Noncommutative rings, The Mathematical Association of America,
J. Wiley and Sons, 1968.

[11] I. N. Herstein, On the Lie structure of an associative ring, J. Algebra, 14, 1970,
pp.561-571.

[12] I. N. Herstein, Rings with involution, The University of Chicago Press, Chicago
London 1976.

[13] N. Jacobson, Lie algebras, Interscience, New York, 1962.

[14] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc.
Colloq. Publ., V. 39, Providence, R.I., 1968.

[15] C. R. Jordan, D. A. Jordan, The Lie structure of a commutative ring with derivation,
J. London Math. Soc.(2), 18, 1978, pp.39-49.

[16] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math.
Soc. (2), 10, 1975, pp.281-291.



O. D. Artemovych, M. P. Lukashenko 31

[17] J. Lambek, Lectures on rings and modules, Blaisdell Publ. Co. A division of Ginn
and Co. Waltham Mass. Toronto London, 1966.

[18] W. S. Martindale, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc.,
142, 1969, pp.437-455.

[19] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings. With the
cooperation of L. W. Small. Revised edition. Grad. Stud. in Math., 30. Amer.
Math. Soc., Providence, RI, 2001.

[20] K. McCrimmon, On Herstein’s theorem relating Jordan and associative algebras,
J. Algebra, 13, 1969, pp.382-392.

[21] A. Nowicki, The Lie structure of a commutative ring with a derivation, Arch.
Math., 45, 1985, pp.328-335.

[22] E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc., 11, 1960,
pp.337-343.

[23] I. I. Zuev, Lie ideals of associative rings (in Russian), Uspehi Mat. Nauk, 18, 1963,
pp.155–158.

Contact information

O. D. Artemovych Institute of Mathematics
Cracow University of Technology
ul. Warszawska 24
Cracow 31-155 POLAND
E-Mail(s): artemo@usk.pk.edu.pl

M. P. Lukashenko Faculty of Mathematics and Informatics
PreCarpathian National University of Vasyl Ste-
fanyk
Shevchenko St 57
Ivano-Frankivsk 76025 UKRAINE
E-Mail(s): bilochka.90@mail.ru

Received by the editors: 22.01.2015
and in final form 22.03.2015.



Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 20 (2015). Number 1, pp. 32–39

© Journal “Algebra and Discrete Mathematics”

On characteristic properties of semigroups

Vitaliy M. Bondarenko, Yaroslav V. Zaciha

Communicated by V. V. Kirichenko

Abstract. Let K be a class of semigroups and P be a
set of general properties of semigroups. We call a subset Q of P
characteristic for a semigroup S ∈ K if, up to isomorphism and anti-
isomorphism, S is the only semigroup in K, which satisfies all the
properties from Q. The set of properties P is called char-complete
for K if for any S ∈ K the set of all properties P ∈ P, which hold
for the semigroup S, is characteristic for S. We indicate a 7-element
set of properties of semigroups which is a minimal char-complete
set for the class of semigroups of order 3.

Introduction

All properties of semigroups are assumed to be invariant with respect
to isomorphism and anti-isomorphism.

LetK be a class of semigroups and P be some set of general (qualitative
and quantitative) properties of semigroups. For S ∈ K, we denote by P(S)
the set of all properties P ∈ P which hold for the semigroup S.

We say that a subset Q of P characteristic for a semigroup S ∈ K if, up
to isomorphism and anti-isomorphism, S is the only semigroup in K, which
satisfies all the properties from Q; if Q = {q1, . . . , qs}, then the properties
q1, . . . , qs are called characteristic for S. Obviously, if Q ⊂ Q′ ⊆ P and
Q is characteristic for S then so is Q′. The set of properties P is called
char-complete for K if for any S ∈ K the subset P(S) of P is characteristic

2010 MSC: 20M.
Key words and phrases: semigroup, anti-isomorphism, idempotent, Cayley table,

characteristic property, char-complete set.
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for S. A char-complete set of properties is called minimal if it does not
contain a proper char-complete subset of ones.

In this paper we indicate a 7 properties of semigroups which form a
minimal char-complete set for the class of semigroups of order 3.

1. Formulation of the main result

We consider the following properties of a semigroup of order 3:

P (C): commutativity;

P (1): the existence of a unit element;

P (0): the existence of a zero element;

P+(0): the existence of an added zero element;

Pid(1): the number of idempotents is equal to 1;

Pid(2): the number of idempotents is equal to 2;

Pgen(2): the smallest number of generators is equal to 2.

The set of all these properties is denoted by P3(7).
Our aim is to prove the following theorem.

Theorem 1. The set P3(7) is a minimal char-complete set of properties
for the class of semigroups of order 3.

2. Preliminaries

In this section we present results from the paper [1].
Let S = {〈1〉, 〈2〉, . . . , 〈n〉} be a finite semigroup which is given by the

Cayley table T . One wants to find some its minimal system of generators
and the complete set of defining relations for these generators.

In the first step one chooses an element 〈s〉 of S that is (according
to the table) the product of two elements 〈i〉 6= 〈s〉 and 〈j〉 6= 〈s〉; then
in the Cayley table T (including the header row and the header column)
one substitutes 〈i〉〈j〉 instead of 〈s〉. The new table is denoted by T1.

In the second step one chooses an element 〈s(1)〉 of the set S(1) =
S\{〈s〉} that is the product of two elements i(1) and j(1), where i(1) = 〈i1〉,
j(1) = 〈j1〉, or i(1) = 〈i1〉〈i2〉, j(1) = 〈j1〉, or i(1) = 〈i1〉, j(1) = 〈j1〉〈j2〉, or
i(1) = 〈i1〉〈i2〉, j(1) = 〈j1〉〈j2〉, with 〈i1〉, 〈i2〉, 〈j1〉, 〈j2〉 6= 〈s1〉; then in the
table T1 (including the header row and header column) one substitutes
〈i1〉〈j1〉 instead of 〈s1〉. The new table is denoted by T2.



34 On characteristic properties of semigroups

In the next step one chooses an element s(2) of the set S(2) = S \
{〈s〉, 〈s(1)〉}, and so on. Upon completion of this process, say after m steps
(m > 0), one has a minimal system of generators S(m) of the semigroup S
(consisting of those elements of the header column of the last table that
are of the form 〈k〉) and an appropriate set of defining relations in the
form of the last table (which must be taken fully).

Note that the specified process is ambiguous and so one can get
different final system of generators.

In the paper [1] this algorithm is applied to all semigroups of order 3
which are considered up to isomorphism and anti-isomorphism (if S be
a semigroup, then a semigroup S′ with multiplication ◦ is called anti-
isomorphic to S if S′ = S as sets and x ◦ y = yx). In each from 18 cases
the algorithm has less than 3 steps. Under the transition from one table
to another, the equality between the arrows specifies a replacement in the
first table.

1)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈0〉
〈2〉 〈0〉 〈0〉 〈0〉

⇒ (〈0〉 = 〈2〉2)⇒

〈2〉2〈2〉2〈2〉2 〈1〉 〈2〉

〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

〈1〉 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

〈2〉 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

2)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈0〉
〈2〉 〈0〉 〈0〉 〈1〉

⇒ (〈1〉 = 〈2〉2)⇒

〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈2〉2〈2〉2〈2〉2 〈0〉 〈0〉 〈0〉
〈2〉 〈0〉 〈0〉 〈2〉2〈2〉2〈2〉2

⇒

⇒ (〈0〉 = 〈2〉2 · 〈2〉 = 〈2〉3)⇒

〈2〉3〈2〉3〈2〉3 〈2〉2 〈2〉

〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3

〈2〉2 〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3

〈2〉 〈2〉3〈2〉3〈2〉3 〈2〉3〈2〉3〈2〉3 〈2〉2
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3)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈0〉
〈2〉 〈0〉 〈0〉 〈2〉

⇒ (〈0〉 = 〈1〉 · 〈2〉)⇒

⇒

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈2〉

4)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈0〉
〈2〉 〈0〉 〈1〉 〈2〉

⇒ (〈0〉 = 〈1〉 · 〈2〉)⇒

⇒

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

5)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈0〉
〈2〉 〈2〉 〈2〉 〈2〉

⇒ (〈0〉 = 〈1〉 · 〈2〉)⇒

⇒

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈2〉 〈2〉 〈2〉 〈2〉

6)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈0〉 〈1〉
〈2〉 〈0〉 〈1〉 〈2〉

⇒ (〈0〉 = 〈1〉2)⇒

〈1〉2〈1〉2〈1〉2 〈1〉 〈2〉

〈1〉2〈1〉2〈1〉2 〈1〉2〈1〉2〈1〉2 〈1〉2〈1〉2〈1〉2 〈1〉2〈1〉2〈1〉2

〈1〉 〈1〉2〈1〉2〈1〉2 〈1〉2〈1〉2〈1〉2 〈1〉
〈2〉 〈1〉2〈1〉2〈1〉2 〈1〉 〈2〉
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7)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈0〉
〈2〉 〈0〉 〈0〉 〈2〉

⇒ (〈0〉 = 〈1〉 · 〈2〉)⇒

⇒

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈2〉

8)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈0〉
〈2〉 〈2〉 〈2〉 〈2〉

⇒ (〈0〉 = 〈1〉 · 〈2〉)⇒

⇒

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈2〉

〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉 〈1〉 〈1〉 · 〈2〉〈1〉 · 〈2〉〈1〉 · 〈2〉
〈2〉 〈2〉 〈2〉 〈2〉

9)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈1〉
〈2〉 〈0〉 〈1〉 〈1〉

⇒ (〈1〉 = 〈2〉2)⇒

〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈2〉2〈2〉2〈2〉2 〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

〈2〉 〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

10)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈1〉
〈2〉 〈0〉 〈1〉 〈2〉

11)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈1〉
〈2〉 〈0〉 〈2〉 〈2〉
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12)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈2〉
〈2〉 〈0〉 〈2〉 〈1〉

⇒ (〈1〉 = 〈2〉2)⇒

〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈2〉2〈2〉2〈2〉2 〈0〉 〈2〉2〈2〉2〈2〉2 〈2〉
〈2〉 〈0〉 〈2〉 〈2〉2〈2〉2〈2〉2

13)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈2〉
〈2〉 〈2〉 〈2〉 〈2〉

14)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈1〉 〈1〉 〈1〉
〈2〉 〈2〉 〈2〉 〈2〉

15)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈2〉
〈1〉 〈0〉 〈0〉 〈2〉
〈2〉 〈2〉 〈2〉 〈0〉

⇒ (〈0〉 = 〈2〉2)⇒

〈2〉2〈2〉2〈2〉2 〈1〉 〈2〉

〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉
〈1〉 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉
〈2〉 〈2〉 〈2〉 〈2〉2〈2〉2〈2〉2

16)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈0〉 〈2〉
〈1〉 〈0〉 〈1〉 〈2〉
〈2〉 〈2〉 〈2〉 〈0〉

⇒ (〈0〉 = 〈2〉2)⇒

〈2〉2〈2〉2〈2〉2 〈1〉 〈2〉

〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉
〈1〉 〈2〉2〈2〉2〈2〉2 〈1〉 〈2〉
〈2〉 〈2〉 〈2〉 〈2〉2〈2〉2〈2〉2

17)
〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈1〉 〈1〉
〈1〉 〈1〉 〈0〉 〈0〉
〈2〉 〈1〉 〈0〉 〈0〉

⇒ (〈1〉 = 〈0〉 · 〈2〉)⇒

⇒

〈0〉 〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉 〈2〉

〈0〉 〈0〉 〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉 〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉
〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉 〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉 〈0〉 〈0〉
〈2〉 〈0〉 · 〈2〉〈0〉 · 〈2〉〈0〉 · 〈2〉 〈0〉 〈0〉

⇒
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⇒ (〈0〉 = 〈2〉2)⇒

〈2〉2〈2〉2〈2〉2 〈2〉3 〈2〉

〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2 〈2〉3 〈2〉3

〈2〉3 〈2〉3 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

〈2〉 〈2〉3 〈2〉2〈2〉2〈2〉2 〈2〉2〈2〉2〈2〉2

18)

〈0〉 〈1〉 〈2〉

〈0〉 〈0〉 〈1〉 〈2〉
〈1〉 〈1〉 〈2〉 〈0〉
〈2〉 〈2〉 〈0〉 〈1〉

⇒ (〈2〉 = 〈1〉2)⇒

〈0〉 〈1〉 〈1〉2〈1〉2〈1〉2

〈0〉 〈0〉 〈1〉 〈1〉2〈1〉2〈1〉2

〈1〉 〈1〉 〈1〉2〈1〉2〈1〉2 〈0〉
〈1〉2〈1〉2〈1〉2 〈1〉2〈1〉2〈1〉2 〈0〉 〈1〉

⇒

⇒ (〈0〉 = 〈1〉 · 〈1〉2 = 〈1〉3)⇒

〈1〉3〈1〉3〈1〉3 〈1〉 〈1〉2

〈1〉3〈1〉3〈1〉3 〈1〉3〈1〉3〈1〉3 〈1〉 〈1〉2

〈1〉 〈1〉 〈1〉2 〈1〉3〈1〉3〈1〉3

〈1〉2 〈1〉2 〈1〉3〈1〉3〈1〉3 〈1〉

From the above, it easily follows the next statement (which was not
formulated in [1]) .

Theorem 2. Let S be a semigroup of order 3. Then any two its minimal
systems of generators are of the same order, and coincide if S is not a
group.

Note that the group of order 3 is given by the case 18).

3. Proof of Theorem 1

The following table T , which follows from the results of section 2,
shows what the properties hold for the semigroups 1) – 18) (“+” means
that the corresponding property holds, and its absence means that the
corresponding property does not hold).

Since all rows of this table (without the header row and the header co-
lumn) are mutually different, the set of properties P3(7) is char-complete.

To prove that the char-complete set P3(7) is minimal it suffices to
verify that the table T without any fix column X (and, of course, without
the header row and the header column) has two equal rows. It is easy
to see that if X is equal to C,P (1), P (0), P+(0), Pid(1), Pid(2), Pgen(2),
then, respectively, the following two rows are equal: 3 and 4, 13 and 14, 4
and 5, 3 and 9, 1 and 7, 5 and 8, 8 and 14.
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Table 1. T

C P (1) P (0) P+(0) Pid(1) Pid(2) Pgen(2)

1 + + + +
2 + + +
3 + + + +
4 + + +
5 + +
6 + + + + +
7 + + +
8 +
9 + + + + +
10 + + + +
11 + +
12 + + + + + +
13 +
14
15 + + +
16 + + + +
17 + +
18 + + +
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Abstract. In this paper we present new families of sequences
that generalize the Jacobsthal and the Jacobsthal-Lucas numbers
and establish some identities. We also give a generating function
for a particular case of the sequences presented.

Introduction

Several sequences of positive integers were and still are object of study
for many researchers. Examples of these sequences are the well known
Fibonacci sequence and the Lucas sequence, both related with the golden
mean, with so many applications in diverse fields such as mathematics,
engineering, biology, physics, architecture, stock market investing, among
others (see [9] and [17]). About these and other sequences like Pell sequence,
Pell-Lucas sequence, Modified Pell sequence, Jacobsthal sequence and the
Jacobsthal-Lucas sequence, among others, there is a vast literature where
several properties are studied and well known identities are derived, see
for example, [13, 18–20].

In 1965, Horadam studied some properties of sequences of the type,
wn(a, b; p, q), where a, b are nonnegative integers and p, q are arbitrary

2010 MSC: 11B37, 11B83, 05A15.
Key words and phrases: Jacobsthal numbers, Jacobsthal-Lucas numbers, Binet

formula, Generating matrix, Generating function.
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integers, see [11] and [12]. Such sequences are defined by the recurrence
relations of second order

wn = pwn−1 − qwn−2, (n > 2)

with initial conditions w0 = a, w1 = b. For example, the Fibonacci and
the Lucas sequences can be considered as special cases of sequences of this
type, wn(1, 1; 1,−1) and wn(2, 1; 1,−1), respectively. Also, the Jacobsthal
and the Jacobsthal-Lucas sequences can be considered as wn(0, 1; 1,−2)
and wn(2, 1; 1,−2), respectively. Recall that the second-order recurrence
relations and the initial conditions for the Jacobsthal numbers, Jn, n > 0,
and for the Jacobsthal-Lucas numbers, jn, n > 0, respectively, are given
by

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1

and
jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1.

The Binet formulae for these sequences are

Jn =
2n − (−1)n

3
and jn = 2n + (−1)n,

where 2 and −1 are the roots of the characteristic equation associated
with the above recurrence relations.

More recently, some of these sequences were generalized for any pos-
itive real number k. The studies of k-Fibonacci sequence, k-Lucas se-
quence, k-Pell sequence, k-Pell-Lucas sequence, Modified k-Pell sequence,
k-Jacobhstal and k-Jacobhstal-Lucas sequence, can be found in [1,3–7,14].

The aim of this work is to study some properties of two new sequences
that generalize the Jacobhstal and the Jacobsthal-Lucas numbers. In
this work we will follow closely the work of El-Mikkawy and Sogabe (see
[10]) where the authors give a new family that generalizes the Fibonacci
numbers, different from the one defined in [1], and establish relations with
the ordinary Fibonacci numbers.

So, in this Section we start giving the new definition of generalized
Jacobsthal and Jacobsthal-Lucas numbers, and we exhibit some elements
of them. We also present relations of these sequences with ordinary
Jacobsthal and Jacobsthal-Lucas. In Section 1 we deduce some properties
of these new families, as well as in Section 2, but using different methods.
In Section 3, we study a particular case, that is two sequences of the new
defined families for k = 2. For these sequences we present some recurrence
relations and generating functions.
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Following our ideas, we give a new definition of generalized Jacobsthal
and Jacobsthal-Lucas numbers.

Definition 1. Let n be a nonnegative integer and k be a natural number.
By the division algorithm there exist unique numbers m and r such that
n = mk + r (0 6 r < k). Using these parameters we define the new

generalized Jacobsthal and generalized Jacobsthal-Lucas numbers, J (k)
n

and j
(k)
n respectively by

J (k)
n =

1
(r1 − r2)k

(
rm+1

1 − rm+1
2

)r
(rm

1 − r
m
2 )k−r (1)

and

j(k)
n =

(
rm+1

1 + rm+1
2

)r
(rm

1 + rm
2 )k−r , (2)

where r1 = 2, r2 = −1, respectively.

For k = 1, 2, 3 the first seven elements of these new sequences are:

{
J

(1)
n
}5

n=0
= {0, 1, 1, 3, 5, 11, 21}

{
j

(1)
n
}5

n=0
= {2, 1, 5, 7, 17, 31, 65}

{
J

(2)
n
}5

n=0
= {0, 0, 1, 1, 1, 3, 9}

{
j

(2)
n
}5

n=0
= {4, 2, 1, 5, 25, 35, 49}

{
J

(3)
n
}5

n=0
= {0, 0, 0, 1, 1, 1, 1}

{
j

(3)
n
}5

n=0
= {8, 4, 2, 1, 5, 25, 125} .

We also present more elements of some of these new sequences in the
tables 1 and 2. We have found some interesting regularities. In the case
of the generalized Jacobsthal sequences

{
J

(k)
n
}

n
it is easy to prove that:

Proposition 1. Let J
(k)
i be the ith term of the new family of Jacobsthal

numbers. Then we have:

a) J
(k)
i = 0, i ∈ {0, . . . , k − 1} ;

b) J
(k)
i = 1, i ∈ {k, . . . , k − 1} ;

c) J
(k)
i = 3i−2k, i ∈ {2k, . . . , 3k} .

To the generalized Jacobsthal-Lucas sequences
{
j

(k)
n

}
n

is easy to prove
that:
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Table 1. J
(k)
n , for k = 1, 2, . . . , 9 and n = 0, 1, . . . , 27.

n\k 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 3 1 1 0 0 0 0 0 0
4 5 1 1 1 0 0 0 0 0
5 11 3 1 1 1 0 0 0 0
6 21 9 1 1 1 1 0 0 0
7 43 15 3 1 1 1 1 0 0
8 85 25 9 1 1 1 1 1 0
9 171 55 27 3 1 1 1 1 1

10 341 121 45 9 1 1 1 1 1
11 683 231 75 27 3 1 1 1 1
12 1365 441 125 81 9 1 1 1 1
13 2731 903 275 135 27 3 1 1 1
14 5461 1849 605 225 81 9 1 1 1
15 10923 3655 1331 375 243 27 3 1 1
16 21845 7225 2541 625 405 81 9 1 1
17 43691 14535 4851 1375 675 243 27 3 1
18 87381 29241 9261 3025 1125 729 81 9 1
19 174763 58311 18963 6655 1875 1215 243 27 3
20 349525 116281 38829 14641 3125 2025 729 81 9
21 699051 232903 79507 27951 6875 3375 2187 243 27
22 1398101 466489 157165 53361 15125 5625 3645 729 81
23 2796203 932295 310675 101871 33275 9375 6075 2187 243
24 5592405 1863225 614125 194481 73205 15625 10125 6561 729
25 11184811 3727815 1235475 398223 161051 34375 16875 10935 2187
26 22369621 7458361 2485485 815409 307461 75625 28125 18225 6561
27 44739243 14913991 5000211 1669647 586971 166375 46875 30375 19683

Table 2. j
(k)
n , for k = 1, 2, . . . , 9 and n = 0, 1, . . . , 27.

n\k 1 2 3 4 5 6 7 8 9

0 2 4 8 16 32 64 128 256 512
1 1 2 4 8 16 32 64 128 256
2 5 1 2 4 8 16 32 64 128
3 7 5 1 2 4 8 16 32 64
4 17 25 5 1 2 4 8 16 32
5 31 35 25 5 1 2 4 8 16
6 65 49 125 25 5 1 2 4 8
7 127 119 175 125 25 5 1 2 4
8 257 289 245 625 125 25 5 1 2
9 511 527 343 875 625 125 25 5 1

10 1025 961 833 1225 3125 625 125 25 5
11 2047 2015 2023 1715 4375 3125 625 125 25
12 4097 4225 4913 2401 6125 15625 3125 625 125
13 8191 8255 8959 5831 8575 21875 15625 3125 625
14 16385 16129 16337 14161 12005 30625 78125 15625 3125
15 32767 32639 29791 34391 16807 42875 109375 78125 15625
16 65537 66049 62465 83521 40817 60025 153125 39062 78125
17 131071 131327 130975 152303 99127 84035 214375 546875 390625
18 262145 261121 274625 277729 240737 117649 300125 765625 1953125
19 524287 523775 536575 506447 584647 285719 420175 1071875 2734375
20 1048577 1050625 1048385 923521 1419857 693889 588245 1500625 3828125
21 2097151 2098175 2048383 1936415 2589151 1685159 823543 2100875 5359375
22 4194305 4190209 4145153 4060225 4721393 4092529 2000033 2941225 7503125
23 8388607 8386559 8388223 8513375 8609599 9938999 4857223 4117715 10504375
24 16777217 16785409 16974593 17850625 15699857 24137569 11796113 5764801 14706125
25 33554431 33558527 33751039 34877375 28629151 44015567 28647703 14000231 20588575
26 67108865 67092481 67108097 68145025 60028865 80263681 69572993 34000561 28824005
27 134217727 134209535 133432831 133144895 125866975 146363183 168962983 82572791 40353607
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Proposition 2. Let j
(k)
i be the ith term of the new family of Jacobsthal-

Lucas numbers. Then we have:

a) j
(k)
i = 2k−i, i ∈ {0, . . . , k − 1} ;

b) j
(k)
i = 5i−k, i ∈ {k, . . . , 2k} .

The generalized Jacobsthal and Jacobsthal-Lucas numbers have the
following relations with the ordinary Jacobsthal and Jacobsthal-Lucas
numbers.

Lemma 1. Given n a nonnegative integer and k a natural number

J
(k)
mk+r = (Jm)k−r(Jm+1)r

and
j

(k)
mk+r = (jm)k−r(jm+1)r,

where m and r are nonnegative integers such that n = mk+r (0 6 r < k).

Proof. We have

(Jm)k−r(Jm+1)r =
(

2m − (−1)m

3

)k−r
(

2m+1 − (−1)m+1

3

)r

=
1
3k

(2m − (−1)m)k−r
(
2m+1 − (−1)m+1

)r

=
1

(r1 − r2)k
(rm

1 − r
m
2 )k−r

(
rm+1

1 − rm+1
2

)r

= J
(k)
mk+r.

In a similar way we can show the second equality.

Note that the use of the Lemma 1 allows us to conclude immediately
that J (1)

n and j(1)
n are the Jacobsthal and the Jacobsthal-Lucas numbers,

respectively.

1. Properties

Next we present some properties of these new families of integers.

Theorem 1. Let k and m be fixed numbers where m is a nonnegative
integer and k a natural number. The generalized Jacobsthal numbers and
the ordinary Jacobsthal numbers satisfy:
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a)
k−1∑
i=0

(k−1
i

)
(−1)−iJ

(k)
mk+i = (−2)k−1JmJ

(k−1)
(m−1)(k−1);

b)
k−1∑
i=0

(k−1
i

)
2k−i−1J

(k)
mk+i = JmJ

(k−1)
(m+2)(k−1);

c)
k−1∑
i=0

J
(k)
mk+i = Jm

2Jm−1

(
J

(k)
(m+1)k − J

(k)
mk

)
.

Proof. a) By Lemma 1 we have that
k−1∑
i=0

(k−1
i

)
(−1)−iJ

(k)
mk+i is successively

equal to

k−1∑

i=0

(
k − 1
i

)
(−1)−i(−1)k−1(−1)1−k(Jm)k−i(Jm+1)i

= (−1)1−k
k−1∑

i=0

(
k − 1
i

)
(−1)k−1−i(Jm)k−1−iJm(Jm+1)i

= (−1)1−kJm

k−1∑

i=0

(
k − 1
i

)
(−Jm)k−1−i(Jm+1)i,

that by the binomial theorem is equal to

(−1)1−kJm (Jm+1 − Jm)k−1 .

Since, by the definition of the Jacobsthal sequence,

(−1)1−kJm (Jm+1 − Jm)k−1 = (−1)1−kJm (2Jm−1)k−1

and using Lemma 1 (considering m− 1 instead of m, k − 1 instead of k
and r = 0) we obtain

(−1)1−k2k−1JmJ
(k−1)
(m−1)(k−1),

and the result follows.
b) By Lemma 1 we have

k−1∑

i=0

(
k − 1
i

)
2k−i−1J

(k)
mk+i =

k−1∑

i=0

(
k − 1
i

)
(Jm)k−i2k−i−1(Jm+1)i

=
k−1∑

i=0

(
k − 1
i

)
(2Jm)k−i−1Jm(Jm+1)i

= Jm

k−1∑

i=0

(
k − 1
i

)
(2Jm)k−i−1(Jm+1)i
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and using again the binomial theorem we have

Jm(Jm+1 + 2Jm)k−1,

that is equal, by the definition of the Jacobsthal numbers, to

Jm(Jm+2)k−1

and by Lemma 1 (considering m+ 2 instead of m, k − 1 instead of k and
r = 0), we get

JmJ
(k−1)
(m+2)(k−1).

c) By Lemma 1 we can write

k−1∑

i=0

J
(k)
mk+i =

k−1∑

i=0

(Jm)k−i(Jm+1)i

= (Jm)k
k−1∑

i=0

(
Jm+1

Jm

)i

= (Jm)k




(
Jm+1

Jm

)k
− 1

Jm+1

Jm
− 1




= (Jm)k

[
(Jm+1)k − (Jm)k

(Jm)k
×

Jm

Jm+1 − Jm

]

=
Jm

Jm+1 − Jm

[
(Jm+1)k − (Jm)k

]

=
Jm

2Jm−1

[
(Jm+1)k − (Jm)k

]

and, taking into account Lemma 1 (with r = 0), the result follows.

The following result for Jacobsthal-Lucas numbers can be deduced
analogously:

Theorem 2. Let k and m be fixed numbers where m is a nonnegative
integer and k a natural number. The generalized Jacobsthal-Lucas numbers
and the ordinary Jacobsthal-Lucas numbers satisfy:

a)
k−1∑
i=0

(k−1
i

)
(−1)−ij

(k)
mk+i = (−2)k−1jmj

(k−1)
(m−1)(k−1);

b)
k−1∑
i=0

(k−1
i

)
2k−i−1j

(k)
mk+i = jmj

(k−1)
(m+2)(k−1);

c)
k−1∑
i=0

j
(k)
mk+i = jm

2jm−1

(
j

(k)
(m+1)k − j

(k)
mk

)
.
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2. Generating matrices

In [15] the authors use a matrix method for generating the Jacobsthal
numbers by defining the Jacobsthal A-matrix

A =

[
1 2
1 0

]

and they proved that

An =

[
Jn+1 2Jn

Jn 2Jn−1

]
= A(n−1)

[
1 2
1 0

]
,

for any natural number n.
Thus, for any n > 0, s > 0 and n+ s > 2, we have

[
Jn+s 2Jn+s−1

Jn+s−1 2Jn+s−2

]
= A(n+s−2)

[
1 2
1 0

]
.

If we compute the determinant of both sides of the previous equality
we obtain

2Jn+sJn+s−2 − 2 (Jn+s−1)2 = −2
∣∣∣A(n+s−2)

∣∣∣

which is equivalent to

(Jn+s−1)2 − Jn+sJn+s−2 = (−2)n+s−2.

Since, by Lemma 1 (where m = n+ s− 1, k = 2 and r = 0)

J
(2)
2(n+s−1) = (Jn+s−1)2 ,

we have proved the following result:

Theorem 3. If n, s > 0 and n+ s > 2, then

J
(2)
2(n+s−1) − Jn+sJn+s−2 = (−2)n+s−2.

Also, by considering the generating Jacobsthal-Lucas B-matrix given
in [16] and in [8]

B =

[
5 2
1 4

]
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and proceeding in a similar way as we did for Jacobsthal numbers, we
obtain for n, s > 0 and n+ s > 2,

[
jn+s 2jn+s−1

jn+s−1 2jn+s−2

]
= B(n+s−2)

[
5 2
1 4

]
.

Computing the determinant of both sides of this equality we get

2jn+sjn+s−2 − 2 (jn+s−1)2 =
(
322
)(n+s−2)

×
(
322
)

which is equivalent to

jn+sjn+s−2 − (jn+s−1)2 = 32(n+s−1)2(n+s−2).

Using Lemma 1 again (with m = n+ s− 1, k = 2 and r = 0) we obtain
the following result:

Theorem 4. If n, s > 0 and n+ s > 2, then

jn+sjn+s−2 − j
(2)
2(n+s−1) = 32(n+s−1)2(n+s−2).

3. A particular case

In this section we study the particular case of the sequences
{
J

(2)
n
}

n

and
{
j

(2)
n
}

n
defined by (1) and (2), respectively, with k = 2.

3.1. Recurrence relations

First we present a recurrence relation for these sequences.

Theorem 5. The sequences
{
J

(2)
n
}

n
and

{
j

(2)
n
}

n
satisfy, respectively, the

following recurrence relations:

J (2)
n = J

(2)
n−1 + 2J (2)

n−3 + 4J (2)
n−4, n = 4, 5, . . .

and

j(2)
n = j

(2)
n−1 + 2j(2)

n−3 + 4j(2)
n−4, n = 4, 5, . . .
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Proof. First, we consider n even, that is n = 2m, for any natural number
m. In this case, using Lemma 1, we have

J
(2)
2m = (Jm)2 = JmJm

= Jm (Jm−1 + 2Jm−2)

= JmJm−1 + 2JmJm−2

= JmJm−1 + 2 (Jm−1 + 2Jm−2) Jm−2

= J
(2)
2m−1 + 2Jm−1Jm−2 + 4(Jm−2)2

= J
(2)
2m−1 + 2J (2)

2m−3 + 4(Jm−2)2

= J
(2)
2m−1 + 2J (2)

2m−3 + 4J (2)
2m−4

as required. Now, for n odd, that is n = 2m+ 1, for any natural number
m and, using again Lemma 1, we obtain:

J
(2)
2m+1 = JmJm+1

= Jm (Jm + 2Jm−1)

= (Jm)2 + 2Jm−1Jm

= J
(2)
2m + 2Jm−1(Jm−1 + 2Jm−2)

= J
(2)
2m + 2(Jm−1)2 + 4Jm−2Jm−1

= J
(2)
2m + 2J (2)

2m−2 + 4Jm−2Jm−1

= J
(2)
2m + 2J (2)

2m−2 + 4J (2)
2m−3.

So for every n = 4, 5, . . . the result is true. In a similar way we can prove
the result for j(2)

n .

We also note that if we consider separately the even and the odd
terms of the above defined sequences we can obtain shorter recurrence
relations. In fact, for n = 2m, for any natural number m, by Theorem 3
(with n = m and s = 1) we have

J
(2)
2m − Jm+1Jm−1 = (−2)m−1

and so

J
(2)
2m = Jm−1Jm+1 + (−2)m−1

= Jm−1(Jm + 2Jm−1) + (−2)m−1

= Jm−1Jm + 2(Jm−1)2 + (−2)m−1

= J
(2)
2m−1 + 2J (2)

2m−2 + (−2)m−1.
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In a similar way, if we consider n = 2m+ 1, for any natural number m,
we have J (2)

2m+1 = JmJm+1 that is equal to

Jm (Jm + 2Jm−1) = (Jm)2 + 2Jm−1Jm = J
(2)
2m + 2J (2)

2m−1.

Hence, in this case, we can conclude that

J
(2)
2m+1 = J

(2)
2m + 2J (2)

2m−1.

Therefore we can conclude the following:

Proposition 3. A shorter recurrence relation for the sequence
{
J

(2)
n
}

n
is given by 




J
(2)
2m = J

(2)
2m−1 + 2J (2)

2m−2 + (−2)m−1

J
(2)
2m+1 = J

(2)
2m + 2J (2)

2m−1

for the even and the odd terms.

In a similar way we obtain a shorter recurrence relation to
{
j

(2)
n
}

n
.

Proposition 4. A shorter recurrence relation for the sequence
{
j

(2)
n
}

n
is given by 




j
(2)
2m = j

(2)
2m−1 + 2j(2)

2m−2 − 32m2m−1

j
(2)
2m+1 = j

(2)
2m + 2j(2)

2m−1

for the even and the odd terms.

Proof. The proof of the second identity is similar to the one in the previous
proposition. To the first identity, by Theorem 4 we have:

jm+1jm−1 − j
(2)
2m = 32m2m−1.

Hence

j
(2)
2m = jm+1jm−1 − 32m2m−1

= jm−1(jm + 2jm−1)− 32m2m−1

= jm−1jm + 2(jm−1)2 − 32m2m−1

= j
(2)
2m−1 + 2j(2)

2m−2 − 32m2m−1.
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3.2. Generating Functions

Next we find generating functions for these sequences. Let us suppose
that the terms of the sequences

{
J

(2)
n
}

n
and

{
j

(2)
n
}

n
are the coefficients

of a power series centred at the origin, that is convergent in
]
− 1

r1
, 1

r1

[
,

according the Proposition 2.5 in [14] and [2], respectively, for k = 2.

For
{
J

(2)
n
}

n
we obtain the following result:

Theorem 6. The generating function f (2)(x) for J
(2)
n is given by

f (2)(x) =
x2 + 2x3

1− x− 2x3 − 4x4
.

Proof. To the sum of this power series,

f (2)(x) =
∞∑

n=0

J (2)
n xn,

we call generating function of the generalized Jacobsthal sequence of
numbers

{
J

(2)
n
}

n
.

Then
f (2)(x)− xf (2)(x)− 2x3f (2)(x)− 4x4f (2)(x)

is equal to
(
J

(2)
0 + J

(2)
1 x+ J

(2)
2 x2 + J

(2)
3 x3

)
−
(
J

(2)
0 x− J

(2)
1 x2 − J

(2)
2 x3

)

− 2J (2)
0 x3 +

∞∑

n=4

(
J (2)

n − J
(2)
n−1 − 2J (2)

n−3 − 4J (2)
n−4

)
xn.

Hence, taking into account the initial conditions of the sequence
{
J

(2)
n
}

n
,

we have
(
1− x− 2x3 − 4x4

)
f (2)(x) =

(
0 + 0x+ x2 + x3

)
−
(
0x− 0x2 − x3

)

− 2× 0x3 +
∞∑

n=4

(
J (2)

n −
(
J

(2)
n−1 + 2J (2)

n−3 + 4J (2)
n−4

))
xn.

Now, by Theorem 5, this is equivalent to

(
1− x− 2x3 − 4x4

)
f (2)(x) = x2 + 2x3 +

∞∑

n=4

(
J (2)

n − J (2)
n

)

and therefore

f (2)(x) =
x2 + 2x3

1− x− 2x3 − 4x4
.
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Theorem 7. The generating function g(2)(x) for j
(2)
n is given by

g(2)(x) =
4− 2x+ 3x2 − 2x3

1− x− 2x3 − 4x4
.

Proof. To the sum of this power series,

g(2)(x) =
∞∑

n=0

j(2)
n xn

we call generating function of the generalized Jacobsthal-Lucas sequence
of numbers

{
j

(2)
n
}

n
.

Then, in a similar way as in the proof of the previous theorem, we
obtain

(
1− x− 2x3 − 4x4

)
g(2)(x) =

(
j

(2)
0 + j

(2)
1 x+ j

(2)
2 x2 + j

(2)
3 x3

)

−
(
j

(2)
0 x− j

(2)
1 x2 − j

(2)
2 x3

)
− 2j(2)

0 x3

+
∞∑

n=4

(
j(2)

n − j
(2)
n−1 − 2j(2)

n−3 − 4j(2)
n−4

)
xn.

Taking into account the initial conditions of the sequence
{
j

(2)
n
}

n
, we have

(
1− x− 2x3 − 4x4

)
g(2)(x) =

(
4 + 2x+ x2 + 5x3

)

−
(
4x− 2x2 − x3

)
− 8x3 +

∞∑

n=4

(
j(2)

n −
(
j

(2)
n−1 + 2j(2)

n−3 + 4j(2)
n−4

))
xn.

Now, by Theorem 5, this is equivalent to

(
1− x− 2x3 − 4x4

)
g(2)(x) = 4− 2x+ 3x2 − 2x3 +

∞∑

n=4

(
j(2)

n − j(2)
n

)
xn

and therefore

g(2)(x) =
4− 2x+ 3x2 − 2x3

1− x− 2x3 − 4x4
.

4. Conclusion

In this paper we have presented new families of sequences, J (k)
n and

j
(k)
n , that generalize the Jacobsthal and the Jacobsthal-Lucas sequences

and we have established some identities involving them.
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We also gave generating functions for generalized Jacobsthal and
Jacobsthal-Lucas sequences

{
J

(2)
n
}

n
and

{
j

(2)
n
}

n
.

When we were looking for more elements of these new families we have
found, first, that these families were not in the Encyclopedia of Integer
Sequences [21]. Furthermore, we have found some interesting regularities,
stated in Propositions 1 and 2.
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Quivers of 3 × 3-exponent matrices
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Dedicated to 60-th anniversary of E. Zelmanov

Abstract. We show how to use generating exponent matrices
to study the quivers of exponent matrices. We also describe the
admissible quivers of 3× 3 exponent matrices.

Introduction

Exponent matrices were introduced in the study of semi-maximal
rings (see [10]), as important ingredients of tiled orders. Recall that a
semi-maximal ring is a semiperfect semiprime right Noetherian ring A
such that for any local idempotent e ∈ A the endomorphism ring eAe is
a (non-necessarily commutative) discrete valuation ring, i.e. all principal
endomorphism rings of A are discrete valuation rings (see also [3, pp.
349-350]). A square n× n matrix A = (αps) is called an exponent matrix
if its diagonal entries are equal to zero and for all possible indices i, j, k,
one has

αij + αjk > αik. (1)

Throughout this paper, unless otherwise stated, n will denote the size of
the matrix under consideration. We shall refer to (1) as ring inequalities,
and this term is explained by the following fact.

Theorem 1 ([10], [3, Th. 14.5.2]). An arbitrary semi-maximal ring is
isomorphic to a direct product of rings of the form

Λ =
n∑

i,j=1

eij(παijO) ⊆Mn(O), (2)

2010 MSC: 16H99, 16Z05.
Key words and phrases: quiver, tiled Order, exponent matrix.



56 Quivers of 3× 3-exponent matrices

where n > 1, O is a discrete valuation ring with prime element π, (αij)
is an exponent matrix, eij(παijO) = {eij(a), a ∈ παijO} and eij(a) is the
n×n-matrix whose unique non-zero entry a is placed in the (i, j)-position.

The ring O can be embedded into classical division ring D and (2) is
the set of all matrices (αij) ∈Mn(D) such that

αij ∈ π
αijO = eiiΛejj ,

where e11, . . . , enn are matrix units in Mn(D).
Clearly, Q = Mn(D) is a classical division ring of Λ. Obviously, Λ is

left and right Noetherian.
We recall next some additional definitions and facts.

Definition 1. A module M is called distributive, if so is its lattice of
submodules, i.e.

K ∪ (L+N) = L ∪ L+K ∪N

for all submodules K, L and N .

Clearly, that every submodule of a distributive lattice is also distribu-
tive.

A direct sum of distributive modules is called a semidistributive modu-
le. A ring A is called right (left) semidistributive, if it is semidistributive
as a right (left) module over itself. We say that a ring is semidistributive
if it is right and left semidistributive (see. [8]).

Theorem 2 ([7]). The following conditions are equivalent for a semiprime
right Noetherian ring A:

1) A is semidistributive;

2) A is a direct product of a semiprime Artinian ring and a semimaxi-
mal ring.

A tiled order Λ over a discrete valuation ring O is a Noetherian prime
semiperfect semidistributive ring with zero Jacobson radical. In this case,
O = eΛe where e ∈ Λ is a primitive idempotent. We shall write

Λ = {O, E(Λ)},

where E(Λ) = (αij) is the exponent matrix of Λ, i.e. Λ is of the form (2).
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A tiled order is called reduced, if Λ/R(Λ) is a direct product of division
rings. In this case αij +αji > 0 for all i 6= j. Exponent matrices with this
property are called reduced.

Denote by M(Λ) the partially ordered set (with respect to inclusion)
of all projective right Λ-modules, which are contained in some fixed Q-
module W . All simple Q-modules are isomorphic to each other, whence we
may take any of them. Notice, that the partially ordered sets Ml(R) and
Mr(R), which correspond to left and right modules are anti-isomorphic.

The set M(Λ) is completely determined by E(Λ) = (αij). More
precisely, if Λ is a reduced, then

M(Λ) = {P z
i : i = 1, . . . , n, z ∈ Z},

where

P z
i 6 P z′

j ⇐⇒

{
z − z′ > αij , if M(Λ) =Ml(Λ)
z − z′ > αjj , if M(Λ) =Mr(Λ).

Evidently, M(Λ) is an infinite periodical set.
Let Λ and Γ be tiled orders over discrete valuated rings O and ∆.

Definition 2 ([10]). An isomorphism ϕ : M(Λ) ≃ M(Γ) is called
coordinated, if

B ≃ C ⇐⇒ ϕ(B) ≃ ϕ(C)

for all B, C ∈M(Λ).

Theorem 3 ([10, Prop. 2.9]). The tiled orders Λ and Γ are Morita
equivalent if and only if the following hold:

1) The discrete valuated rings O and ∆ are isomorphic;

2) There is coordinated isomorphism between the partially ordered sets
M(Λ) and M(Γ).

Let I be a two sided ideal of the tiled order Λ. Evidently,

I =
∑

i,j

eijπ
βijO,

where eij are matrix units. Denote by E(I) = (βij) the exponent matrix
of the ideal I.

For twosided ideals I and J with exponent matrices E(I) = (βij) and
E(J) = (γij) we have E(IJ) = (δij), where δij = min

k
(βik + γkj).
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Assume that Λ is reduced and write E(Λ) = (αij). Then the exponent
matrix E(R) = (βij) of the Jacobson radical R of Λ can be found as
follows: βij = αij for i 6= j and βii = 1 for all i.

Let Q be the quiver of the reduced tiled order Λ and let [Q(Λ)] be its
adjacency matrix. By [3, Theor. 14.6.2], [Q(Λ)] is a (0, 1)-matrix, more
precisely, [Q(Λ)] = E(R2)− E(R).

For the n×n-exponent matrix E = (αij) define the following matrices:

E(1) = (βij) = E + E,

where E is the identity matrix.

E(2) = (γij), γij = min
k

(βik + βkj). (3)

Evidently, [Q(Λ)] = E(2) − E(1).

Theorem 4 ([5]). The matrix [Q(Λ)] is the adjacency matrix of a strongly
connected simply laced quiver.

Definition 3. A quiver is called admissible, if it is the quiver of some
exponent matrix.

Theorem 5 ([6]). Let Q be a strongly connected quiver which has a loop
at each vertex. Then Q is admissible.

Theorem 6 ([1, Teor. 5.3]). For every natural m, (1 6 m 6 n, m 6= n−1),
there exists an admissible quiver with n vertices and exactly m loops.

Theorem 7 ([1]). Let Q be a strongly connected quiver with n vertices
which has exactly n− 1 loop. Then Q is not admissible.

Definition 4. Two exponent matrices E = (αij) and Θ = (θij) are called
equivalent if they can be obtained from each other by transformations of
the following two types:

(1) subtraction of an integer from the i-th row with simultaneous
addition of the same integer to the i-th column;

(2) simultaneous interchanging of two rows and of the equally num-
bered columns.

Proposition 1 ([1]). Suppose, that E and Θ are exponent matrices and Θ
can be obtained from E by transformations of type (1). Then Q(E) = Q(Θ).

For an n× n-matrix A and a permutation σ of {1, . . . , n} denote by
σ ◦A the matrix, which is obtained from A by simultaneous permutation
of rows and columns, defined by σ.
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Proposition 2 ([1]). Let τ be an arbitrary permutation of {1, . . . , n}.
Suppose that E and Θ are exponent matrices such that Θ can be obtained
applying τ to the rows and columns of E . Then [Q(Θ)] = τ ◦ [Q(E)].

Since any permutation is a product of transpositions, the above fact
explains how does an adjacency matrix changes under transformations of
the second type.

1. Generating exponent matrices in the study of quivers
of exponent matrices

A non-negative exponent matrix is called generating, if it can not be
represented as a sum of non-negative non-zero exponent matrices. Denote
by Gn the set of all generating n×n exponent matrices. By [9] cardinality
of Gn is finite.

For a quiver Q denote by Q∗ the quiver, which is obtained from Q by
deleating all loops.

Lemma 1. Let A1, . . . , As be exponent matrices and Q be the quiver of

A =
s∑

t=1
αtAt, where all αs are positive integers, such that A is reduced.

1) Let α̃t = min{2, αs} for all s. Then Q is also the quiver of Ã =
s∑

t=1
α̃tAt.

2) Let α∗
t = min{1, αs} for all s. Then Q∗ coincides with (Q(A∗))∗,

where A∗ =
s∑

t=1
α∗

tAt.

Proof. Write A = (αpq), A+ E = B = (βpq) and C = (γpq), where

γij = min
k
{βik + βkj} − βij .

Write also βijk = βik + βkj − βij and αijk = αik + αkj − αij .

Notice, that if k = i, or k = j, then βijk = 1. Indeed, if i 6= j, then
βiji = (αii + 1) + αij − αij = 1 and βijj = (αij + 1) + αjj − αij = 1. Also
if i = j, then βiii = (αii + 1) + (αii + 1)− (αii + 1) = 1.

We conclude that γij = min{1, min
k 6∈{i, j}

βijk}.

Notice, that C is the adjacency matrix of the quiver of A. We do next
some transformations of formulas for entries of C, which will prove the
Lemma.
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For i 6= j we can simplify γij as follows

γij = min{1, min
k 6∈{i, j}

(βik + βkj − βij)}

= min{1, min
k 6∈{i, j}

(αik + αkj − αij)}

= min{1, min
k 6∈{i, j}

αijk}

= min{1, min
k 6∈{i, j}

s∑

t=1

αtα
t
ijk}.

Since αt
ijk > 0 for all i, j, k, t, the conditions

s∑
t=1

αtα
t
ijk = 0 and

s∑
t=1

α∗
tα

t
ijk = 0 are equivalent. This proves the first part of Lemma.

For i = j the formulas for γij can be transformed as follows

γij = min{1, min
k 6∈{i, j}

(βik + βki − 1)}

= min{1, min
k 6∈{i, j}

(αijk − 1)}

= min{1, min
k 6∈{i, j}

s∑

t=1

αtα
t
ijk − 1}.

Since A is reduced, then
s∑

t=1
αtα

t
ijk > 1. Nevertheless, the conditions

s∑
t=1

αtα
t
ijk = 1 and

s∑
t=1

α̃tα
t
ijk = 1 are equivalent. This proves the second

part of Lemma.

The following two theorems follow from Lemma 1.

Theorem 8. Let Q be an admissible quiver with n vertices and let Gn =
{A1, . . . , As}. Then there exist αi ∈ {0, 1, 2}, 1 6 i 6 s, such that Q is

the quiver of
s∑

i=1
αiAi.

Theorem 9. Let Q be an admissible quiver with n vertices, which has no
loops and let Gn = {A1, . . . , As}. Then there exist αi ∈ {0, 1}, 1 6 i 6 s,

such that Q is the quiver of
s∑

i=1
αiAi.
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2. Quivers of reduced exponent 3 × 3-matrices

The main result of this article is the following theorem.

Theorem 10. The following 10 matrices are the adjacency matrices of
the quivers of all 3× 3-reduced exponent matrices, up to isomorphism of
quivers:

1) The quivers with a loop at each vertex

N1 =




1 1 1
1 1 1
1 1 1


 , N2 =




1 1 0
1 1 1
1 0 1


 , N3 =




1 1 1
1 1 1
1 0 1




N4 =




1 1 0
1 1 1
0 1 1


 , N5 =




1 1 0
0 1 1
1 0 1


 .

2) The quivers without loops:

K1 =




0 1 0
1 0 1
0 1 0


 , K2 =




0 1 0
0 0 1
1 0 0


 .

3) The quivers with exactly one loop:

T1 =




0 1 0
1 0 1
1 0 1


 , T2 =




0 1 1
1 0 0
1 0 1


 , T3 =




0 1 1
1 1 1
1 0 0


 .

The Theorem will be proved in Section 3.

Remark 1. Notice, that the quivers with adjacency matrices N1, . . . , N5

form the complete list of the strongly connected simply laced quivers on
3 vertices up to isomorphism.

Proof of the Remark. Consider an arbitrary strongly connected quiver Q
with 3 vertices which has a loop at each vertex.

Assume, that Q has exactly 3 arrows, which are not loops. In this
case Q is isomorphic to

1
��

// 2

��

��

3

^^

EE

(4)

and [Q] = N5.
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If Q has more then 3 arrows, which are not loops, then there are
vertices i and j, with arrows i→ j, j → i. Without loss of generality, we
may assume that i = 1 and j = 2. Assume, that Q has exactly 4 arrows,
which are not loops. In this case Q is isomorphic to either

1
��

// 2

��

oo
��

3

^^

EE

(5)

or

1
��

// 2

��

oo
��

3

@@

EE

(6)

The quiver in (5) is isomorphic to the quiver with adjacency matrix N2

and the quiver in (6) is isomorphic to one with adjacency matrix N4.
If Q has exactly 5 arrows, which are not loops, then there is a vertex,

say 2, such that there is an arrow from 2 to all other vertices and there
are arrows from all other vertices to 2. Without loss of generality we may
assume that the last, 5-th arrow, goes from 3 to 1, whence, the quiver is
as follows

1
��

// 2oo

��

��

3

^^ @@

EE

(7)

This quiver is isomorphic to one with adjacency matrix N3.
The last case is the complete simply laced quiver

1
��

//

��

2oo

��

��

3

^^ @@

EE

(8)

Its adjacency matrix is N1.
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Corollary 1. There are 5 pairwise non-isomorphic strongly connected
simply laced quivers with 3 vertices, which have no loops.

Proof. There is a natural one to one correspondence between quivers
with no loops and ones which have a loop at each the vertex. Now, the
corollary follows from Remark 1.

We shall say that two vertices i and j of a quiver Q are similar if the
renumeration i→ j, j → i of the vertices of Q gives an isomorphic quiver.

Lemma 2. There are exactly 10 pairwise non-isomorphic strongly con-
nected simply laced quivers with 3 vertices, which have exactly 1 loop.

Proof. Let Q be a quiver such as in the statement of Lemma. If we add
two new loops, it will become isomorphic to one of (4),..., (8), mentioned
in the proof of Remark 1.

If Q̃ is of the form (4), then there is a unique possibility for Q (which
we denote by Q1), because all vertices of Q are pairwise similar.

If Q̃ is of the form (5), then the three vertices are pairwise non-similar
and there are three possibilities for Q (denote them Q2, Q3 and Q4).

If Q̃ is of the form (6), then vertices 1 and 3 are similar and 2 is not
similar to them. Whence, there are two possibilities Q5 and Q6 for Q.

If Q̃ is of the form (7), then all vertices of the quiver are pairwise
non-similar and there are three possibilities Q7, Q8 and Q9 for Q.

If Q̃ is of the form (8), then all vertices of Q are pairwise similar,
whence, there is a unique possibility, which we denote by Q10.

Corollary 2. There are exactly 10 pairwise non-isomorphic strongly
connected simply laced quivers with 3 vertices, which have exactly 2 loops.

Corollary 3. There are exactly 30 pairwise non-isomorphic strongly
connected simply laced quivers with 3 vertices.

3. Calculation of the admissible quivers with 3 vertices

From Proposition 1 it follows that for any admissible quiver there is a
reduced exponent matrix, whose first row is zero. It immediately follows
from the definition of the exponent matrix, that if one of its rows is zero,
then all other entries are non-negative. The additive semigroup of the
non-negative 3× 3-exponent matrices was studied at [2]. This semigroup
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is finitely generated and the unique set of its generators is as follows.

A1 =




0 0 0
1 0 0
1 0 0


 ; A2 =




0 1 0
0 0 0
0 1 0


 ; A3 =




0 0 1
0 0 1
0 0 0


 ;

A4 =




0 1 1
0 0 0
0 0 0


 ; A5 =




0 0 0
1 0 1
0 0 0


 ; A6 =




0 0 0
0 0 0
1 1 0


 ;

A7 =




0 1 1
0 0 0
0 1 0


 ; A8 =




0 1 1
0 0 1
0 0 0


 ; A9 =




0 0 0
1 0 1
1 0 0


 ;

A10 =




0 0 1
1 0 1
0 0 0


 ; A11 =




0 1 0
0 0 0
1 1 0


 ; A12 =




0 0 0
1 0 0
1 1 0


 .

Whence, the semigroup of the non-negative 3×3 exponent matrices, whose
first line is zero, is generated by A1, A5, A6, A9, A12.

Notice, that the matrices A1, A5 and A6 are not reduced, but A9 and
A12 are. It follows that the semigroup of reduced exponent matrices with
first zero line is not finitely generated. For example, for any x1 > 0 the
exponent matrix x1A1 +A5 is reduced, but it can not be represented as
a sum of other non-negative reduced exponent matrices.

Nevertheless, notice, that if at least two of non-negative numbers from
{x1, x5, x6, x9, x12} are greater then 0, then

E = x1A1 + x5A5 + x6A6 + x9A9 + x12A12 (9)

is a reduced exponent matrix.
The matrix E , defined by (9), can be written as

E =




0 0 0
x1 + x5 + x9 + x12 0 x5 + x9

x1 + x6 + x9 + x12 x6 + x12 0


 .

We are going to find all possible quivers Q(E) depending on the values
of xi. We will find the quivers up to their equivalence classes, because if
some quiver is admissible, the all those, which are equivalent to it, are
also admissible.

Notice, that the matrices A9 and A12 are type (2) equivalent. By
Proposition 2, without loss of generality we may assume, that x9 6 x12.
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This means, that x12 = x9 + x13 for some non-negative x13, whence the
formulas for the entries of E(2) = (γij) will be as follows:

γ11 = min{2, x1 + x5 + 2x9 + x13, x1 + x6 + 2x9 + x13};

γ12 = min{1, x6 + x9 + x13};

γ13 = min{1, x5 + x9};

γ21 = α21 + min{1, x6 + x9};

γ22 = min{2, x1 + x5 + 2x9 + x13, x5 + x6 + 2x9 + x13};

γ23 = α23 + min{x1 + x9 + x13, 1};

γ31 = α31 + min{1, x5 + x9 + x13};

γ32 = α32 + min{1, x1 + x9};

γ33 = min{x1 + x6 + 2x9 + x13, x5 + x6 + 2x9 + x13, 2};

For each of the variables, which appear in the formulas for the entries
of E(2), consider cases, depending on whether it is zero, or is grater then
zero. After we have made assumption about some variable, we will go on
with assumptions about others. Also, if necessary, we will consider for a
variable, which is earlier assumed to be positive, cases of its being equal
to 1 or grater then 1.

We shall consider the following cases.
Case 1: x1 = 0.
Case 1.1: x1 = 0 and x5 = 0.
Case 1.1.1: x1 = 0, x5 = 0 and x6 = 0.
Case 1.1.1.1: x1 = 0, x5 = 0, x6 = 0, and x9 = 0. This leads to x13 > 0,
otherwise A is the zero matrix.
Case 1.1.1.1.1: x1 = 0, x5 = 0, x6 = 0, and x9 = 0, x13 = 1. These
assumptions lead to the quiver with adjacency matrix [Q] = K2.

Case 1.1.1.1.2: x1 = 0, x5 = 0, x6 = 0, and x9 = 0, x13 > 1. In this case
we have, that [Q] = N5.

Similarly the rest of the cases are as follows.
Case 1.1.1.2: x1 = 0, x5 = 0, x6 = 0, and x9 > 0. [Q] = N1.

Case 1.1.2: x1 = 0, x5 = 0 and x6 > 0.
Case 1.1.2.1: x1 = 0, x5 = 0, x6 > 0 and x9 = 0. Notice, that in this case
x13 > 0, otherwise, matrix A is not reduced.
Case 1.1.2.1.1: x1 = x5x9 = 0, x6 > 0 and x13 = 1. [Q] = T1.

Case 1.1.2.1.2: x1 = x5 = x9 = 0, x6 > 0 and x13 > 1. [Q] = N2.

Case 1.1.2.2: x1 = 0, x5 = 0, x6 > 0 and x9 > 0. [Q] = N1.

Case 1.2: x1 = 0 and x5 > 0.
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Case 1.2.1: x1 = 0, x5 > 0, and x6 = 0.
Case 1.2.1.1: x1 = 0, x5 > 0, x6 = 0, and x9 = 0. In this case, x13 > 0,
because otherwise A will not be reduced.
Case 1.2.1.1.1: x1 = x6 = x9 = 0, x5 > 0 and x13 = 1. [Q] = (123) ◦ T1.

Case 1.2.1.1.2: x1 = x6 = x9 = 0, x5 > 0 and x13 > 1. [Q] = (123) ◦N2.

Case 1.2.1.2: x1 = 0, x5 > 0, x6 = 0, and x9 > 0. [Q] = N1.

Case 1.2.2: x1 = 0, x5 > 0, and x6 > 0.
Case 1.2.2.1: x1 = 0, x5 > 0, x6 > 0 and x9 = 0.
Case 1.2.2.1.1: x1 = 0, x5 = 1, x6 > 0, x9 = 0.
Case 1.2.2.1.1.1: x1 = 0, x5 = 1, x6 > 0, x9 = 0, and x13 = 0.
Case 1.2.2.1.1.1.1: x1 = x9 = x13 = 0 and x5 = x6 = 1.[Q] = (12) ◦K1.

Case 1.2.2.1.1.1.2: x1 = x9 = x13 = 0, x5 = 1 and x6 > 1. [Q] = T2.

Case 1.2.2.1.1.2: x1 = x9 = 0, x5 = 1, x6 > 0 and x13 > 0. [Q] = N3.

Case 1.2.2.1.2: x1 = 0, x5 > 1, x6 > 0 and x9 = 0.
Case 1.2.2.1.2.1: x1 = 0, x5 > 1, x6 = 1 and x9 = 0. [Q] = T3.

Case 1.2.2.1.2.2: x1 = 0, x5 > 1, x6 > 1 and x9 = 0. [Q] = N3.

Case 1.2.2.2: x1 = 0, x5 > 0, x6 > 0 and x9 > 0. [Q] = N1.

Case 2: x1 > 0.
Case 2.1: x1 > 0 and x5 = 0.
Case 2.1.1: x1 > 0, x5 = 0, and x6 = 0.
Case 2.1.1.1: x1 > 0, x5 = 0, x6 = 0, and x9 = 0. Notice, that in this case,
x13 > 0, because otherwise A will not be reduced.
Case 2.1.1.1.1: x1 > 0, x5 = x6 = x9 = 0 and x13 = 1. [Q] = (123) ◦ T3.

Case 2.1.1.1.2: x1 > 0, x5 = 0, x6 = 0, x9 = 0 and x13 > 1.
[Q] = (123) ◦N3.

Case 2.1.1.2: x1 > 0, x5 = 0, x6 = 0, and x9 > 0. [Q] = N1.

Case 2.1.2: x1 > 0, x5 = 0, and x6 > 0.
Case 2.1.2.1: x1 > 0, x5 = 0, x6 > 0 and x9 = 0.
Case 2.1.2.1.1: x1 = 1, x5 = 0, x6 > 0 and x9 = 0.
Case 2.1.2.1.1.1: x1 = 1, x5 = 0, x6 > 0, x9 = 0 and x13 = 0.
Case 2.1.2.1.1.1.1: x1 = x6 = 1 and x5 = x9 = x13 = 0. [Q] = K1.

Case 2.1.2.1.1.1.2: x1 = 1, x5 = x9 = x13 = 0 and x6 > 1. [Q] = (12) ◦ T2.

Case 2.1.2.1.1.2: x1 = 1, x5 = x9 = 0, x6 > 0 and x13 > 0.
[Q] = (132) ◦N3.

Case 2.1.2.1.2: x1 > 1, x5 = 0, x6 > 0 and x9 = 0.
Case 2.1.2.1.2.1: x1 > 1, x5 = 0, x6 > 0, x9 = 0 and x13 = 0.
Case 2.1.2.1.2.1.1: x1 > 1, x5 = x9 = x13 = 0 and x6 = 1.

[Q] = (321) ◦ T2.

Case 2.1.2.1.2.1.2: x1 > 1, x5 = x9 = x13 = 0 and x6 > 1. [Q] = N4.
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Case 2.1.2.1.2.2: x1 > 1, x5 = x9 = 0, x6 > 0, and x13 > 0.
[Q] = (132) ◦N3.

Case 2.1.2.2: x1 > 0, x5 = 0, x6 > 0 and x9 > 0. [Q] = N1.
Case 2.2: x1 > 0 and x5 > 0.
Case 2.2.1: x1 > 0, x5 > 0 and x6 = 0.
Case 2.2.1.1: x1 > 0, x5 > 0, x6 = 0 and x9 = 0.
Case 2.2.1.1.1: x1 = 1, x5 > 0, x6 = 0 and x9 = 0.
Case 2.2.1.1.1.1: x1 = 1, x5 > 0, x6 = 0, x9 = 0 and x13 = 0.
Case 2.2.1.1.1.1.1: x1 = x5 = 1 and x6 = x9 = x13 = 0. [Q] = (23) ◦K1.
Case 2.2.1.1.1.1.2: x1 = 1, x5 > 1, x6 = x9 = x13 = 0. [Q] = (132) ◦ T2.
Case 2.2.1.1.1.2: x1 = 1, x5 > 0, x6 = x9 = 0 and x13 > 0.

[Q] = (132) ◦N3.
Case 2.2.1.1.2: x1 > 1, x5 > 0, x6 = 0 and x9 = 0.
Case 2.2.1.1.2.1.1: x1 > 1, x5 = 1, and x6 = x9 = x13 = 0.

[Q] = (13) ◦ T2.
Case 2.2.1.1.2.1.2: x1 > 1, x5 > 1 and x6 = x9 = x13 = 0. [Q] = (23) ◦N4.
Case 2.2.1.1.2.2: x1 > 1, x5 > 0, x6 = x9 = 0 and x13 > 0.

[Q] = (231) ◦N3.
Case 2.2.1.2: x1 > 0, x5 > 0, x6 = 0 and x9 > 0. [Q] = N1.
Case 2.2.2: x1 > 0, x5 > 0 and x6 > 0. [Q] = N1.

Now for each adjacency matrix [Q] from Theorem 10 point out a case,
in which either [Q], or σ ◦ [Q] (for some permutation σ) appears.

N1 : 1.1.1.2; N2 : 1.1.2.1.2; N3 : 1.2.2.1.1.2;
N4 : 2.1.2.1.2.1.2; N5 : 1.1.1.1.2;
K1 : 1.2.2.1.1.1.1; K2 : 1.1.1.1;
T1 : 1.1.2.1.1; T2 : 1.2.2.1.1.1.2; T3 : 1.2.2.1.2.1.

The above list shows, that all quivers from Theorem 10 are admissible.
We also see, that the matrix N5 is obtained only in Case 1.1.1.1.2. In

this case one of coefficients (precisely, x12 of A12) is greater than 1. This
gives the following example.

Example 1. For the admissible quiver Q with adjacency matrix

N =




1 1 0
0 1 1
1 0 1


 ,

there is no α1, . . . , α12 such that αi ∈ {0, 1} for all i and Q is the quiver

of A =
12∑

i=1
αiAi, where {A1, . . . , A12} = G3.
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This example shows, that condition αi ∈ {0, 1, 2} in Theorem 8 can
not be changed to αi ∈ {0, 1}.
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Abstract. In this article, we give two examples of finitely
presented quadratic algebras (algebras presented by quadratic rela-
tions) of intermediate growth.

1. Introduction

Let A be a finitely generated algebra over a field k with generating set
S = {x1, . . . , xm}. We denote by An the subspace of elements of degree
at most n, then A =

⋃∞
n=0An. The growth function γS

A of A with respect
to S is defined as the dimension of the vector space An over k,

γS
A(n) = dimk(An)

The function γS
A depends on the generating set S. This dependence can be

removed by introducing an equivalence relation: Let f and g be eventually
monotone increasing and positive valued functions on N. Set f � g if and
only if there exist N > 0, C > 0, such that f(n) 6 g(Cn), for n > N , and
f ∼ g if and only if f � g and g � f . The equivalence class of f is called
the growth rate of f . Simple verification shows that growth functions of
an algebra with respect to different generating sets are equivalent. The
growth rate is a useful invariant for finitely generated algebraic structures

∗The author was partially supported by NSF grant DMS-1207699.
2010 MSC: 16P90, 16S37, 16S30, 17B70.
Key words and phrases: Finitely presented algebras, growth of algebras,

quadratic relations.
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such as groups, semigroups and algebras. The notion of growth function for
groups was introduced by Schwarz [Šva55] and independently by Milnor
[Mil68]. The description of groups of polynomial growth was obtained
by Gromov in his celebrated work [Gro81]. He proved that every finitely
generated group of polynomial growth contains a nilpotent subgroup of
finite index.

The study of growth of algebras dates back to the papers by Gelfand
and Kirillov, [GK66a,GK66b]. In this paper we are mainly interested in
finitely presented algebras whose growth functions behave in intermediate
way i.e., they grow faster than any polynomial function but slower than
any exponential function. Govorov gave the first examples of finitely
generated semigroups and associative algebras of intermediate growth
in [Gov72]. Examples of algebras of intermediate growth can also be
found in [Ste75, Smi76, She80, Ufn80, KKM83]. The first examples of
finitely generated groups of intermediate growth were constructed by
Grigorchuk [Gri83,Gri84]. It is still an open problem whether there exists
a finitely presented group of intermediate growth. In contrast, there are
examples of finitely presented algebras of intermediate growth. The first
example is the universal enveloping algebra of a Lie algebra W with basis
{w−1, w0, w1, w2, . . . } and brackets defined by [wi, wj ] = (i− j)wi+j . W
is a subalgebra of the generalized Witt algebra WZ (see [AS74, p.206] for
definitions). It was proven in [Ste75] that W has a finite presentation
with two generators and six relations. It is also a graded algebra with
generators of degree −1 and 2. Since W has linear growth, its universal
enveloping algebra is an example of finitely presented associative algebra
of intermediate growth.

The main goal of this paper is to present examples of finitely presented
quadratic algebras (algebras defined by quadratic relations) of interme-
diate growth. The class of quadratic algebras contains a class of finitely
presented algebras, called Koszul algebras. They play an important role
in many studies. In [PP05], it is conjectured that the Hilbert series of a
Koszul algebra A is a rational function and in particular, the growth of
A is either polynomial or exponential.

In order to construct our first example of a finitely presented quadratic
algebra of intermediate growth, we consider the Kac-Moody algebra for
the generalized Cartan matrix A =

(
2 −2

−2 2

)
. This is a graded Lie algebra

of polynomial growth whose generators are of degree 1. Next, we consider
a suitable subalgebra and its universal enveloping algebra.
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Theorem 1. Let U be the associative algebra with generators x, y and
relations x3y− 3x2yx+ 3xyx2− yx3 = 0, y3x− 3y2xy+ 3yxy2− xy3 = 0.
Then

(i) It is the universal enveloping algebra of a subalgebra of the the

Kac-Moody algebra for the generalized Cartan matrix A =
(

2 −2
−2 2

)
.

(ii) U is a graded algebra with generators of degree 1.

(iii) It has intermediate growth of type e
√

n.

(iv) The Veronese subalgebra V4(U) of U is a quadratic algebra given
by 14 generators and 96 quadratic relations and it has the same
growth type with U .

The Kac-Moody algebra for the generalized Cartan matrix A =(
2 −2

−2 2

)
is the affine Lie algebra A(1)

1 . (For the definition of Kac-Moody

algebras and classification of affine Lie algebras see [Kac85]). It has a
subalgebra which is isomorphic to the Lie subalgebra L of sl2(C[t]) which
consists of all matrices with entries on and under the diagonal divisible
by t. That is,

L =
{
a = (aij)2×2 | aij ∈ C[t], tr(a) = 0

and for (i, j) 6= (1, 2), t divides aij
}

with the usual Lie bracket [a, b] = ab−ba. It follows from [Kac85, Theorem
9.11] that L is finitely presented. In this paper we will prove this by
using the axioms of Lie bracket without mentioning the theory of Kac-
Moody algebras. In Section 2 we show that L is a finitely presented
graded Lie algebra whose generators are all of degree 1 and L has linear
growth. In Section 3 we explain the relation between the growth of a Lie
algebra and its universal enveloping algebra. In Section 4 we consider
the Veronese subalgebra of U to obtain a finitely presented quadratic
algebra of intermediate growth and in Section 5 we complete the proof of
Theorem 1. In Section 6 we give another example of finitely presented
associative algebra A of intermediate growth related to the example of
the monoid in [Kob95]. A has the following presentation:

A = 〈a, b, c | b2a = ab2, b2c = aca, acc = 0,

aba = 0, abc = 0, cba = 0, cbc = 0〉

We show that A has intermediate growth of type e
√

n and its Veronese
subalgebra V3(A) is an example of finitely presented quadratic algebra of
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intermediate growth. In Section 7 , we give an explicit presentation of
the Veronese subalgebra V4(U) of the first construction U as an example
of a finitely presented quadratic algebra of intermediate growth.

2. An example of a finitely presented Lie Algebra of linear
growth

The following example is a subalgebra of the Kac-Moody Algebra for
the generalized Cartan matrix A =

(
2 −2

−2 2

)
[Kac85].

Consider the subalgebra L of Sl2(C[t]) over C (i.e., matrices of trace 0
with entries in C[t])) which consists of matrices whose entries on and
under the diagonal are divisible by t. That is,

L =
{
a = (aij)2x2| aij ∈ C[t], tr(a) = 0

and for (i, j) 6= (1, 2), t divides aij
}

with the usual Lie bracket [a, b] = ab− ba.

Proposition 1. Let L be the Lie algebra described above. Then it has
the following properties.

(i) L is finitely presented with generators

x :=

(
0 1
0 0

)
and y :=

(
0 0
t 0

)

and the defining relations [x, [x, [x, y]]] = 0 and [y, [y, [y, x]]] = 0.

(ii) L =
⊕

k>1

Lk is graded and generated by L1.

(iii) L has linear growth.

Proof. Take

x1 := x =

(
0 1
0 0

)
, y1 := y =

(
0 0
t 0

)
, and let z1 :=

(
t 0
0 −t

)
.

In fact, define

xi :=

(
0 ti−1

0 0

)
, yi :=

(
0 0
ti 0

)
, and let zi :=

(
ti 0
0 −ti

)
for i > 1.
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An arbitrary element w ∈ L is of the form:

w =

(∑n
i=1mit

i ∑n
i=1 kit

i−1
∑n

i=1 lit
i ∑n

i=1−mit
i

)
=

n∑

i=1

kixi +
n∑

i=1

liyi +
n∑

i=1

mizi.

So, any element of L can be written as a linear combination of xi, yi, zi

for i > 1 and {xi, yi, zi}
∞
i=1 forms a linearly independent set over C.

Algebra L has the following relations

[xi, yj ] = zi+j−1, (1)

[xi, zj ] = −2xi+j , (2)

[yi, zj ] = 2yi+j , (3)

[xi, xj ] = 0, (4)

[yi, yj ] = 0, (5)

[zi, zj ] = 0. (6)

for i, j > 1. In particular,

xi+1 = −
1
2

[xi, z1], yi+1 =
1
2

[yi, z1], zi = [xi, y1].

It follows that L is generated by x1 and y1. In order to show that all the
relations (1)–(6) can be derived from the relations [x1, [x1, [x1, y1]]] = 0
and [y1, [y1, [y1, x1]]] = 0, we apply induction on i+ j = n. If i+ j = 2,
the relations (1)–(6) hold trivially. If i+ j = 3,

[x1, y2] = [x1,
[y1, z1]

2
]

= −
1
2

([z1, [x1, y1]] + [y1, [z1, x1]])

= [x2, y1]

= z2,

[x1, z2] = [x1, [x2, y1]]

= −[y1, [x1, x2]] + [x2, [y1, x1]](since [x1, x2] = 0)

= [x2, [x1, y1]]

= [x2, z1]

= −2x3,

[y1, z2] = [y1, [x1, y2]]

= −([y2, [y1, x1]] + [x1, [y2, y1]]) (since [y1, y2] = 0)

= [y2, z1]

= 2y3.
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The relations (4)-(5) for n = 3 correspond to relations of L0. Observe the
following three equations for [z2, z1],

[z2, z1] = [[x2, y1], z1]

= −([[z1, x2], y1] + [[y1, z1], x2])

= [[x2, z1], y1] + [x2, [y1, z1]]

= −2[x3, y1] + 2[x2, y2]

= k,

[z2, z1] = [[x1, y2], z1]

= −([[z1, x1], y2] + [[y2, z1], x1])

= [[x1, z1], y2] + [x1, [y2, z1]]

= −2[x2, y2] + 2[x1, y3]

= l,

[z2, z1] = [z2, [x1, y1]

= −([y1, [z2, x1]] + [x1, [y1, z2]])

= 2[x3, y1]− 2[x1, y3]

= m.

3 · [z2, z1] = k + l +m = 0. So, (1)–(6) hold for n = 3. Now, suppose that
(1)–(6) hold for i+ j 6 n for some n > 3. For 1 6 i 6 n− 1,

[xi, yj+1] =
1
2

[xi, [yj , z1]]

= −
1
2

([z1, [xi, yj ]] + [yj , [z1, xi]])

= [xi+1, yj ],

−2xn+1 = [xn, z1]

= −
1
2

[[x1, zn−1], z1]

=
1
2

([[z1, x1], zn−1] + [[zn−1, z1], x1])

= [x2, zn−1],

and

[xi, zj+1] = [xi, [x1, yj+1]]

= −([yj+1, [xi, x1]] + [x1, [yj+1, xi]])

= [x1, zi+j ].
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Similarly, it can be shown that

2yn+1 = [yi, zj+1]

for any i, j > 1 such that i+ j = n. So (1)–(3) hold for i+ j = n+ 1.

[x1, xn] = −
1
2

[x1, [xi, zj ]]

=
1
2

([zj , [x1, xi]] + [xi, [zj , x1]])

= −
1
2

[xi, [x1, zj ]]

= [xi, xj ]

This equality implies [xi, xj ] = [xj , xi]. Similarly, one checks that [yi, yj ] =
[yj , yi]. Hence, (4)–(5) hold for i+ j = n+ 1.

Finally, we need check that (6) holds for i+ j = n+ 1.

[z1, zn] = [z1, [xn, y1]] = 2[xn+1, y1]− 2[xn, y2]

= [z1, [xn−1, y2]] = 2[xn, y2]− 2[xn−1, y3]
...

= [z1, [x1, yn]] = 2[x2, yn]− 2[x1, yn+1]

implies that n · [z1, zn] = 2[xn+1, y1]− 2[x1, yn+1] and,

2[x1, yn+1] = [x1, [y1, zn]] = −[zn, [x1, y1]]− [y1, [zn, x1]]

= [z1, zn] + 2[xn+1, y1].

So [z1, zn] = 0. Now, consider [zi, zj ] for i ∈ {1, . . . , n− 1},

[zi, zj ] = [zi, [xj , y1]] = −([y1, [zi, xj ]] + [xj , [y1, zi]])

= 2[xi+j , y1]− 2[xj , yi+1],

and

[xj , yi+1] =
1
2

[xj , [yi, z1] = −
1
2

([z1, [xj , yi]] + [yi, [z1, xj ]])

= −
1
2

([z1, zn] + [yi, 2xj+1])

= [xj+1, yi]

By applying this i times we get [xj , yi+1] = [xn, y1] , so that

[zi, zj ] = 0 for i+ j = n+ 1
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i.e., (6) holds for i+ j = n+ 1. By (1) - (3), the set {xi, yi, zi}
∞
i=1 forms

a basis for L as a vector space. It can be observed that L =
⊕

k>1

Lk where

L2k−1 = 〈xk〉 ⊕ 〈yk〉 and Lk = 〈zk〉 for k > 1. Since

[L2k−1, L2m−1] ⊆ L2(k+m−1), [L2k, L2m] = 0,

[L2k−1, L2m] ⊆ L2(k+m)−1,

L admits an N-gradation given by the sum of occurrences of x and y in
each commutator i.e., L =

⊕
k>1 Lk is a graded Lie algebra generated by

two elements of degree 1 (deg(a) = min{n|a ∈
⊕n

k=1 Lk)}) and L has
linear growth (dim Li ∈ {1, 2} for i > 1 ).

Remark 1. We notice that L also admits a Z-gradation. It is a 3-graded
Lie algebra (in the sense of [dO03]) over C generated by elements x of
degree 1 and y of degree −1 .

3. The relation between the growth of a Lie algebra and
its universal enveloping algebra

Let L be any Lie algebra over a field k and U(L) be its universal en-
veloping algebra. For an ordered basis u1, u2, . . . of L, monomials ui1 . . . uir

with i1 6 i2 6 · · · 6 ir form a basis for U(L) (Poincaré-Birkhoff-Witt
Theorem ([Ber78])). If L =

⊕
Ln is a graded Lie algebra such that all

the components are finite dimensional, then

∞∑

n=0

bnt
n =

∞∏

n=1

(1− tn)−an (7)

where an := dim(Ln) and bn:=number of monomials of length n in U(L)
([Smi76]). The proof of the following proposition can be found in various
papers ([Ber83], [Pet93], [BG00]).

Proposition 2. If an and bn are related by (7) and an ∼ nd, then

bn ∼ e
n

d+1
d+2 .

Corollary 1. If a Lie algebra L grows polynomially then its universal
enveloping algebra U(L) has intermediate growth. In particular, if L has
linear growth, then U(L) has growth of type e

√
n.
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4. Veronese subalgebra of an associative graded algebra

Let A = k〈x1, . . . , xm〉 be a free associative algebra over a field k with
generating set {x1, . . . , xm}. Each element u of A can be written uniquely
as

u = u0 + u1 + · · ·+ ul,

where A0 = k, ui ∈ Ai and Ai is the vector space over k spanned by mi

monomials of length i. Let R = {f1, f2, . . . , fs} be a finite set of non-zero
homogeneous polynomials and I be the ideal generated by R. Since I is
generated by homogeneous polynomials, the factor algebra Ã = A/I is
graded:

Ã = Ã0 ⊕ Ã1 ⊕ · · · ⊕ Ãn ⊕ . . .

where Ãi = (Ai + I)/I ∼= Ai/(Ai ∩ I). For d > 1, a Veronese subalgebra
of Ã is defined as

Vd(Ã) := k ⊕ Ãd ⊕ Ã2d ⊕ . . .

It is straightforward to see that,

growth of Ã ∼ growth of Vd(Ã)

Proposition 3. [BF85] For sufficiently large d, Vd(Ã) is quadratic.

Proof. Let d1, . . . , ds be the degrees of f1, f2, . . . , fs respectively and
d > max{di, 1 6 i 6 s}. For any two words v′, v′′ such that

deg(v′) + di + deg(v′′) = d

consider the element v′fiv
′′ ∈ Ad, and for any two words w′, w′′ such that

deg(w′) + di + deg(w′′) = 2d

consider the element w′fiw
′′ ∈ A2d. Let R∗ = {v′fiv

′′, w′fiw
′′} for i ∈

{1, . . . , s} and a be a homogeneous element from A(n) ∩ I. Say a =∑
αvfiw, where α ∈ k, v and w are words. If we choose a summand and

represent v = v1v2, deg(v1) is a multiple of d, 0 6 deg(v2) < d. Similarly,
w = w2w1, deg(w1) is a multiple of d, 0 6 deg(w2) < d. Then we will get
deg(v2fiw2) = d or 2d. Hence v2fiw2 ∈ R

∗. It shows that Vd(A) ∩ I is an
ideal generated by the elements of R∗ and an element v′fiv

′′ is a linear
combination of free generators of A(n) whereas w′fiw

′′ is a quadratic
element in these generators. So Vd(Ã) = Vd(A)/(Vd(A)∩ I) is a quadratic
algebra.
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5. Proof of Theorem 1

Let L = 〈x1, . . . , xm | f1 = 0, . . . , fr = 0〉 where each of fi is a linear
combination of the commutators (elements of the form [xi1 , . . . , xik

] with
an arbitrary distribution of parentheses inside). Then the universal en-
veloping algebra U(L) of L is an associative algebra with the identical
set of generators and relations, where the commutators are thought of
as in the ordinary associative sense: [x, y] = xy − yx [Bou89, Proposi-
tion 2, p.14]. The universal enveloping algebra U(L) of L = 〈x1, y1 |
[x1, [x1, [x1, y1]]] = 0, [y1, [y1, [y1, x1]]] = 0〉 has the following presenta-
tion:

U(L) = 〈x1, y1 | x
3
1y1 − 3x2

1y1x1 + 3x1y1x
2
1 − y1x

3
1 = 0,

y3
1x1 − 3y2

1x1y1 + 3y1x1y
2
1 − x1y

3
1 = 0〉.

So, the associative algebra U in Theorem 1 is the universal enveloping
algebra U(L) of L. By Proposition 2, since L has linear growth, the growth
rate of U(L) is intermediate of type e

√
n . In order to obtain a quadratic

algebra of intermediate growth we consider a Veronese subalgebra of V4(U)
as explained in the previous section and conclude that for a given finitely
presented graded algebra with all generators of degree 1, one can construct
a finitely presented graded algebra with all relations of degree 2. V4(U)
is an example of a finitely presented graded algebra with intermediate
growth. It has 14 generators and 96 relations. In the next section we
compute all these relations.

6. A construction based on Kobayashi’s example

In this section we construct another example of a finitely presented
associative algebra with quadratic relations whose growth function is
intermediate. For this, we consider the following example of a monoid
with 0 that appears in the paper of Kobayashi [Kob95].

M = 〈a, b, c | ba = ab, bc = aca, acc = 0〉

where w(a) = w(c) = 1, w(b) = 2, w is a positive weight function on M .
Kobayashi shows that M is a finitely presented monoid with solvable word
problem which cannot be presented by a regular complete system. In order
to prove that it cannot be presented by a regular complete system, he
proves that M has intermediate growth. Now, we consider the semigroup
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algebra k[M ] over a field k. k[M ] has the same presentation and growth
function with M . So k[M ] is an example of finitely presented associative
graded algebra of intermediate growth. But the generators of k[M ] have
degrees deg(a) = deg(c) = 1 and deg(b) = 2. To construct a quadratic
algebra with these properties, we need to consider an algebra whose
generators are all of degree 1. Thus we consider the following monoid:

M̃ = 〈a, b, c | b2a = ab2, b2c = aca, acc = 0,

aba = 0, abc = 0, cba = 0, cbc = 0〉

where w(a) = w(b) = w(c) = 1.
Now, we have the monoid algebra A := k[M̃ ] over a field k:

A = 〈a, b, c | b2a = ab2, b2c = aca, acc = 0,

aba = 0, abc = 0, cba = 0, cbc = 0〉

where deg(a) = deg(b) = deg(c) = 1. To show that A has intermediate
growth, we first find a complete rewriting system for A. Let ≺ be the
shortlex order on 〈X〉 based on the order a ≺ b ≺ c i.e.,

w1 ≺ w2 implies |w1| < |w2| or |w1| = |w2| & w1 ≺lex w2.

Then A has the rewriting system R consisting of the following relations

b2a→ ab2

b2c→ aca

acc→ 0

aba→ 0

abc→ 0

cba→ 0

cbc→ 0

It is easily seen that R is Noetherian. By applying the Knuth-Bendix algo-
rithm, we obtain the following complete rewriting system R∞ equivalent
to R:

R∞ = {b2a→ ab2, b2c→ aca, aba→ 0, abc→ 0, cba→ 0, cbc→ 0}

∪
∞⋃

n=1

{ancan−1c→ 0}.



80 Finitely presented quadratic algebras

A monomial (word) m is called irreducible with respect to the rewriting
system R if all the rewriting rules act trivially on m. The set of all
irreducible words with respect to R is denoted by Irr(R). Since R∞ is
a complete rewriting system, Irr(R∞) is the set of words which do not
contain u as a subword for any u → v ∈ R∞. By Bergman’s Diamond
Lemma [Ber78], Irr(R∞), forms a basis for A. Words in Irr(R∞) are of
the following form

bsam1cam2c . . . amrcalbk

where s ∈ {0, 1}, l, k ∈ N∪{0} and 0 6 m1 6 m2 6 · · · 6 mr,mi ∈ N∪{0}
for i ∈ {1, . . . r}. So, the number of words in Irr(R∞) of length n is equal
to

n∑

j=0

(2j+1) · |{(m1, . . . ,mr) | 06m16 . . .6mr,m1+. . .+mr =n−j−r}|

=
n∑

j=0

(2j + 1) · p(n− j)

where p(n) is the number of partitions of n. Hence

γA(n) ∼ p(n) ∼ e
√

n.

A is an example of finitely presented graded algebra with generators of
degree 1 and intermediate growth function and its Veronese subalgebra
V3(A) can be presented by finitely many quadratic relations (to be precise
with 21 generators and 280 relations).

7. Appendix: Presentation of the Veronese
subalgebra V4(U) of U

As we noted in the Section 5, U(L) is an associative algebra with
generators x, y and the set of relations

R = {x3y−3x2yx+3xyx2−yx3 = 0, y3x−3y2xy+3yxy2−xy3 = 0}.

Since R is a set of two homogeneous polynomials, U is a graded algebra.
Let V4(U) be the Veronese subalgebra of U . It was proven in Section 4
that V4(U) is a graded algebra generated by the set S of monomials of
length 4 over {x, y} and the set of relations R∗ = {fi = 0, vfiw = 0}
where v, w are monomials such that l(v) + l(w) = 4 and, f1 = x3y −
3x2yx + 3xyx2 − yx3, f2 = y3x − 3y2xy + 3yxy2 − xy3. Basically, R∗
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is the set of homogeneous polynomials of degree 4 or 8 generated by
R = {f1 = 0, f2 = 0} in k[x, y]. Since there are 48 different pairs (v, w)
of monomials, R∗ consists of 2 homogeneous polynomials of degree 4:

(i) yx3 = x3y − 3x2yx+ 3xyx2, (ii) y3x = xy3 − 3yxy2 + 3y2xy

and 96 homogeneous polynomials of degree 8:
1) xyx2x4 = x4yx3 − 3x3yx4 + 3x2yxx4,
2) x3yx4 = x4x2yx− 3x4xyx2 + 3x4yx3,
3) x2y2yx3 = x3yy2x2 − 3x2yxy2x2 + 3x2y2xyx2,
4) xyx2x3y = x4yx2y − 3x3yx3y + 3x2yxx3y,
5) x3yx3y = x4x2y2 − 3x4xyxy + 3x4yx2y,
6) x2y2yx2y = x3yy2xy − 3x2yxy2xy + 3x2y2xyxy,
7) xyx2x2yx = x4yxyx− 3x3yx2yx+ 3x2yxx2yx,
8) x2y2x4 = x2yxx2yx− 3x2yxxyx2 + 3x2yxyx3,
9) x2y2yxyx = x3yy3x− 3x2yxy3x+ 3x2y2xy2x,

10) xyx2x2y2 = x4yxy2 − 3x3yx2y2 + 3x2yxx2y2,
11) x2y2x3y = x2yxx2y2 − 3x2yxxyxy + 3x2yxyx2y,
12) x2y2yxy2 = x3yy4 − 3x2yxy4 + 3x2y2xy3,
13) xyx2xyx2 = x4y2x2 − 3x3yxyx2 + 3x2yxxyx2,
14) xyxyx4 = xyx2x2yx− 3xyx2xyx2 + 3xyx2yx3,
15) xy3yx3 = xyxyy2x2 − 3xy2xy2x2 + 3xy3xyx2,
16) xyx2xy2x = x4y3x− 3x3yxy2x+ 3x2yxxy2x,
17) xy3x4 = xy2xx2yx− 3xy2xxyx2 + 3xy2xyx3,
18) xy3yxyx = xyxyy3x− 3xy2xy3x+ 3xy3xy2x,
19) xyx2xyxy = x4y2xy − 3x3yxyxy + 3x2yxxyxy,
20) xyxyx3y = xyx2x2y2 − 3xyx2xyxy + 3xyx2yx2y,
21) xy3yx2y = xyxyy2xy − 3xy2xy2xy + 3xy3xyxy,
22) xyx2xy3 = x4y4 − 3x3yxy3 + 3x2yxxy3,
23) xy3x3y = xy2xx2y2 − 3xy2xxyxy + 3xy2xyx2y,
24) xy3yxy2 = xyxyy4 − 3xy2xy4 + 3xy3xy3,
25) y2x2x4 = yx3yx3 − 3yx2yx4 + 3yxyxx4,
26) yx2yx4 = yx3x2yx− 3yx3xyx2 + 3yx3yx3,
27) yxy2yx3 = yx2yy2x2 − 3yxyxy2x2 + 3yxy2xyx2,
28) x2y2x2yx = yx3yxyx− 3yx2yx2yx+ 3yxyxy2xy,
29) yxy2x4 = yxyxx2yx− 3yxyxxyx2 + 3yxyxyx3,
30) yxy2yxyx = yx2yy3x− 3yxyxy3x+ 3yxy2xy2x,
31) y2x2x2y2 = yx3yxy2 − 3yx2yx2y2 + 3yxyxx2y2,
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32) yxy2x3y = yxyxx2y2 − 3yxyxxyxy + 3yxyxyx2y,
33) yxy2yxy2 = yx2yy4 − 3yxyxy4 + 3yxy2xy3,
34) y2x2x3y = yx3yx2y − 3yx2yx3y + 3yxyxx3y,
35) yx2yx3y = yx3x2y2 − 3yx3xyxy + 3yx3yx2y,
36) yxy2yx2y = yx2yy2xy − 3yxyxy2xy + 3yxy2xyxy,
37) y2x2xyx2 = yx3y2x2 − 3yx2yxyx2 + 3yxyxxyx2,
38) y2xyx4 = y2x2x2yx− 3y2x2xyx2 + 3y2x2yx3,
39) y4yx3 = y2xyy2x2 − 3y3xy2x2 + 3y4xyx2,
40) y2x2xyxy = yx3y2xy − 3yx2yxyxy + 3yxyxxyxy,
41) y2xyx3y = y2x2x2y2 − 3y2x2xyxy + 3y2x2yx2y,
42) y4yx2y = y2xyy2xy − 3y3xy2xy + 3y4xyxy,
43) y2x2xy2x = yx3y3x− 3yx2yxy2x+ 3yxyxxy2x,
44) y4x4 = y3xx2yx− 3y3xxyx2 + 3y3xyx3,
45) y4yxyx = y2xyy3x− 3y3xy3x+ 3y4xy2x,
46) y2x2xy3 = yx3y4 − 3yx2yxy3 + 3yxyxxy3,
47) y4x3y = y3xx2y2 − 3y3xxyxy + 3y3xyx2y,
48) y4yxy2 = y2xyy4 − 3y3xy4 + 3y4xy3,
49) x2yxx4 = x4xyx2 − 3x4yx3 + 3x3yx4,
50) xy3x4 = x2y2yx3 − 3xyxyyx3 + 3xy2xyx3,
51) x3yy2x2 = x4y3x− 3x3yxy2x+ 3x3yyxyx,
52) x2yxx3y = x4xyxy − 3x4yx2y + 3x3yx3y,
53) xy3x3y = x2y2yx2y − 3xyxyyx2y + 3xy2xyx2y,
54) x3yy2xy = x4y4 − 3x3yxy3 + 3x3yyxy2,
55) x2yxx2yx = x4xy2x− 3x4yxyx+ 3x3yx2yx,
56) xy3x2yx = x2y2yxyx− 3xyxyyxyx+ 3xy2xyxyx,
57) x2y2y2x2 = x2yxy3x− 3x2y2xy2x+ 3x2y2yxyx,
58) x2yxx2y2 = x4xy3 − 3x4yxy2 + 3x3yx2y2,
59) xy3x2y2 = x2y2yxy2 − 3xyxyyxy2 + 3xy2xyxy2,
60) x2y2y2xy = x2yxy4 − 3x2y2xy3 + 3x2y2yxy2,
61) xy2xx4 = xyx2xyx2 − 3xyx2yx3 + 3xyxyx4,
62) xy3xyx2 = x2y2y2x2 − 3xyxyy2x2 + 3xy2xy2x2,
63) xyxyy2x2 = xyx2y3x− 3xyxyxy2x+ 3xyxyyxyx,
64) xy2xx2yx = xyx2xy2x− 3xyx2yxyx+ 3xyxyx2yx,
65) xy3xy2x = x2y2y3x− 3xyxyy3x+ 3xy2xy3x,
66) xy3y2x2 = xy2xy3x− 3xy3xy2x+ 3xy3yxyx,
67) xy2xx3y = xyx2xyxy − 3xyx2yx2y + 3xyxyx3y,
68) xy3xyxy = x2y2y2xy − 3xyxyy2xy + 3xy2xy2xy,
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69) xyxyy2xy = xyx2y4 − 3xyxyxy3 + 3xyxyyxy2,
70) xy2xx2y2 = xyx2xy3 − 3xyx2yxy2 + 3xyxyx2y2,
71) xy3xy3 = x2y2y4 − 3xyxyy4 + 3xy2xy4,
72) xy3y2xy = xy2xy4 − 3xy3xy3 + 3xy3yxy2,
73) yxyxx4 = yx3xyx2 − 3yx3yx3 + 3yx2yx4,
74) y4x4 = yxy2yx3 − 3y2xyyx3 + 3y3xyx3,
75) yx2yy2x2 = yx3y3x− 3yx2yxy2x+ 3yx2yyxyx,
76) yxyxx2yx = yx3xy2x− 3yx3yxyx+ 3yx2yx2yx,
77) y4x2yx = yxy2yxyx− 3y2xyyxyx+ 3y3xyxyx,
78) yxy2y2x2 = yxyxy3x− 3yxy2xy2x+ 3yxy2yxyx,
79) yxyxx2y2 = yx3xy3 − 3yx3yxy2 + 3yx2yx2y2,
80) y4x2y2 = yxy2yxy2 − 3y2xyyxy2 + 3y3xyxy2,
81) yxy2y2xy = yxyxy4 − 3yxy2xy3 + 3yxy2yxy2,
82) yxyxx3y = yx3xyxy − 3yx3yx2y + 3yx2yx3y,
83) y4x3y = yxy2yx2y − 3y2xyyx2y + 3y3xyx2y,
84) yx2yy2xy = yx3y4 − 3yx2yxy3 + 3yx2yyxy2,
85) y3xx4 = y2x2xyx2 − 3y2x2yx3 − 3y2xyx4,
86) y4xyx2 = yxy2y2x2 − 3y2xyy2x2 + 3y3xy2x2,
87) y2xyy2x2 = y2x2y3x− 3y2xyxy2x+ 3y2xyyxyx,
88) y3xx3y = y2x2xyxy − 3y2x2yx2y + 3y2xyx3y,
89) y4xyxy = yxy2y2xy − 3y2xyy2xy + 3y3xy2xy,
90) y2xyy2xy = y2x2y4 − 3y2xyxy3 + 3y2xyyxy2,
91) y3xx2yx = y2x2yx2x− 3y2x2yxyx+ 3y2xyx2yx,
92) y4xy2x = yxy2y3x− 3y2xyy3x+ 3y3xy3x,
93) y4y2x2 = y3xy3x− 3y4xy2x+ 3y4yxyx,
94) y3xx2y2 = y2x2xy3 − 3y2x2yxy2 + 3y2xyx2y2,
95) y4xy3 = yxy2y4 − 3y2xyy4 − 3y2xyy4 + 3y3xy4,
96) y4y2xy = y3xy4 − 3y4xy3 + 3y4yxy2.

We can rename the generators as follows:

y4 = Y1, y3x = Y2, y2xy = Y3, y2x2 = Y4,

yxy2 = Y5, yxyx = Y6, yx2y = Y7, yx3 = Y8,

xy3 = X1, xy2x = X2, xyxy = X3, xyx2 = X4,

x2y2 = X5, x2yx = X6, x3y = X7, x4 = X8.

So the relations will be

(i) Y8 = X7 − 3X6 + 3X4, (ii) Y2 = X1 − 3Y5 + 3Y3
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1) X4X8 = X8Y8 − 3X7X8 + 3X6X8,
2) X7X8 = X8X6 − 3X8X4 + 3X8Y8,
3) X5Y8 = X7Y4 − 3X6Y4 + 3X5X4,
4) X4X7 = X8Y7 − 3X7X7 + 3X6X7,
5) X7X7 = X8X5 − 3X8X3 + 3X8Y7,
6) X5Y7 = X7Y3 − 3X6Y3 + 3X5X3,
7) X4X6 = X8Y6 − 3X7X6 + 3X6X6,
8) X5X8 = X6X6 − 3X6X4 + 3X6Y8,
9) X5Y6 = X7Y2 − 3X6Y2 + 3X5X2,

10) X4X5 = X8Y5 − 3X7X5 + 3X6X5,
11) X5X7 = X6X5 − 3X6X3 + 3X6Y7,
12) X5Y5 = X7Y1 − 3X6Y1 + 3X5X1,
13) X4X4 = X8Y4 − 3X7X4 + 3X6X4,
14) X3X8 = X4X6 − 3X4X4 + 3X4Y8,
15) X1Y8 = X3Y4 − 3X2Y4 + 3X1X4,
16) X4X2 = X8Y2 − 3X7X2 + 3X6X2,
17) X1X8 = X2X6 − 3X2X4 + 3X2Y8,
18) X1Y6 = X3Y2 − 3X2Y2 + 3X1X2,
19) X4X3 = X8Y3 − 3X7X3 + 3X6X3,
20) X3X7 = X4X5 − 3X4X3 + 3X4Y7,
21) X1Y7 = X3Y3 − 3X2Y3 + 3X1X3,
22) X4X1 = X8Y1 − 3X7X1 + 3X6X1,
23) X1X7 = X2X5 − 3X2X3 + 3X2Y7,
24) X1Y5 = X3Y1 − 3X2Y1 + 3X1X1,
25) Y4X8 = Y8Y8 − 3Y7X8 + 3Y6X8,
26) Y7X8 = Y8X6 − 3Y8X4 + 3Y8Y8,
27) Y5Y8 = Y7Y4 − 3Y6Y4 + 3Y5X4,
28) Y4X6 = Y8Y6 − 3Y7X6 + 3Y6X6,
29) Y5X8 = Y6X6 − 3Y6X4 + 3Y6Y8,
30) Y5Y6 = Y7Y2 − 3Y6Y2 + 3Y5X2,
31) Y4X5 = Y8Y5 − 3Y7X5 + 3Y6X5,
32) Y5X7 = Y6X5 − 3Y6X3 + 3Y6Y7,
33) Y5Y5 = Y7Y1 − 3Y6Y1 + 3Y5X1,
34) Y4X7 = Y8Y7 − 3Y7X7 + 3Y6X7,
35) Y7X7 = Y8X5 − 3Y8X3 + 3Y8Y7,
36) Y5Y7 = Y7Y3 − 3Y6Y3 + 3Y5X3,
37) Y4X4 = Y8Y4 − 3Y7X4 + 3Y6X4,
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38) Y3X8 = Y4X6 − 3Y4X4 + 3Y4Y8,
39) Y1Y8 = Y3Y4 − 3Y2Y4 + 3Y1X4,
40) Y4X3 = Y8Y3 − 3Y7X3 + 3Y6X3,
41) Y3X7 = Y4X5 − 3Y4X3 + 3Y4Y7,
42) Y1Y7 = Y3Y3 − 3Y2Y3 + 3Y1X3,
43) Y4X2 = Y8Y2 − 3Y7X2 + 3Y6X2,
44) Y1X8 = Y2X6 − 3Y2X4 + 3Y2Y8,
45) Y1Y6 = Y3Y2 − 3Y2Y2 + 3Y1X2,
46) Y4X1 = Y8Y1 − 3Y7X1 + 3Y6X1,
47) Y1X7 = Y2X5 − 3Y2X3 + 3Y2Y7,
48) Y1Y5 = Y3Y1 − 3Y2Y1 + 3Y1X1,
49) X6X8 = X8X4 − 3X8Y8 + 3X7X8,
50) X1X8 = X5Y8 − 3X3Y8 + 3X2Y8,
51) X7Y4 = X8Y2 − 3X7X2 + 3X7Y6,
52) X6X7 = X8X3 − 3X8Y7 + 3X7X7,
53) X1X7 = X5Y7 − 3X3Y7 + 3X2Y7,
54) X7Y3 = X8Y1 − 3X7X1 + 3X7Y5,
55) X6X6 = X8X2 − 3X8Y6 + 3X7X6,
56) X1X6 = X5Y6 − 3X3Y6 + 3X2Y6,
57) X5Y4 = X6Y2 − 3X5X2 + 3X5Y6,
58) X6X5 = X8X1 − 3X8Y5 + 3X7X5,
59) X1X5 = X5Y5 − 3X3Y5 + 3X2Y5,
60) X5Y3 = X6Y1 − 3X5X1 + 3X5Y5,
61) X2X8 = X4X4 − 3X4Y8 + 3X3X8,
62) X1X4 = X5Y4 − 3X3Y4 + 3X2Y4,
63) X3Y4 = X4Y2 − 3X3X2 + 3X3Y6,
64) X2X6 = X4X2 − 3X4Y6 + 3X3X6,
65) X1X2 = X5Y2 − 3X3Y2 + 3X2Y2,
66) X1Y4 = X2Y2 − 3X1X2 + 3X1Y6,
67) X2X7 = X4X3 − 3X4Y7 + 3X3X7,
68) X1X3 = X5Y3 − 3X3Y3 + 3X2Y2,
69) X3Y3 = X4Y1 − 3X3X1 + 3X3Y5,
70) X2X5 = X4X1 − 3X4Y5 + 3X3X5,
71) X1X1 = X5Y1 − 3X3Y1 + 3X2Y1,
72) X1Y3 = X2Y1 − 3X1X1 + 3X1Y5,
73) Y6X8 = Y8X4 − 3Y8Y8 + 3Y7X8,
74) Y1X8 = Y5Y8 − 3Y3Y8 + 3Y2Y8,
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75) Y7Y4 = Y8Y2 − 3Y7X2 + 3Y7Y6,
76) Y6X6 = Y8X2 − 3Y8Y6 + 3Y7X6,
77) Y1X6 = Y5Y6 − 3Y3Y6 + 3Y2Y6,
78) Y5Y4 = Y6Y2 − 3Y5X2 + 3Y5Y6,
79) Y6X5 = Y8X1 − 3Y8Y5 + 3Y7X5,
80) Y1X5 = Y5Y5 − 3Y3Y5 + 3Y2Y5,
81) Y5Y3 = Y6Y1 − 3Y5X1 + 3Y5Y5,
82) Y6X7 = Y8X3 − 3Y8Y7 + 3Y7X7,
83) Y1X7 = Y5Y7 − 3Y3Y7 + 3Y2Y7,
84) Y7Y3 = Y8Y1 − 3Y7X1 + 3Y7Y5,
85) Y2X8 = Y4X4 − 3Y4Y8 + 3Y3X8,
86) Y1X4 = Y5Y4 − 3Y3Y4 + 3Y2Y4,
87) Y3Y4 = Y4Y2 − 3Y3X2 + 3Y3Y6,
88) Y2X7 = Y4X3 − 3Y4Y7 + 3Y3X7,
89) Y1X3 = Y5Y3 − 3Y3Y3 + 3Y2Y3,
90) Y3Y3 = Y4Y1 − 3Y3X1 + 3Y3Y5,
91) Y2X6 = Y4X2 − 3Y4Y6 + 3Y3X6,
92) Y1X2 = X5Y2 − 3Y3Y2 + 3Y2Y2,
93) Y1Y4 = Y2Y2 − 3Y1X2 + 3Y1Y6,
94) Y2X5 = Y4X1 − 3Y4Y5 + 3Y3X5,
95) Y1X1 = Y5Y1 − 3Y3Y1 + 3Y2Y1,
96) Y1Y3 = Y2Y1 − 3Y1X1 + 3Y1Y5.

We see that V4(U) is a quadratic algebra with generators X1, . . . , X8,
Y1, . . . Y8 and relations (i), (ii), 1)–96). This may not be the simplest
presentation of V4(U). Observe that the generators Y8 and Y2 are linear
combinations of other generators by (i) and (ii), so they can be removed
from the generating set.
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Abstract. We consider algorithmics for the jump number
problem, which is to generate a linear extension of a given poset,
minimizing the number of incomparable adjacent pairs. Since this
problem is NP-hard on interval orders and open on two-dimensional
posets, approximation algorithms or fast exact algorithms are in
demand.

In this paper, succeeding from the work of the second named
author on semi-strongly greedy linear extensions, we develop a
metaheuristic algorithm to approximate the jump number with the
tabu search paradigm. To benchmark the proposed procedure, we
infer from the previous work of Mitas [Order 8 (1991), 115–132] a
new fast exact algorithm for the case of interval orders, and from the
results of Ceroi [Order 20 (2003), 1–11] a lower bound for the jump
number of two-dimensional posets. Moreover, by other techniques
we prove an approximation ratio of n/ log logn for 2D orders.

1. Introduction

The jump number problem is to find a linear extension of a given poset
minimizing the number of jumps, that is, incomparable adjacent pairs. It
is best motivated by the following scheduling problem. Suppose a set of
jobs is to be performed by a single machine, one at a time, with respect to
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some technological precedence constraints. Every job processed after one
which is not constrained to precede it requires a warm-up (here, called a
jump), which leads to a fixed unit of additional cost. The objective is to
find a schedule which minimizes the number of warm-ups (jumps).

A purely theoretical interest in this problem is associated with a fact
proved by Habib [8] that posets with isomorphic undirected comparability
graphs have equal jump number. Consequently, the jump number fits the
framework of comparability invariants, together with order dimension,
the number of all linear extensions, the path partition number, and other
properties. This leads to characterisation questions of comparability
graphs satisfying given property and of possible interpretations of these
invariants.

Another related topic is a classification of jump-critical posets. We
recall from [26] that P is jump-critical if for any p ∈ P , P\{p} has less
jumps than P . Some results have been established by El-Zahar et al.
[26–28].

The main results of this work are as follows.

1) We design and benchmark a tabu search algorithm to approximate
the jump number, see Section 3 and 4. It is built upon semi-strongly
greedy linear extensions, defined by the second named author in
terms of arc diagram representations of posets.

2) We give in Section 4.1 a new exact algorithm for the jump number
of interval orders, based on the previous work of Mitas [16].

3) We show in Section 4.3 that the jump number has an (n/ log logn)
approximation ratio on two-dimensional posets.

We now outline the paper structure.
The proposed tabu search algorithm explores semi-strongly greedy

linear extensions, defined by the second named author (see Section 2.2).
After reviewing the respective exact algorithm in Section 2, we verify how
many solutions are generated when it is applied to various posets.

Our adaptation of the tabu search paradigm is proposed in Section 3
and tested in Section 4. In benchmarks we focus on two non-trivial classes
of posets: interval orders and two-dimensional orders. A previous work
of Mitas [16] on interval orders contains a characterization of optimal
solutions in terms of subgraph packings.

In Section 4.1 we explore this idea to obtain a new exact algorithm for
these orders. This allows us to calculate the jump number in reasonable
time for posets having up to several hundred elements. In effect, we obtain
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a testbed to verify the quality of solutions generated with the proposed
tabu search algorithm.

Perhaps even more interesting is the case of two-dimensional orders,
since the complexity status of the jump number problem has remained
open in this class for several years now.

In Section 4.2 we exploit an interpretation given by Ceroi [4]. Chains
to form a linear extension are seen as rectangles in the plane, and the
bump number (see Section 1.1) corresponds to the maximum weight
of an independent set (MWIS in short) of rectangles. Thus, a linear
programming relaxation of the MWIS integer formulation yields a bound
on s(P ). Even though the approximation ratio of our tabu search algorithm
is unknown and only verified experimentally, we prove in Section 4.3
using other techniques that the jump number admits an (n/ log logn)
approximation ratio on two-dimensional posets.

1.1. Preliminaries

We denote by (P,<P ), or simply by P , a finite strict partially ordered
set, in short a poset of cardinality|P | = n. That is, <P is a transitive
and irreflexive relation on P . For any p ∈ P , SuccP (p) = {q ∈ P :
p <P q} is the set of successors of p and PredP (p) = {q ∈ P : q <P

p} is the set of predecessors of p. SP = {SuccP (p) : p ∈ P} is the
family of distinct successor sets and PP = {PredP (p) : p ∈ P} is the
family of distinct predecessor sets of a poset P . We say that p is covered
by q if p <P q and for no r, p <P r <P q.

A linear extension L = p1, p2, . . . , pn is a total ordering of P preserving
the relation, that is, pi <P pj implies i < j. Two adjacent elements pi, pi+1

in L form a jump if pi 6<P pi+1 and otherwise they form a bump. Since
jumps split L into chains of P , we can write L = C0 ⊕ C1 ⊕ . . .⊕ Cm.

Problem 1.1.1. Let sL(P ) denote the number of jumps in a linear
extension L of a poset P . The jump number problem is to find

s(P ) = min{sL(P ) : L is a linear extension of P}.

Problem 1.1.1 is equivalent to maximizing the number of bumps bL(P )
amongst linear extensions of P , as for any L we have sL(P )+bL(P ) = n−1.
We write b(P ) for the maximum number of bumps in a linear extension
of P . If sL(P ) = s(P ) = n− 1− bL(P ) then L is called an optimal linear
extension of P .
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Definition 1.1.2. A poset (P,<P ) is an interval order (or an interval
poset) if there is a bijection between its elements and closed intervals on
the real line, P ←→ {Ip = [l(p), r(p)], l(p) 6 r(p)}p∈P , such that p <P q
if and only if r(p) < l(q). (P,<P ) is two-dimensional (or 2D) if <P is an
intersection of two linear orders {L1, L2}, called a realizer of P .

Interval orders are characterized as posets excluding a subposet consisting
of two independent 2-chains [6]. The recognition of two-dimensional posets
can be accomplished in O(n2) time, see [20] and also [10].

Definition 1.1.3. A chain C in P is greedy if Pred(p)∪ {p} = C, where
p = supC, and for no element q covering p, the chain C ∪ {q} has this
property. A linear extension L = C0 ⊕ C1 ⊕ . . .⊕ Cm is greedy if Ci is a
greedy chain in P\ ∪j<i Cj .

It is easy to prove that every poset has an optimal linear extension which
is greedy.

1.2. Previous work

It has been proved by Pulleyblank [18] that the jump number problem
is NP-hard on bipartite orders, that is, on posets having only minimal
and maximal elements. Another NP-hardness proof has been given by
Bouchitté and Habib [3]. Moreover, by Mitas [16] the problem remains
NP-hard on interval orders. There are polynomial-time algorithms for
some restricted classes of posets. These include semi-orders (i.e., interval
orders formed by intervals of the same length) [2], and N-free orders (that
is, with the N subposet forbidden) [19, 22]. The problem remains open
on two-dimensional orders. However, Ceroi [4] proved NP-hardness of a
generalized variant in which non-negative weights are associated with
comparabilities and the objective is to maximize their sum on bumps of
a linear extension. Due to high complexity of the problem, approximate
algorithms are in demand. Those have been found only for interval orders
(Sysło [25], Felsner [5], Mitas [16]). An exact algorithm has been designed
by Sysło [24] (it is shortly reviewed in subsequent sections). As far as we
know, the only metaheuristic approach published so far is that of Ngom
[17], who adapted the genetic algorithm to the jump number problem.

2. Semi-strongly greedy linear extensions

In this paper a tabu search procedure is presented to search for valuable
solutions amongst very particular greedy linear extensions, defined by the
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second named author. Therefore, we now quickly recall what semi-strongly
greedy linear extensions are and how they are generated. These linear
extensions are formed from special greedy chains, defined by means of a
digraph representation of (P,<P ) explained below.

2.1. Arc diagrams

A digraph is denoted by D = (V,A, t, h), where V is the vertex set, A
is the arc set, and t, h : A→ V are incidence mappings (t for tail, h for
head). Then each arc a ∈ A is of the form a = (t(a), h(a)). A sequence
of arcs π = (a1, a2, . . . , al), l > 1 is a path in D if h(ai) = t(ai+1) for
i = 1, 2, . . . , l − 1. By tc(D) = (V, tc(A), t⋆, h⋆) we denote a transitive
closure of D, where (a1, . . . , al), l > 1 is a path in D if and only if tc(A)
contains an arc b such that t⋆(a1) = t⋆(b) and h⋆(al) = h⋆(b).

Definition 2.1.1. An arc diagram for a poset (P,<P ) is an acyclic
digraph D(P ) = (V,R, t, h) for which there is a mapping φ : P → R such
that for every p, q ∈ P , p 6= q, we have p <P q iff (h⋆(φ(p)), t⋆(φ(q))) ∈ R⋆,
where t⋆, h⋆ are the incidence mappings of tc(D) and R⋆ = tc(R)∪{(v, v) :
v ∈ V }. An arc a ∈ φ(P ) is a poset arc and otherwise a is a dummy arc.

Informally, certain arcs represent the elements of P , and the purpose of
the remaining ones is to preserve the comparabilities along the paths of
D(P ).

An example is shown in Figure 1. Elements 2, 3, 12, 8 form one of the
chains in this poset, so the four corresponding arcs are aligned in one
of the paths leading from the source to the sink of the diagram. In any
linear extension, these (and other) order constraints have to be respected,
e.g., (2, 3, 10)⊕ (7)⊕ (14, 5, 1)⊕ (4, 13)⊕ (6, 12)⊕ (11, 9, 8).

Figure 1. Arc diagram representation of a two-dimensional poset

Figure 2 is another example, whose one of linear extensions is (1, 3)⊕
(2, 7)⊕ (4, 9)⊕ (5, 10)⊕ (6, 11)⊕ (8).
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An algorithm to construct an adequate arc diagram for any finite poset
P was given by Sysło [21]. For the sake of completeness, it is repeated as
Algorithm 1.

Algorithm 1 Arc diagram for a poset P (see [21])

Input: A finite poset (P,<P ).
Output: D(P ), an arc diagram for P .
Step 1. Let PP = {Pred1, . . . , P redk}, SP = {Succ1, . . . , Succl}.

For each Predi let Ui =
⋂

p∈P redi
SuccP (p).

Step 2. {The vertices:}
Let x1, x2, . . . , xh correspond to those Predi, for which there exists
Succj = Ui.

Let yh+1, yh+2, . . . , yk correspond to remaining Predi.
Let zh+1, zh+2, . . . , zl correspond to remaining Succj .
Let yi = zi = xi for i = 1, 2, . . . , h.

Step 3. {The arcs:}
For each p ∈ P add a poset arc (yi, zj), where
Pi = PredP (p), Succj = SuccP (p).

For every p, q ∈ P , p 6= q,
if p is covered by q, and zj 6= yi, where
Succj = SuccP (p) and Predi = PredP (q),

then add a dummy arc (zj , yi).
Finally, remove transitive arcs provided that they are not poset arcs.

2.2. Greedy paths

Definition 2.2.1. In an arc diagram D(P ), a natural counterpart of a
greedy chain C (see Section 1.1) is a greedy path π(C) = (a1, a2, . . . , al),
l > 1, i.e., a path satisfying the following conditions:

• No vertex of π(C) except h(al) is a head of any arc other than aj ,
j = 0, 1, . . . , l − 1.

• aj is a poset arc, j = 1 . . . l.

• π(C) cannot be extended to a longer path satisfying the above two
conditions.

In the reverse direction, any greedy path π induces a greedy chain Cπ in
D(P ). Thus, an algorithm to generate a greedy linear extension can be
formulated in terms of an arc diagram for P , see Algorithm 2.
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Algorithm 2 Greedy linear extension
Input: D(P ), an arc diagram for P .
Output: L = C0 ⊕ C1 ⊕ . . .⊕ Cm, a linear extension of P .
Step 1. { Initialization }
D := D(P )
L := ∅

Step 2. while D 6= ∅

(⋆) find a greedy path π in D
L := L⊕ Cπ

D := D(P\L), an arc diagram for the remaining poset
Step 3. return L

It is easy to design an analogous procedure to enumerate all greedy
linear extensions, but initial experiments reveal quickly that it is a very
time-consuming and hence inefficient process.

However, it was proved in a series of papers [21–25], that the search
space can be significantly reduced, since for every poset the class of greedy
linear extensions can be further restricted to the class of very particular
greedy linear extensions which contains an optimal solution. These linear
extensions are composed from two special types of greedy chains, as
described below.

Definition 2.2.2. A strongly greedy path π is a greedy path satisfying:
• either h(π) is the sink of D(P ), or

• h(π) is the head of a poset arc b 6= al such that no path terminating
with b has a vertex incident with a dummy arc.

If D(P ) contains at least one strongly-greedy path π then there always
exists an optimal linear extension beginning with Cπ. If there are no
strongly-greedy paths in D(P ) then there is at least one semi-strongly
greedy path, i.e., a greedy path π such that

• π has a vertex which is a tail of a dummy arc but not a head of a
dummy arc.

In such case, when searching for an optimal linear extension, we have to
consider all semi-strongly greedy paths. It should be noted however that
not every greedy path is semi-strongly greedy, so all in all, the search
space is greatly reduced in comparison with an enumeration of all greedy
linear extensions.

The arc diagram in Figure 2 has three semi-strongly greedy paths
(1, 3), (1, 4) and (1, 5). The path (2) is greedy, but it is neither strongly
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Figure 2. Arc diagram representation of an interval order

greedy, nor semi-strongly greedy. But the diagram in Figure 1 has two
strongly greedy paths. The path (2, 3, 10) passes through a tail of a dummy
arc, so it would classify as semi-strongly greedy, but it also terminates
in the sink, so it is strongly greedy. In addition, the vertex terminating
(14, 5) terminates also (7), which has no vertex incident with a dummy
arc. So (14, 5) is strongly greedy.

In conclusion, we have the following Theorem 2.2.3.

Theorem 2.2.3 (Sysło [23]). Every poset has an optimal linear extension
L = C0⊕C1⊕. . .⊕Cm, called semi-strongly greedy, such that each chain Ci

is strongly greedy in Pi = P\
⋃

j<iCj or semi-strongly greedy in Pi if Pi

has no strongly gredy chains.

To design an algorithm generating one semi-strongly greedy linear
extension, we simply replace Step 2. (⋆) of Algorithm 2 with

(⋆) find a strongly greedy path π in D; if no such path has been

found then set π to any semi-strongly greedy path in D.

It is now also easy to devise an exact algorithm for the jump number
problem, which searches for optimal solution amongst all semi-strongly
greedy linear extensions via backtracking. For this purpose, in Step 2. (⋆)
of Algorithm 2, if there are no strongly greedy paths, then instead of
choosing an arbitrary semi-strongly greedy path we verify every one of
them, and apply the procedure recursively on every respective subposet.
We refer to this algorithm as OptLinExt [24] in subsequent sections, where
a new tabu search algorithm is proposed, based on these special linear
extensions. For a more in-depth treatment of the topic we refer the reader
to the articles of Sysło [21–25].
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2.3. The running time of OptLinExt

Let k denote the number of dummy arcs in D(P ). It was concluded
in [24] that the pessimistic time complexity of OptLinExt is of order
O(k! · poly(n, k)), since there are always at most k! semi-strongly greedy
linear extensions. That is, k is an important factor contributing to the
complexity of the problem.

We have performed an experiment to learn how many solutions are
generated in reality on posets for varying number of dummy arcs. For
a fixed poset size (n = 120 in the case of interval orders and n = 30
in the case of two-dimensional orders), and for each number of dummy
arcs k ∈ {5, 10, . . .}, a hundred of posets were randomized, having these
requested properties. To obtain posets with a given number of dummy
arcs in their arc diagrams, we use a genetic algorithm, with distance
from k in question being the optimality factor. The maximum number of
generated solutions amongst a group of posets with k dummy arcs was
recorded. This is plotted in Figure 3.

Figure 3. Total number of semi-strongly greedy linear extensions in sample
posets containing increasing number of dummy arcs

This series of trials helps to asses the magnitude of the search space,
browsed through by the tabu search algorithm described in Section 3.
Interestingly, it shows that the search space is typically greater in the
case of two-dimensional posets.

In the group of interval orders on 120 elements, containing 45 dummy
arcs, a poset was spotted having 6 510 338 semi-strongly greedy linear ex-
tensions, and the exact algorithm took over 5 hours to list them. Typically,
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the total number of solutions is lower. On the other hand, a 30-element
two-dimensional poset was found, with 45 dummy arcs in its diagram,
for which the search space contains 8 857 068 semi-strongly greedy linear
extensions. In this case, the execution of OptLinExt took 3 445 seconds,
benefitting from shorter time required to rebuild arc diagrams for no more
than 30 elements.

We note that the number of dummy arcs is lesser than n on interval
orders. This is not the case on two-dimensional posets. Thus, it is common
for two-dimensional orders to have a significantly greater search space of
semi-strongly greedy linear extensions than interval orders.

3. A tabu search algorithm to approximate
the jump number

Tabu search is a famous algorithmic technique of moving stepwise
towards an optimal solution of a computational problem. Its characteristic
feature is maintaining a list of moves not allowed at given iteration, called
a tabu list. The purpose of this list is the avoidance of repeatedly visiting
the same solutions. In recent years, tabu search has become a major
metaheuristic paradigm to approximate hard optimization problems. The
rationale behind this method can be found in the monograph of Glover
and Laguna [7].

In a tabu search algorithm, every solution is treated as a point in the
search space. Initially, there is some solution sol, and in each step we
move to another solution sol′ selected from a neighbourhood of sol. That
is, a fixed number of solutions is generated from sol, and the algorithm
follows to the best of them, provided it is not a tabu move. We now turn
to a description of our adaptation for the jump number problem.

3.1. An adaptation for the jump number problem

In our approach, every solution is some semi-strongly greedy linear
extension L of P . A neighbour solution is generated from L by splitting
it between some consecutive chains, and completing it according to the
semi-strongly greedy algorithm (see Section 2.2). A linear extension L is
represented as a list of chains, which in turn are lists of poset elements. So
if we decide to split L after kc chains, then L[0]⊕ . . .⊕L[kc− 1] becomes
the initial part of a neighbour L′. Our adaptation is shown as Algorithms
3 and 4.



P. Krysztowiak, M. M. Sysło 99

Algorithm 3 TS-CompleteLinExt

Input: A poset P , initial chains of some greedy linear extension
partialL = C0 ⊕ . . . ⊕ Cc−1, and the minimum number of jumps s⋆

found so far.
Output: L = C0 ⊕ . . .⊕ Cc−1 ⊕ Cc ⊕ . . .⊕ Cm, a linear extension of P .
Step 1. { Initialization }
D := D(P\partialL), an arc diagram for P\partialL
c := the number of chains in partialL
e := the number of poset elements in partialL
sLB := s(partialL) + 1 + sLB(D)
{ sLB(D) is the lower bound on s(P\partialL), Thm. 3.1.1 }

Step 2. if sLB > s⋆ then add (c, e) to TabuPositions, return ∅

else go to 3
Step 3. if D has no more dummies than MaxDummies then

remainingL := OptLinExt(P\partialL)
add (c, e) to TabuPositions
if s(partialL) + 1 + s(remainingL) > s⋆ then return ∅

else return partialL⊕ remainingL
else go to 4

Step 4. remainingL := ∅

{ complete the linear extension with s.-s.-greedy chains }
while D 6= ∅

S := strongly greedy paths in D
W := semi-strongly greedy paths in D
if |S| > 0 then
π := any path from S
remainingL := remainingL⊕ Cπ

if Cπ is the first chain in remainingL then
add (c, e) to TabuPositions

else { no strongly greedy paths }
if |W | = 1 then
π := the path from W , remainingL := remainingL⊕ Cπ

if Cπ is the first chain in remainingL then
add (c, e) to TabuPositions

else { several semi-strongly greedy paths }
if remainingL = ∅ {i.e, first choice after split} then
π := a random path from W\TabuPaths;
if not found then add (c, e) to TabuPositions, return ∅

{ π added to TabuPaths in Alg. 4}
else { not first chain after split } π := a random path from W
remainingL := remainingL⊕ Cπ

D := D(P\(partialL⊕ remainingL))
Step 5. return partialL⊕ remainingL
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Algorithm 4 TS-OptimizeJumpNumber

Input: A poset P , the number of iterations T .
Output: L = C0 ⊕ . . .⊕ Cm, a semi-strongly greedy linear extension of
P .
Step 1. { Initialization }
TabuPositions := ∅

TabuPaths := ∅

currentL := TS-CompleteLinExt(P,∅, |P |)
bestL := currentL
t := 0 {current iteration}

Step 2. while t 6 T
bestNeighbour = ∅

{ the split position for the best neighbour }
bestKC = 0, bestKE = 0
t := t+ 1

Step 3. { select the best neighbour solution }
for n = 1 to CheckedNeighbours
kc := a random number less than |currentL|
ke := |L[0]|+ . . .+ |L[kc− 1]|

{ such that (kc, ke) /∈ TabuPositions }
partialL := first kc chains of currentL
neighbourL := TS-CompleteLinExt(P, partialL,
s(bestLinExt))

if s(neighbourL) < s(bestNeighbour) then
bestNeighbour := neighbourL
bestKC := kc, bestKE := |neighbourL[0..bestKC − 1]| { = ke }

n := n+ 1
Step 4. { move to the neighbour, update the result }

if bestNeighbour 6= ∅ then
currentL := bestNeighbour
update TabuPaths with (bestKC, bestKE,
currentL[bestKC − 1], currentL[bestKC])

if s(currentL) < s(bestL) then bestL := currentL
Step 5. return bestL
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We keep two tabu lists. TabuPositions is a cyclic list containing
TabuSize recent split positions. More precisely, if L is split after kc
chains, then the pair (kc, ke) may be added to TabuPositions, where
ke = |L[0]|+ . . .+ |L[kc−1]| is the total number of poset elements in kept
chains. The second tabu list, TabuPaths, contains the greedy paths before
and after split positions. That is, whenever L is split after kc chains and
completed, we add to TabuPaths the quadruple (kc, ke, L[kc− 1], L[kc]).
This is motivated by fact that there are two major decision points when
generating a neighbour: firstly, L is split at some position kc; secondly,
one of available greedy paths in D(P\(L[0]⊕ . . .⊕ L[kc− 1])) is selected.
TabuPositions is a cyclic list, so after adding a new entry, the oldest one
is removed. On the other hand, TabuPaths is a static list, from which no
entry is removed in the process of the algorithm.

When generating or completing a linear extension, an obvious change
is made with respect to the original semi-strongly greedy algorithm:
a greedy path is not allowed to be selected, if it is contained in the
tabu list TabuPaths associated with current split position (Step 4 of
Algorithm 3). Further, while OptLinExt proceeds with greedy paths in
systematic manner, here we always select one at random. Obviously, the
implementation is also augmented to update both tabu lists in each
iteration.

A split position (kc, ke) is added to TabuPositions when the remain-
ing subposet has either a strongly greedy path, or only one semi-strongly
greedy path, or when its jump number is assessed as non-promising in
Step 2, or has been completed exactly in Step 3 (Algorithm 3). In other
words, (kc, ke) is not tabu, if there are still some unexplored choices of
greedy paths in the remaining subposet. Each choice of a greedy path is
recorded in TabuPaths.

The most time-consuming subprocedure is the construction of an arc
diagram for the remaining subposet whenever a greedy path is selected
and added to L. Therefore, it is important to quickly reject those solutions
whose number of jumps will not improve over the best one found in the
preceding course of the algorithm. Thus, when a split point is selected and
the diagram is reconstructed, we asses this choice by calculating the lower
bound for the jump number of the remaining poset. It may immediately
turn out that another split position should be randomized. We use a lower
bound given by the following theorem.
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Theorem 3.1.1 (Sysło [24]). If D(P ) is an arc diagram of a poset P
then

∑
v∈V max{0, indegP (v)−1} 6 s(P ), where indegP (v) is the number

of poset arcs coming into v.

If the number of dummy arcs in the diagram is less than some fixed
number MaxDummies, we apply OptLinExt to the remaining poset.

4. Benchmarks

In this section we benchmark the proposed tabu search algorithm on
two non-trivial classes of posets.

4.1. Interval orders

In the case of interval orders, we first run TS-OptimizeJumpNumber

and compare the quality of its solutions with optimal ones, obtained via
a reduction to the subgraph packing problem. We now explain how these
optimal values are computed.

The jump number of interval orders

Interval orders have a well-known characterization (see Fishburn [6])
which includes their canonical representation, that is, Algorithm 5.

Algorithm 5 Canonical representation of an interval order (see [16])

Input: (P,<P ), an interval order.
Output: {Ip = [l(p), r(p)]}p∈P , a compact family of intervals representing
(P,<P ).
Step 1. Sort (SP ,⊆): Succ1 ⊇ Succ2 ⊇ . . . ⊇ Succe = ∅.
Step 2. Sort (PP ,⊆): ∅ = Pred1 ⊆ Pred2 ⊆ . . . ⊆ Prede.
Step 3. Assign to each p ∈ P its left endpoint l(p) = i− 1 such that
Predi = PredP (p) and its right endpoint r(p) = j − 1
such that Succj = SuccP (p).

The obtained canonical intervals are then written into a table of size
e × e, where e = |PP | = |SP | (see Figure 4). For an interval [l(p), r(p)]
its corresponding element p is put in the cell in row l(p), column r(p).
Then, successive bumps of a linear extension may be read from the table
along a sequence of ordered pairs of the form T = {ti = (tcol, trow)}i=1,...,b,
called a bump sequence, where b 6 e− 1 is its length. Every bump t in T
satisfies tcol < trow and for every two consecutive bumps (s, t), srow 6 tcol.
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We say that the columns and rows outside T are omitted. The problem
is to generate a bump sequence of maximum cardinality, i.e., to decide,
which rows and columns should be omitted so as to obtain a realizable
bump sequence (so some L can be read along it). Given a realizable bump
sequence of length bT one applies a quick procedure (see [16]) to obtain a
linear extension with at least bT bumps.

Definition 4.1.1. Graph of intervals GI(P ) takes non-empty table cells
as vertices. Edges are added for vertices positioned consecutively in a
column or in a row (see Example 4.1.6 and Figure 4). A component C of
this graph is unsaturated if none of its vertices is situated on the boundary
of the table (i.e., in the lowest row or in the rightmost column, or on
the diagonal), nor any cell of C contains a multiple element, nor C itself
contains a cycle.

The number of unsaturated components is denoted by u and is typically
much smaller than e 6 n.

In [16], Mitas characterizes realizable bump sequences as follows.

Theorem 4.1.2. For a bump sequence T to be realizable it suffices that
each unsaturated component C satisfies one of two properties:

1) (P1) C contains a vertex in a column or in a row which is omitted
by T .

2) (P2) C contains an element [j, j+q] such that the columns j, . . . , j+
q − 1 and the rows j + 1, . . . , j + q are omitted by T .

Theorem 4.1.2 motivates the following definition.

Definition 4.1.3. In the graph of unsaturated components GU (P ) vertices
correspond to unsaturated components of GI(P ). An edge joins vC and vD

if component C contains a vertex in column i and component D contains
a vertex in row i or row i+ 1.

Then, the properties P1 and P2 of bump sequences are mapped to edges
and certain odd cycles (called valid cycles) of GU (P ). With each edge
and with each valid cycle there is an associated set of pairs (coli, rowi) or
(coli, rowi+1), which when removed from a bump sequence result in (P1)
or (P2) being satisfied by the corresponding unsaturated components.
In this way the jump number problem is reduced to a subgraph packing
problem which is to find an optimal packing of vertex-disjoint edges and
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valid cycles. A packing involving v vertices and c cycles yields a bump
sequence with u− v+c

2 lost bumps, so v + c is to be maximized. We refer
the reader to the article of Mitas [16] and to a recent work of the first
named author [13,14] for a detailed explanation of this reduction.

The following result is a corollary from the previous work of Mitas
concerning approximation of the jump number.

Corollary 4.1.4. The jump number of an interval order P can be com-
puted in time O(2n · poly(n)).

Proof. By Mitas, for an optimal bump sequence there is an optimal
packing with respect to v+c

2 . It can be seen that the number of valid
cycles is bounded by e 6 n. Hence, it suffices to enumerate all packings of
vertex-disjoint valid cycles, and supplement each such packing H with a
maximum matching M on GU (P )\H. From all candidate packings H+M
we choose the one maximizing v+c

2 .

Remark 4.1.5. Corollary 4.1.4 is an alternative proof of a more general
fact, that the jump number can be computed in time dominated by 2n for
an arbitrary poset. Indeed, with any P one associates an instance of the
Traveling Salesman Problem, in which vertices correspond to the points
of P , and the distances (travel costs) are as follows:

• if p <P q then cpq = 0,

• if p 6<P q then cpq = 1,

• otherwise cpq =∞.
One more vertex d is added such that distances from d to the minimal
elements are 0 and distances from the maximal elements to d are 0.
Then, for every linear extension L there is a corresponding Hamiltonian
cycle from d to d. Total cost of each such cycle is equal to sL(P ) and
other permutations contain a connection of cost ∞. Hence, a dynamic
programming algorithm of Held and Karp [9] for TSP can be used to
compute s(P ) in time complexity O(2n · poly(n)).

Nonetheless, in our experiments it is beneficial to apply the algorithm
described in the proof of Corollary 4.1.4. In practice, due to typical struc-
ture of arising graphs, by incorporating simple heuristics, this algorithm
is of satisfactory speed. There is often a limited number of valid cycles
in GU (P ). Moreover, they usually overlap, so that an exhaustive search
algorithm may avoid many subsets of cycles, which have at least one
common vertex. Thus, the jump number can be computed in reasonable
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Figure 4. An interval order in canonical representation

time even for interval orders P having several hundred elements (i.e.,
within 10 seconds).

Example 4.1.6. An interval order in Figure 4 consists of 32 elements,
with graph of intervals forming 10 components, of which 8 are unsaturated.
Hence, its graph of unsaturated components (defined above) has 8 vertices,
and there are three valid cycles: one pentagon, and two triangles. An
optimal packing is composed of the triangle {{9, 22, 27}, {13, 21, 28},
{19, 20, 23, 24, 26}} and edges {{12}, {15, 16}}, {{10, 11}, {5, 6, 7, 8}}.
Corresponding bump sequence is visualised by arrows above the table,
denoting successive bumps of the optimal linear extension.

Random interval orders

Our first experiment was to verify the quality of solutions generated by
the proposed tabu search procedure on random interval orders. For each
pair (n, k), n ∈ {100, 150, 200}, k ∈ {10, 20, . . . , n

2 } a hundred of interval
orders were randomized, consisting of n elements and containing k dummy
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arcs in their arc diagrams. TS-OptimizeJumpNumber was started for every
such instance, with a limit of iterations equal to n. The algorithm was
aborted upon finding an optimal solution (known a priori by Corollary
4.1.4). Every time, an optimal linear extension has been found. Amongst
100-element posets it took at worst 45 iterations (10 seconds) for an
instance containing 40 dummies. Amongst 200-element posets the worst
found case required 42 iterations (47 seconds) and contained 60 dummies.
On average, optimum was found after 20 iterations.

Hard interval orders

In our previous research concerning approximation of the jump number
on interval orders [12], a vast amount of posets were recognized, which re-
sult in suboptimality of solutions generated by formerly known algorithms.
We use them to benchmark approximation algorithms of Felsner [5], Sysło
[25], and Mitas [16]. Consequently, we use them now to benchmark the
tabu search procedure proposed in Section 3. For example, the poset in
Figure 2 contains three semi-strongly greedy paths. It is unknown which
of them should be chosen in order to reach an optimal linear extension.
If many similar posets are joined by series compositions, then there are
very many decision points in a process of a greedy algorithm.

In our second experiment those hard interval orders were taken on
100, 150 and 200 elements. Samples of 10 results for each cardinality n are
reported in Tables 1, 2, 3. Each entry corresponds to one input instance P ,
and contains: the number of dummy arcs in P , its jump number s(P ), the
sequence of approximate solutions generated by TS-OptimizeJumpNumber,
the number of iterations, the running time in seconds, and the error
sAP X(P )−s(P )

s(P ) of the best found linear extension. If n iterations did not
suffice to find the optimum, the time of last improvement in the tabu
search process is also reported.

Observation 4.1.7. The proposed tabu search algorithm, applied to
n-element interval orders, generates linear extensions with no more jumps
than 105% of optimum, in n iterations.

4.2. Two-dimensional posets

The complexity status of the jump number problem on 2D posets
is unsettled. Even though it has not been classified as NP-hard, we are
attempting to solve the following Problem 4.2.1.
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d.a. s(P ) sAP X(P ) iterations time error

P1 28 22 30 . . . 22 32 7 s 0.0000
P2 32 30 39 . . . 30 48 24 s 0.0000
P3 29 24 29 . . . 24 89 25 s 0.0000
P4 32 26 33 . . . 26 75 19 s 0.0000
P5 28 21 25 . . . 21 18 7 s 0.0000
P6 26 22 26 . . . 22 20 6 s 0.0000
P7 31 28 32 . . . 28 26 10 s 0.0000
P8 32 26 34 . . . 26 17 8 s 0.0000
P9 35 29 35 . . . 30 100 (36) 17 s (8 s) 0.0345
P10 37 31 36 . . . 31 59 38 s 0.0000

Table 1. Performance of tabu search on 100-element interval orders

d.a. s(P ) sAP X(P ) iterations time error

P1 34 30 36 . . . 30 47 19 s 0.0000
P2 46 32 39 . . . 32 14 19 s 0.0000
P3 45 34 42 . . . 35 150 (26) 81 s (18 s) 0.0294
P4 50 44 55 . . . 46 150 (90) 123 s (85 s) 0.0455
P5 37 32 39 . . . 32 36 17 s 0.0000
P6 51 42 52 . . . 43 150 (27) 35 s 0.0238
P7 38 36 45 . . . 36 36 52 s 0.0000
P8 42 37 45 . . . 37 52 66 s 0.0000
P9 45 35 42 . . . 35 39 20 s 0.0000
P10 43 37 42 . . . 38 150 (29) 143 s (31 s) 0.0270

Table 2. Performance of tabu search on 150-element interval orders

d.a. s(P ) sAP X(P ) iterations time (s) error

P1 50 45 52 . . . 46 200 (164) 380 (336) 0.0222
P2 54 50 61 . . . 52 200 (36) 352 (101) 0.0400
P3 57 49 61 . . . 51 200 (13) 258 (40) 0.0408
P4 54 49 62 . . . 51 200 (158) 415 (362) 0.0408
P5 56 50 62 . . . 52 200 (16) 306 (43) 0.0400
P6 56 48 57 . . . 49 200 (126) 328 (228) 0.0208
P7 63 49 57 . . . 50 200 (66) 327 (132) 0.0204
P8 54 48 54 . . . 50 200 (6) 160 (10) 0.0417
P9 54 49 59 . . . 50 200 (73) 235 (109) 0.0204
P10 65 53 64 . . . 54 200 (50) 413 (144) 0.0189

Table 3. Performance of tabu search on 200-element interval orders
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Problem 4.2.1. Give an approximation algorithm for the jump number
problem on two-dimensional posets.

For this purpose it is useful to analyze the performance of general-
purpose algorithms on 2D orders. For n > 50 we usually fail to compute
s(P ) exactly in reasonable time. Hence, we compare each tabu search
result with a lower bound on the s(P ), inferred from the results of Ceroi.

The bump number of two-dimensional posets

As observed by Ceroi [4], for two-dimensional posets the jump number
can be interpreted as the problem of finding a maximum weight indepen-
dent set of a family of axis-parallel rectangles corresponding to certain
chains of P . Let P be a two-dimensional poset with realizer {L1, L2}.
With p ∈ P we associate a point (x, y) ∈ R

2 such that x is the position
of p in L1 and y is the position of p in L2. Then, each chain of P is
easily seen as a rectangle in R

2. Linear extensions are formed only from
chains C which are convex, i.e., ∀p <P q <P r ∈ P , if p ∈ C and r ∈ C
then q ∈ C. If by R(P ) = (VR, ER) we denote the graph of rectangle
intersections, in which a weight for each vertex v ↔ Cv is equal to its
bumps, i.e., w(v) = |Cv| − 1, then we have the following result.

Lemma 4.2.2 (Ceroi [4]). The maximum bump number b(P ) is equal to
the maximum weight of an independent set in R(P ).

Hence, to calculate b(P ) it suffices to solve an integer linear program
for maximum weight independent set (MWIS), max

∑
v w(v) · x(v) s.t.

x(v) ∈ {0, 1} for each v ∈ VR, and x(u) + x(v) 6 1 for each (u, v) ∈
ER. However, |VR| is usually greater than |P | and exact computation of
MWIS quickly becomes infeasible. Therefore, we only get an upper bound
bUB(P ) > b(P ) by solving an LP-relaxation of this formulation, i.e., with
0 6 x(v) 6 1 (and so a lower bound sLB(P ) = ⌈n− 1− bUB(P )⌉ for the
jump number).

Random two-dimensional posets

In the first experiment concerning two-dimensional posets n was set to
30. For 30-element posets optimal solution can be computed by OptLinExt.
On larger instances we have to resort to the LP-relaxation which provides
an upper bound for b(P ).

Tens of random 30-element two-dimensional orders were generated
containing a varied number of dummy arcs (from 10 to 50). First, s(P )
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b(P ) 16 17 18 17 16
bUB(P ) 17.25 18.66 19.0 17.5 17.5

b(P ) 17 19 18 16 17
bUB(P ) 18.33 19.75 19.88 17.33 18.11

Table 4. Discrepancy between the bump number and its LP relaxation, n = 30

d.a. |VR| bUB(P ) sLB(P ) sAP X(P ) error

P1 84 341 41.5 18 23 . . . 19 0.0556
P2 81 339 39.5 20 25 . . . 22 0.1000
P3 74 375 38.5 21 24 . . . 22 0.0476
P4 66 349 41.5 18 23 . . . 20 0.1111
P5 100 337 40.75 19 22 . . . 19 0.0000
P6 90 297 39.125 20 26 . . . 23 0.1500

Table 5. Performance of tabu search on 60-element 2D posets

was computed. Then, the tabu search procedure was started with a limit
of n iterations. Optimum was found by TS-OptimizeJumpNumber in all
cases beside one poset with 50 dummies, for which a linear extension was
generated having 12 jumps instead of 11. On all inputs, the algorithm
required at most 21 iterations and no more than 2 seconds.

By this occasion, b(P ) was additionally compared with the linear
programming relaxation bUB(P ) of the equivalent MWIS problem. Some
typical discrepancies between these values are shown in Table 4.2. The
number of vertices in R(P ), i.e., the number of convex chains in P , varied
from 96 to 138.

In the next experiment, 150 posets were generated with n = 60. This
time, the approximated number of jumps was compared only with the
lower bound obtained via an LP relaxation of MWIS on R(P ), that is,
sLB(P ) = ⌈n− 1− bUB(P )⌉ . The results for a sample of 6 posets are
reported in Table 5.

An average error of sAP X(P ), when compared against sLB(P ), was
0.12. In the worst spotted case, it was 0.29. The number of dummy arcs
in these posets ranged from 60 to 100. The number of vertices in R(P )
ranged from 290 to 403. The running time was always below 12 seconds.

Finally, 30 two-dimensional posets with n = 90 were taken. The error
of sAP X obtained with n iterations of our algorithm was on average 0.15
and at most 0.29. The time of optimization was always below 45 seconds
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d.a. |VR| bUB(P ) sLB(P ) sAP X(P ) error

P1 166 593 63.57 26 35 . . . 29 0.1154
P2 150 566 62.44 27 33 . . . 30 0.1111
P3 158 570 60.96 29 38 . . . 31 0.0690
P4 167 599 61.58 28 39 . . . 36 0.2857
P5 163 631 63.00 26 33 . . . 29 0.1154
P6 173 557 60.17 29 39 . . . 34 0.1724

Table 6. Performance of tabu search on 90-element 2D posets

(it took much longer to compute the lower bound sLB(P ) with linear
programming). 6 representative cases are reported in Table 6.

Observation 4.2.3. The proposed tabu search algorithm, applied to
n-element 2D posets, generates linear extensions with no more jumps
than 130% of optimum, in n iterations.

The parameters of the tabu search in all the benchmarks were set as
follows: TabuSize = 10, CheckedNeighbours = 7, MaxDummies = 15.
These values have been established experimentally as a good compromise
between the running time and convergence of the algorithm.

The running time of our tabu search algorithm could be improved by
incorporating more involved methods to rebuild an arc diagram in every
step. For instance, it was observed in [25] that in the case of interval
orders, an arc diagram can be generated with Algorithm 5. This is much
faster than Algorithm 1. We have tried this construction and it turned
out that the running times reported in Section 4.1 would decrease by a
factor of 3.

All the experiments have been performed on a 64-bit computer with
Intel® Core™ i5-2500K CPU clocked at 3.30 GHz, and 24 GB of RAM.
The algorithms have been implemented in the C# language for the .NET
Framework 4. For linear programming, the LPSolve function from the
Optimization package of Maple™ was employed.

4.3. An approximation ratio for two-dimensional posets

A way to measure the quality of approximation algorithms is to assess
their approximation ratio.

Definition 4.3.1. An algorithm A is an ǫ-approximation algorithm
(with ǫ > 1) for a problem P if it runs in time polynomial in the input
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size and always generates a solution of value APX > OPT
ǫ when P is a

maximization problem, or of cost APX 6 ǫOPT when P is a minimization
problem.

We now look again at the jump number problem on 2D orders via
the Ceroi reduction, described in Lemma 4.2.2 of Section 4.2. The bump
maximization problem can be solved by computing a maximum weight
independent set of rectangles in R(P ) = (VR, ER). Some approximation
algorithms are known for this problem.

Theorem 4.3.2 (Agarwal, van Kreveld, Suri [1]). There exists a log |V |-
approximation algorithm for the maximum weight independent set problem
on intersection graphs of rectangles.

The original paper of Agarwal et al. focuses on maximum independent
set problem, but their algorithm extends to the weighted variant in a
straightforward way, see [11, pp. 136–140]. All logarithms are in base 2.

So this implies an approximation of the bump number. Can this result
be used to approximate the jump number, too? We claim that the answer
is positive.

Theorem 4.3.3. There exists an (n/ log logn)-approximation algorithm
for the jump number of two-dimensional posets.

In the proof, we use the following result.

Theorem 4.3.4 (McCartin [15]). There exists an algorithm to decide
for any poset P whether s(P ) 6 h, running in time O(h2h!n).

Proof of Theorem 4.3.3. The algorithm computes an approximate bump
number bA(P ) > b(P )

log |V | , where |V | is the number of vertices in G(R). We
obtain an approximate jump number sA(P ) = n − 1 − bA(P ), so the
approximation ratio is

sA(P )
s(P )

6
n− 1− b(P )

log |V |
n− 1− b(P )

.

We verify when this ratio is worse than n
log log n :

n− 1− b(P )
log |V |

n− 1− b(P )
>

n

log logn
,

log logn · (n− 1−
b(P )

log |V |
) > n · s(P ),
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n · s(P ) < (n− 1) · log logn−
log logn · b(P )

log |V |
< n · log logn,

s(P ) < log logn.

When the jump number is very small, i.e., s(P ) < log logn, the algo-
rithm of Agarwal et al. [1] does not provide the claimed approximation of
s(P ), but in such cases we may compute the jump number to optimality
by the McCartin algorithm [15] in polynomial time, since one quickly
verifies that (log logn)! < n.

5. Conclusions and future work

In this paper a new tabu search algorithm for the jump number
problem has been proposed and benchmarked. There are some remarks
concerning the approximation, exact computation and hardness of the
problem.

The results of our algorithm on interval orders have been compared
with optimal values. The experiments reveal that in relatively short time
linear extensions can be obtained with no more jumps than 105% of s(P ).
It is easy to spot interval orders for which a 50% suboptimal semi-strongly
greedy linear extension exists [12]. Hence, it is definitely worth to apply
tabu search to improve the quality of generated solutions.

Previously, no approximation algorithms have been given for the class
of two-dimensional posets. Our work is an attempt to fulfill this demand.
In comparison with a lower bound on the jump number, linear extensions
generated by our tabu search procedure turn out to be at most 30%
suboptimal. Since the LP relaxation is usually inexact, the real error is
probably lower. We have proved by other techniques that there is an
(n/ log logn)-approximation algorithm for the jump number problem on
two-dimensional posets We hypothesize that even stronger approximation
ratio could be proved for this class, perhaps by a detailed analysis of the
semi-strongly greedy algorithm. Addressing this questions is our main
objective in the future work. More precisely, it is conceivable that such
an algorithm may be based on the rectangle intersection MWIS lower
bound.

We have also empirically verified the number of all linear extensions
generated by the exact algorithm OptLinExt of Sysło. It turns out that
their number is far from the theoretical bound of k!. Considering that
we have proved, based on the results of Mitas, that the complexity of
computing s(P ) on interval orders is dominated by 2n, and is lower in
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practice, we believe that an estimation of the running time of OptLinExt

can be improved in this class. Another question for further research is,
whether or not the time complexity bound of this algorithm can be lowered
on arbitrary posets.

The complexity status of computing s(P ) on two dimensional orders
is open. Our experiments show that the space of semi-strongly greedy
linear extensions is explicitly greater than in the case of interval orders.
Hence, from this point of view, the class of two dimensional posets seems
harder than interval orders for the jump number problem.

References

[1] P.K. Agarwal, M. van Kreveld, S. Suri, Label placement by maximum independent
set in rectangles, Comput. Geom. 11 (1998), 209–218.

[2] A. Arnim, C. Higuera, Computing the jump number on semi-orders is polynomial,
Discrete Appl. Math. 51, 219–232 (1994).

[3] V. Bouchitté, M. Habib, NP-completeness properties about linear extensions, Order
4 (1987), 143–154.

[4] S. Ceroi, A weighted version of the jump number problem on two-dimensional
orders is NP-complete, Order 20 (2003), 1–11.

[5] S. Felsner, A 3/2-approximation algorithm for the jump number of interval orders,
Order 6 (1990), 325–334.

[6] P.C. Fishburn, Interval orders and interval graphs. A study of partially ordered
sets, Wiley, New York, 1985.

[7] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.

[8] M. Habib, Comparability invariants, in: M. Pouzet, D. Richard, ed., Orders: De-
scription and Roles, Annals of Discrete Mathematics 23 (1984), pp. 371–386.

[9] M. Held, R.M. Karp, A dynamic programming approach to sequencing problems, J.
Soc. Ind. Appl. Math. 10 (1962), 196–210.

[10] C. Higuera, L. Nourine, Drawing and encoding two-dimensional posets, Theor.
Comput. Sci. 175 (1997), 293–308.

[11] C. Iturriaga, Map labeling problems, PhD Thesis, University of Waterloo, 1999.

[12] P. Krysztowiak, M.M. Sysło, An experimental study of approximation algorithms
for the jump number problem on interval orders, Discrete Appl. Math., submitted
(2012).

[13] P. Krysztowiak, An improved approximation ratio for the jump number problem
on interval orders, Theor. Comput. Sci 513 (2013), 77–84.

[14] P. Krysztowiak, Improved approximation algorithm for the jump number of interval
orders, Electron. Notes Discrete Math. 40 (2013), 193–198.

[15] C. McCartin, An improved algorithm for the jump number problem, Inform. Process.
Lett. 79 (2001), 87–92.

[16] J. Mitas, Tackling the jump number of interval orders, Order 8 (1991), 115–132.



114 A tabu search approach.. .

[17] A. Ngom, Genetic algorithm for the jump number scheduling problem, Order 15

(1998), 59–73.

[18] W.R. Pulleyblank, On minimizing setups in precedence-constrained scheduling,
Report No. 81185 – OR (unpublished), May 1981.

[19] I. Rival, Optimal linear extensions by interchanging chains, Proc. Am. Math. Soc.
89 (1983), 387–394.

[20] J. Spinrad, J. Valdes, Recognition and isomorphism of two dimensional partial
orders, Automata, Languages and Programming, LNCS 154 (1983), 676–686.

[21] M.M. Sysło, A graph-theoretic approach to the jump-number problem, in: I. Rival,
ed., Graphs and Orders, D. Reidel, Dodrecht 1985, pp. 185–215.

[22] M.M. Sysło, Minimizing the jump number for partially ordered sets: a graph-
theoretic approach, Order 1 (1984), 7–19.

[23] M.M. Sysło, Minimizing the jump number for partially-ordered sets: a graph-
theoretic approach, II, Discrete Math. 63 (1987), 279–295.

[24] M.M. Sysło, An algorithm for solving the jump number problem, Discrete Math.
72 (1988), 337–346.

[25] M.M. Sysło, The jump number problem on interval orders: A 3/2 approximation
algorithm, Discrete Math. 144 (1995), 119–130.

[26] M.H. El-Zahar, J.H. Schmerl, On the size of jump-critical ordered sets, Order 1

(1984), 3–5.

[27] M.H. El-Zahar, I. Rival, Examples of jump-critical ordered sets, SIAM J. Algebr.
Discrete Meth. 6 (1985), 713–720.

[28] M.H. El-Zahar, On jump-critical posets with jump-number equal to width, Order
17 (2000), 93–101.

Contact information

P. Krysztowiak,
M. M. Sysło

Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland
E-Mail(s): pk@mat.umk.pl,

syslo@mat.umk.pl

Received by the editors: 29.11.2013
and in final form 29.11.2013.



Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 20 (2015). Number 1, pp. 115–125

© Journal “Algebra and Discrete Mathematics”

Serial group rings of finite groups.
General linear and close groups

Andrei Kukharev and Gena Puninski

Communicated by V. V. Kirichenko

Abstract. For a given p, we determine when the p-modular
group ring of a group from GL(n, q), SL(n, q) and PSL(n, q)-series
is serial.

Introduction

There is a recent progress in classifying finite groups G whose group
ring FG over a modular field F is serial. It is shown in [15] that the
crucial point in this description is making a list of simple finite groups
(and fields of finite characteristics) with this property.

For instance in [14] such a classification is given for symmetric and
alternating groups; and [15] provides a list of sporadic simple groups and
simple Suzuki groups with this property. Furthermore the first author
described in [12] groups in the PSL(2, q)-series whose modular group rings
are serial.

In this paper we will continue this line of research by including into
considerations all projective special linear groups PSL(n, q). Despite these
groups are the main target of this paper, we have to make a bypass
by considering general linear groups GL(n, q), and also special linear

The authors are grateful to Alexandre Zalesski for a helpful discussion. The research
of the first author was supported by BRFFI grant F15RM-025.

2010 MSC: 20C05,20G40.
Key words and phrases: serial ring, group ring, general linear group, special

linear group, projective special linear group.



116 Serial group rings of finite groups

groups SL(n, q). The reason for such a detour is that for general linear
groups the structure of Brauer trees of blocks is best known, due to results
of Fong and Srinivasan [8,9]. Namely it is shown there that the Brauer
tree of any block of GL(n, q) is an interval whose exceptional vertex is
located at its end.

From general theory it is known (see [1, Sect. 5]) that a block B
of a group algebra is serial if and only if its Brauer tree is a star with
the exceptional vertex at the center. Thus in the case of the serial p-
modular group ring of GL(n, q) we obtain that all Brauer trees of blocks
are intervals with at most two edges and, if a tree has two edges, then the
exceptional vertex should have multiplicity one. Furthermore the number
of edges in a particular block can be calculated using centralizers and
normalizers of defect subgroups. There are rather few cases which are left
to analyze, which is achieved in this paper without difficulty.

In most cases descending from GL(n, q) to SL(n, q) and then to
PSL(n, q) is a straightforward normal subgroup business, the only diffi-
culty is when p divides q − 1. In this case more groups with serial group
rings occur, and our analysis is based on [12] or directly by looking at
character tables.

There is no doubt that a similar approach applies to all classical groups
but, because a myriad of details should be taken into account, we will
postpone this to a future paper.

1. Preliminaries

Recall that a module M over a ring R is said to be uniserial, if all
submodules of M are linearly ordered by inclusion; and M is serial if
it is a direct sum of uniserial modules. Furthermore R is called a serial
ring, if R is serial as a right and left module over itself. It is known
(see [2, Sect. 32]) that R is serial if and only if there exists a collection
e1, . . . , en of orthogonal idempotents such that each right module eiR
is serial, and the same is true for each left module Rej . For a general
theory of serial rings the reader is referred to [19] or recent [4]. Within
the class of artinian algebras over a field, the serial rings are also known
as Nakayma algebras - see [3, Sect. 4.2].

Let G be a finite group and let F be a field of finite characteristic
p. If p does not divide the order of G then, by Maschke’s theorem, the
ring FG is semisimple artinian, hence serial. In this paper we will always
assume that p divides |G|.
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Let P denote a p-Sylow subgroup of G. Since (see [2, Theorem 32.3])
artinian serial rings are of finite representation type, it follows from
Higman [10] that, if FG is serial, then P is a cyclic group. This gives a
necessary condition for seriality, which is not always sufficient: for instance
(see [1, p. 123]) the group SL(2, 5) for p = 5 gives a counterexample.

Furthermore, the seriality of the group ring FG depends on charac-
teristic of F only [6,16]. Thus in this paper (to ease references) we will
always assume that F is algebraically closed. For instance, it is known
(see [18,20] or [13]) that a p-modular group ring of a p-solvable group is
serial.

We say that the Brauer tree of a block is a star if it has no path of
length more than 2. Here is a typical shape of a star with the exceptional
vertex in the center:

◦ ◦

◦ • ◦

◦ ◦

A useful criterion for checking seriality is given by the following.

Fact 1 (see [1, Sect. 5] or [7, Corollary VII.2.22]). A modular group ring
R = FG is serial if and only if for each block B of R its Brauer tree is a
star whose exceptional vertex (if any) is located in the center.

Thus a satisfactory description of groups with serial group rings
depends on the supply of information on Brauer trees of blocks, which is
not always readily available.

In some cases the seriality can be lifted from normal subgroups.
Suppose that B is a block of the group algebra FG; H is a normal
subgroup of G and b is a block of FH. A definition of the notion that B
covers b can be found in [1, Sect. 14]. For instance if H contains a p-Sylow
subgroup of B, then the principal block B0 of G covers the principal block
b0 of H.

Fact 2 (see [7, Theorem 6.2.7]). 1) Suppose that a block B of G covers
a block b of H where H contains a defect group of B. Then B is serial if
and only if b is serial.

2) Suppose that F is a field of characteristic p and let H be a normal
subgroup of G whose index |G/H| is coprime to p. Then the ring FG is
serial if and only if FH is serial.
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Suppose that B is a block of a modular group ring FG with a cyclic
defect group D and let e denote the number of edges in the Brauer tree of
B. For instance the defect group of the principal block B0 equals P . By
CG(D) we denote the centralizer of D in G; and NG(D) is the normalizer
of D.

Fact 3 (see [1, Sect. 5, Theorem 1]). The number of edges e in the Brauer
tree of a block B divides the order of the factor group NG(D)/CG(D),
hence divides p−1. Furthermore the multiplicity of the exceptional vertex
equals (|D| − 1)/e.

For the principal block B0 the number of edges e equals to the order
|NG(P )/CG(P )|.

We will need one more technical result. Recall that Op′ denotes the
largest normal subgroup ofG consisting of elements whose order is coprime
to p. We say that an element g ∈ G is in the kernel of a block B if g acts
trivially on every indecomposable projective module in B.

Fact 4 (see [7, Lemma IV.4.12]). The kernel of the principal block of G
equals Op′ .

2. General linear group

In this section we will describe serial rings of general linear groups
GL(n, q) over finite fields with q elements.

Theorem 1. Let G = GL(n, q), n > 2 and let F be a field of characteristic
p dividing the order of G. Then the group ring FG is serial if and only if
one of the following holds.

1) n = 2 and p = q equal 2 or 3.
2) n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

For instance GL(3, 2) ∼= PSL(2, 7) and, for any field of characteristic
3, the group ring of this group is serial.

Recall that the order of GL(n, q) equals qn(n−1)/2 · (q−1) · . . . · (qn−1).
Thus if p divides the order of G, then either p | q or p divides qk − 1 for
some k = 1, . . . , n.

We will divide the proof of Theorem 1 in two parts. The case of the
defining characteristic p | q is easy.

Lemma 1. Let q = pr, G = GL(n, q) and F is a field of characteristic p.
The group ring FG is serial if and only if n = 2, r = 1 and p equals 2 or 3.
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Proof. If n = 3 then the matrices
(

1 1 0
0 1 0
0 0 1

)
and

(
1 0 0
0 1 0
0 1 1

)
generate a subgroup

Cp × Cp, hence P is not cyclic; and we argue similarly for n > 4.
Thus it remains to consider the case n = 2.
If r > 2, it is easily checked that P is not cyclic, hence we may assume

that p = q. Because p− 1, the index of SL(2, p) in GL(2, p), is coprime to
p, it follows from Fact 2 that the seriality of group rings of GL(2, p) and
SL(2, p) is equivalent.

If p > 5 we conclude from [1, p. 124] that the Brauer tree of the
principal block B0 of the group H = SL(2, p) is an interval with at least
3 edges, hence the ring FH (and then FG) is not serial. It remains to
consider the case p = 2, 3.

If p = 2, then G = GL(2, 2) ∼= S3 is 2-nilpotent, hence the ring FG is
serial.

Similarly for p = 3 the group GL(2, 3) has order 48 and is 3-solvable,
hence FG is serial.

Thus we may assume that p does not divide q. Let d be the order of
q modulo p, i.e. the least d such that p | qd − 1. By the assumption we
have 1 6 d 6 n, and clearly d | p− 1.

We will show that d cannot be very small (otherwise the p-Sylow
subgroup P of G is not cyclic) and cannot be very large (otherwise the
Brauer tree of the principal block has too many edges).

The description of normalizers and centralizers of p-Sylow subgroups
of GL(n, q) is well known (see [21,22]). We will add some explanations to
ease reader’s task.

Lemma 2. 1) P is cyclic if and only if n < 2d.

2) If n < 2d then the factor group NG(P )/CG(P ) has order d.

Proof. Consider the Galois field Fqd as a vector space (of dimension d)
over Fq with a basis v1, . . . , vd. Let z be nonzero element of Fqd . Then
zvi =

∑
j zijvj for some zij ∈ Fq. The mapping z 7→ (zij) defines an

embedding of the multiplicative group of Fqd into GL(d, q). The image of
a generator of F∗

qd gives us a matrix x ∈ GL(d, q) of order qd − 1.

Write qd − 1 = pa · s such that p and s are coprime, hence y = xs

generates the p-Sylow subgroup P of order pa.
1) If n > 2d, then one could insert in GL(n, q) two copies of GL(d, q)

as 1 through d, and d + 1 through 2d diagonal blocks. It follows easily
that P is not cyclic.
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On the other hand, if n < 2d then, comparing the sizes, we see that
P can be chosen inside GL(d, q) embedded in the upper left 1 through d
corner of GL(n, q), and therefore is generated by y.

2) It is known (see [22]) that the centralizer of P is generated by x,
hence has order qd− 1. Furthermore (see [21, Lemma 4.6]) the normalizer
of P is generated over CG(P ) by an element of order d.

For our purposes it suffices to find an element which normalizes P
and has order d modulo the centralizer. This can be achieved as follows.

Suppose that the action of x on the basis is given by a matrix A = (aij),
aij ∈ Fq: xvi =

∑
j aijvj . Applying the Frobenius morphism x 7→ xq on

Fqd we obtain xqvq
i =

∑
j aijv

q
j . It follows that the action of xq in the

basis vq
i is given by the same matrix A.

Because in the original basis this action is given by Aq, we conclude
that UAU−1 = Aq, where U is the transition (from vq

i to vi) matrix. Then
the conjugation by U defines an automorphism of order d on the subgroup
generated by x. It follows that this action induces on P an automorphism
ψ of the same order.

Namely, let ψ(y) = yq and suppose that yqk
= y for some k. Plugging

y = xs we obtain x(qk−1)s = 1, therefore qd−1 = pa ·s divides (qk−1)s. It
follows that pa divides qk−1, and hence d divides k, by the choice of d.

Now we complete the proof of Theorem 1 by showing the following.

Proposition 1. Let G = GL(n, q) and F is a field of characteristic p
dividing the order of G but not dividing q. Then the group ring FG is
serial if and only if n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

Proof. We may assume that the p-Sylow subgroup P of G is cyclic. By
the item 1) of Lemma 2 it follows that n/2 < d 6 n, where d is the order
of q modulo p.

Suppose first that d > 2. If p = 2 it follows (since p does not divide q)
that q is odd, therefore p divides q − 1 and d = 1, a contradiction. Thus
we may assume that p > 2.

By Fact 3 and the item 2) of Lemma 2 the Brauer tree of the principal
block B0 of G has e = d edges. Furthermore [8, Prop. 4] implies that this
tree is an interval. Since d > 2, this block is not serial.

Thus we are left with the case d = 2, in particular p divides q2−1. The
definition of d yields that p does not divide q − 1 and hence divides q + 1.
Again the Brauer tree of the principal block of G is an interval with
e = 2 edges, whose exceptional vertex is located at its end. By Fact 3 the
multiplicity of this vertex is (|P | − 1)/2. If |P | > 3 this bock is not serial.
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Thus we may assume that |P | = 3, which clearly yields p = 3 and
q ≡ 2, 5 (mod 9) (otherwise 9 divides the order of P ). It follows that the
principal block is serial.

We prove that, in this case, any non-principal block B of G is also
serial. Namely, by Fact 3 the number of edges, e, of this block divides
p − 1 = 2. If e = 1 then this block contains only one Brauer character,
hence serial. If e = 2 then the multiplicity of the exceptional vertex equals
(3− 1)/2 = 1, hence this block is also serial.

Note that in the proof of the implication ⇒ in Theorem 1 we used
only that the principal block B0 of GL(n, q) is serial.

3. Special linear and projective special linear groups

In this section we will consider the seriality of group rings of special
linear groups SL(n, q) and projective special linear groups PSL(n, q). The
answer turns out to be the same for both series; and the proofs go in
parallel.

Recall that SL(n, q) is a normal subgroup of GL(n, q) of index q − 1.
Furthermore PSL(n, q) is obtained from SL(n, q) by factoring out the
center Z whose order equals (n, q− 1). Note also that, except of PSL(2, 2)
and PSL(2, 3), PSL(n, q) is a simple group.

To avoid long sentences we will divide the classification theorem in
two cases: when p divides q − 1 and when it is not. In the former case
the answer is the same as in Theorem 1.

Proposition 2. Let G is one of the groups SL(n, q) or PSL(n, q), n > 2.
Let F be a field of characteristic p such that p does not divide q− 1. Then
the ring FG is serial if and only if one of the following holds.

1) n = 2 and p = q equal 2 or 3.
2) n = 2, 3, p = 3 and q ≡ 2, 5 (mod 9).

Proof. Since p does not divide q − 1, by Fact 2, we conclude that the
seriality of group rings of SL(n, q) and GL(n, q) is equivalent. Applying
Theorem 1 we obtain the desired conclusion for SL(n, q).

Thus we may assume that G = PSL(n, q). If 1) or 2) holds true then
the group ring R of SL(n, q) is serial. Since G is a factor group of this
group, it follows that the group ring of G is a factor ring of R, therefore
is also serial.

Thus we may assume that the group ring of PSL(n, q) is serial and
we need to show that either 1) or 2) holds true.
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By Fact 4 the principal block b0 of SL(n, q) has Z in its kernel, and
therefore coincides with the principal block of PSL(n, q). Furthermore,
because SL(n, q) contains the p-Sylow subgroup of GL(n, q) it follows by
Fact 2 that the principal block B0 of GL(n, q) is serial.

Now the result follows from the proof of Theorem 1 (see a remark at
the end of Section 2).

Now we consider the remaining case p | q − 1. In this case serial rings
occur more often than in the GL-case (cp. Theorem 1).

Proposition 3. Let G be one of the group SL(n, q) or PSL(n, q), n > 2
and let F be a field of characteristic p dividing q − 1. The group ring FG
is serial if and only if n = 2 and p 6= 2.

Proof. If n > 3 then it is easily seen that p-Sylow subgroups of G are not
cyclic. Thus we may assume that n = 2.

If G = PSL(2, q) then FG is serial if and only if p 6= 2 [12].
Thus we may assume that G = SL(2, q). If p = 2 then the group ring

FG is not serial. Indeed, otherwise, being a factor ring of FG, the group
ring of PSL(2, q) would be serial, a contradiction.

It remains to consider the case p > 2 and we have to prove that the
group ring of FG is serial. Observe that, if q is even, then SL(2, q) ∼=
PSL(2, q), hence the ring is serial. Thus we assume that q is odd. In this
case the center Z of SL(2, q) consists of matrices ±I, where I = ( 1 0

0 1 ).
For the remaining part of the proof we need the character table of

G = SL(2, q) — see Table 1.
In the table, 1 6 l 6 (q − 3)/2, 1 6 m 6 (q − 1)/2, ε = (−1)(q−1)/2, ρ

is a primitive (q− 1)-th root of 1, and σ is a primitive (q+ 1)-th root of 1.
Let ν be a generator of the group F

∗
q . Denote γ = ( 1 0

1 1 ), δ = ( 1 0
ν 1 ),

α =
(

ν 0
0 ν−1

)
. So, the order of α is q − 1. The group G contains also

an element β of order q + 1. Moreover, two columns for the classes of
γ′ = −I · γ and δ′ = −I · δ are omitted (to save space in the table). The
values of any irreducible character χ of G on these classes are obtained
by the formulas χ(γ′) = χ(γ)χ(−I)/χ(I) and χ(δ′) = χ(δ)χ(−I)/χ(I).
Since p | q − 1, only the sixth column of the table contain p-singular
elements.

In particular, the cyclic group 〈α〉 contains a generator y of a p-Sylow
subgroup P of G.

It is easy to show (see [5, p. 230]) that CG(y) = 〈α〉 and NG(y) =
〈α,

(
0 1

−1 0

)
〉. Hence |NG(P )/CG(P )| = 2 . In particular, the number of
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Classes I −I γ δ αl βm

Number
of classes

1 1 1 1 q−3
2

q−1
2

Size
of classes

1 1 q2−1
2

q2−1
2 q(q+1) q(q − 1)

1G 1 1 1 1 1 1
ψ q q 0 0 1 −1
χi (i =
1, . . . , q−3

2 )
q+ 1 (−1)i ×

×(q+1)
1 1 ρil +

ρ−il
0

θj(j =
1, . . . , q−1

2 )
q− 1 (−1)j×

×(q−1)
−1 −1 0 −(σjm +

σjm)

ξ1, ξ2
q+1

2
ε(q+1)

2
1±√

εq
2

1∓√
εq

2 (−1)l 0

η1, η2
q−1

2 − ε(q−1)
2

−1±√
εq

2
−1∓√

εq
2 0 (−1)m+1

Table 1. The character table of SL(2, q), q is odd [5, p. 228]

edges in the principal block B0 of G equals 2, furthermore the number of
edges in any block of G divides 2.

Observe that θj , η1 and η2 have value 0 on the class of α. By [17,
Theorem 4.4.14], these characters belong to blocks of defect zero. It follows
that these blocks contain only one irreducible ordinary character, hence
is serial.

Furthermore it is easily checked (using [11, Theorem 2.1.8]) that the
Steinberg character ψ belongs to the principal block B0. Looking at the
values on p-singular elements (and using cross-naught business — see
[11, Chap. 2]) we see that the Brauer tree of B0 is an interval with 2 edges
having 1G and ψ at its ends. Thus if there is an exceptional vertex it
should be located at the center of this interval (in fact certain characters
χi will occupy the center making an exceptional vertex there).

Because each character χi has the largest possible degree, it follows
from [11, Lemma 2.1.22] that such a character cannot occur at the end of
an interval of length 2. Thus the only possibility for such an interval is to
have ξ1 at one end, ξ2 at another end, and some characters χi in between.
But this block is clearly serial.

In fact such a block exists if q ≡ 1 (mod 4); otherwise each non-
principal block contains at most one modular character (i.e. its Brauer
tree has at most one edge).

By this we have established that the group ring of SL(2, q) is serial if
2 6= p | q − 1, hence finished the proof of the proposition.
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Prepositions 2 and 3 completely describe groups of SL(n, q) and
PSL(n, q)-series whose p-modular group rings are serial.
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Abstract. In this paper, we introduce some algebraic struc-
ture associated with groups and lattices. This structure is a semi-
group and it appeared as the result of our new approach to the
fuzzy groups and L-fuzzy groups where L is a lattice. This approach
allows us to employ more convenient language of algebraic structures
instead of currently accepted language of functions.

The purpose of this work is to look with a somewhat different angle
at algebraic structures related to the functions defined on a group. For
every subset M of a set S there exists its characteristic function, that
is the mapping χM : S → {0, 1} such that χM (y) = 1 for all y ∈M and
χM (y) = 0 for all y /∈ M. In many commonly used cases, a subset of
M is identified with its characteristic function. In 1965, L.A. Zadeh [6]
based on his generalization of the characteristic function introduced the
fuzzy mathematics. Thus, a fuzzy set on a set S is a sort of generalized
“characteristics function” on S, for whose “degrees of membership” we
can use more diverse set than simple {yes, no}. In fact, we can consider
the set L of degrees of membership. In the optimization problems, L may
express the degree of optimality of the choice (in S); in the classification
problems, it may express the degree of membership in a pattern class;
in other contexts other terminologies appear. In fuzzy mathematics, a
habitual step was to review the situation when L = [0, 1] is the usual
closed interval of real numbers with its natural order. The following
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interpretation justifies this approach: we can consider a value of the
generalized characteristic function as a probability of the fact that the
given element belongs to the given subset. In this way, the algebraic fuzzy
structures were constructed as follows. With every algebraic structure A, a
corresponding fuzzy structure which characterized by a specific functions
of A on [0, 1] associated with this conventional algebraic structure A, was
connected (see, for example, [4]). For instance, in fuzzy group theory the
objects of study are the functions γ : G→ [0, 1], G is a group, satisfying
the following conditions:

γ(xy) > γ(x) ∧ γ(y) for all x, y ∈ G; and γ(x−1) > γ(x) for every x ∈ G

(see, for example, [5] S 1.2). Some generalizations have appeared immedi-
ately. More concretely, considerations of the function γ : G→ L where L

is a distributive lattice [1] were initiated. The theory of fuzzy groups was
developed quite rapidly. However it was upswing in breadth rather than
depth development. A variety of results obtained there was not planned
properly. Even in the book [5], there were no attempts to systematize
these results. A large array of results on fuzzy groups just has been
collected in this book with no proper arrangement. In the L-fuzzy groups,
regardless of the most common results, there was no serious progress at
all.

Perhaps the key obstacle here is in the interpretation of an algebraic
structure as a function, which is not very convenient most of the time.
Because of that, very often the function γ is interpreted as an all point
function χ(g, γ(g)), g ∈ G. Here χ(g, a) is a function such that χ(g, a)(g) =
a, χ(g, a)(y) = 0 whenever y 6= g. However, in some cases we need to
consider the function γ as an union of all point functions χ(g, a) for
all g ∈ G and a 6 γ(g) (see, for example, [2], [3]). Actually speaking,
the point functions χ(g, a) play here the role of elements, formally the
subfunctions of γ, so that each time it is necessary to implement keep in
mind some special reservations.

In the current article we offer the interpretation of L-fuzzy groups as
sets with operations. With this algebraic approach, the basic concepts
and results of algebraic nature acquire its natural form, and the process of
their appearance becomes more meaningful. We present the basic concepts
of the theory of L-fuzzy groups, as well as the results in the form in which
they are needed to be for our transformation. The resulting structure is
formally different, and therefore the term for it to be used is different. In
the article we are concerned only with the basic concepts, but nevertheless,
our approach will make it possible to see the general structural picture.
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As for the term L-fuzzy group, it seems it does not reflect the essence of
the case, so we will use the term group function. We do not seek maximize
generality, it seems more natural to consider the case, when lattice L is
distributive and finite, although the obtained results can be extended on
the case of an arbitrary complete distributive lattice.

Let L be a lattice and G be a group. To avoid misunderstandings, the
identity element of G is denoted by e. We will consider a set LG of all
functions λ : G→ L. On this set we define the operations ∧ and ∨ by the
following rules: if λ, µ ∈ LG, then put

(λ∧µ)(x) = λ(x)∧µ(x) and (λ∨µ)(x) = λ(x)∨µ(x) for each x ∈ G.

Clearly the operations ∧ and ∨ are commutative and associative,

(λ ∧ (λ ∨ µ))(x) = λ(x) ∧ (λ ∨ µ)(x) = λ(x) ∧ (λ(x) ∨ µ(x)) = λ(x)

and

(λ ∨ (λ ∧ µ))(x) = λ(x) ∨ (λ ∧ µ)(x) = λ(x) ∨ (λ(x) ∧ µ(x)) = λ(x),

so that λ ∧ (λ ∨ µ) = λ and λ ∨ (λ ∧ µ) = λ. Clearly λ ∧ λ = λ and
λ ∨ λ = λ. Hence a set LG is a lattice.

If a, b ∈ L, then a∨b = b is equivalent to a 6 b. Therefore we can define
an order on LG: for λ, µ ∈ LG will put λ 6 µ if and only if λ(x) 6 µ(x)
for each element x ∈ G.

Suppose now that a lattice L is distributive and finite. Being finite, it
has the greatest element m and the least element 0. For every function
f : G → L define Supp(f) as a subset of all elements x ∈ G such that
f(x) 6= 0.

Let Y be a subset of G and a ∈ L. We define the function χ(Y, a) as
follows:

χ(Y, a) =

{
a, if x ∈ Y

0, if x /∈ Y .

If Y = {y}, then instead of χ({y}, a) we will write χ(y, a). The function
χ(y, a) is called the point function or shorter the point. By its definition,
χ(y, a) ∈ LG. Furthermore, let f ∈ LG. If Supp(f) = {g1, . . . , gn} is finite
and f(gj) = aj, 1 6 j 6 n, then clearly f = χ(g1, a1) ∨ . . . ∨ χ(gn, an).

Define now the binary operation ⊙ on LG by the following rule. Let
µ, ν ∈ LG, and x be an arbitrary element of a group G. Consider the
subset of the lattice L

{µ(y) ∧ ν(z)|u, v are the elements of G such that yz = x}.
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Since L is finite, this subset really is finite. Therefore we can define about
its least upper bound. Put

(µ⊙ ν)(x) = ∨y,z∈G,yz=x(µ(y) ∧ ν(z)).

We remark that

(µ⊙ ν)(x) = ∨y∈G(µ(y) ∧ ν(y−1x)) = ∨z∈G(µ(xz−1) ∧ ν(z)).

Consider now some basic properties of this product.

Proposition 1. The following assertions hold:

(i) The operation ⊙ is associative.

(ii) The function χ(e,m) is an identity element of the operation ⊙.

(iii) λ⊙ (µ ∨ ν) = (λ⊙ µ) ∨ (λ⊙ ν) and (µ ∨ ν)⊙ λ = (µ⊙ λ) ∨ (ν ⊙ λ)
for all functions λ, µ, ν ∈ LG.

(iv) If x, y ∈ G, a ∈ L, then (χ(y, a)⊙λ)(x) = a∧λ(y−1x); in particular,
if a = ∨x∈Gλ(x), then ((χ(y, a)⊙ λ)(x) = λ(y−1x).

(v) (λ ⊙ (χ(y, a)))(x) = a ∧ λ(xy−1); in particular, if a = ∨x∈Gλ(x),
then (λ⊙ χ(y, a))(x) = λ(xy−1).

(vi) if x, y, u ∈ G, a, b ∈ L then (χ(y, a) ⊙ χ(u, b))(yu) = a ∧ b and
(χ(y, a) ⊙ χ(u, b))(x) = 0 if x 6= yu. In other words, χ(y, a) ⊙
χ(u, b) = χ(yu, a ∧ b); in particular, χ(y, a)⊙ χ(u, a) = χ(yu, a).

(vii) (χ(x, a)⊙ λ⊙ χ(x−1, a))(y) = a ∧ λ(x−1yx).

Proof. (i) Let λ, µ, ν ∈ LG. Put κ = λ⊙ µ and η = µ⊙ ν. We have

((λ⊙ µ)⊙ ν)(x) = (κ⊙ ν)(x) = ∨y,z∈G,yz=x(κ(y) ∧ ν(z))

= ∨y,z∈G,yz=x(∨u,v∈G,uv=y(λ(u) ∧ µ(v)) ∧ ν(z))

= ∨u,v,z∈G,uvz=x((λ(u) ∧ µ(v)) ∧ ν(z)).

(λ⊙ (µ⊙ ν))(x) = (λ⊙ η)(x) = ∨u,y∈G,uy=x(λ(u) ∧ η(y))

= ∨u,y∈G,uy=x(λ(u) ∧ (∨v,z∈G,vz=y(µ(v) ∧ ν(z))))

= ∨u,v,z∈G,uvz=x(λ(u) ∧ (µ(v) ∧ ν(z))).

Since (λ(u) ∧ µ(v)) ∧ ν(z) = λ(u) ∧ (µ(v) ∧ ν(z)) for all u, v, z ∈ G,

((λ⊙ µ)⊙ ν)(x) = (λ⊙ (µ⊙ ν))(x)
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for each x ∈ G. It implies that (λ⊙ µ)⊙ ν = λ⊙ (µ⊙ ν).
(ii) Let λ ∈ LG and consider the product λ⊙χ(e,m). By its definition,

(χ(e,m))(e) = m and (χ(e,m))(x) = 0 whenever x 6= 1. We have now

λ(x) ∧ (χ(e,m))(e) = λ(x) ∧m = λ(x)

and λ(y) ∧ (χ(e,m))(z) = 0 if z 6= 1,

so that

(λ⊙ χ(e,m))(e) = ∨y,z∈G,yz=1(λ(y) ∧ χ(e,m)(z))

= λ(e) ∧ χ(e,m)(e) = λ(e),

(λ⊙ χ(e,m))(x) = ∨y,z∈G,yz=x(λ(y) ∧ χ(e,m)(z))

= λ(x) ∧ χ(e,m)(e) = λ(x).

Since it is valid for all x ∈ G, λ⊙ χ(e,m) = λ. In a similar way we can
prove that χ(e,m)⊙ λ = λ.

(iii) We have

λ⊙ (µ ∨ ν)(x) = ∨y∈G(λ(y) ∧ ((µ ∨ ν)(y−1x)))

= ∨y∈G(λ(y) ∧ (µ(y−1x) ∨ ν(y−1x)))

= ∨y∈G(λ(y) ∧ µ(y−1x)) ∨ (λ(y) ∧ ν(y−1x))

= (∨y∈G(λ(y) ∧ µ(y−1x))) ∨ (∨y∈G(λ(y) ∧ ν(y−1x)))

= (λ⊙ µ)(x) ∨ (λ⊙ ν)(x)

= ((λ⊙ µ) ∨ (λ⊙ ν))(x).

It proves that
λ⊙ (µ ∨ ν) = (λ⊙ µ) ∨ (λ⊙ ν).

Using similar arguments, we obtain that and

(µ ∨ ν)⊙ λ = (µ⊙ λ) ∨ (ν ⊙ λ).

(iv) Let x be an arbitrary element of G. If z 6= y, then χ(y, a)(z) = 0,
so we have

(χ(y, a)⊙ λ)(x) = ∨z∈G(χ(y, a)(z) ∧ λ(z−1x))

= χ(y, a)(y) ∧ λ(y−1x)) = a ∧ λ(y−1x).

The proof of (v) is similar.
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(vi) If u ∈ G, b ∈ L, then (χ(y, a)⊙ χ(u, b))(x) = a ∧ χ(u, b)(y−1x).
Recall that χ(u, b)(y−1x) = b if y−1x = u or x = yu and χ(u, b)(y−1x) = 0

if y−1x 6= u or x 6= yu. Thus

(χ(y, a)⊙ χ(u, b))(x) =

{
a ∧ b, if x = yu

0, if x 6= yu.

Hence we obtain (vi).
(vi) Using the above arguments we obtain

(χ(x, a)⊙(γ ⊙ χ(x−1, a)))(y)

= ∨u,v,z∈G,uvz=yχ(x, a)(u) ∧ (γ(v) ∧ χ(x−1, a))(z)

= χ(x, a)(x) ∧ γ(x−1yx) ∧ χ(x−1, a)(x−1)

= a ∧ γ(x−1yx) ∧ a = a ∧ γ(x−1yx).

Let G be a group and γ ∈ LG. Then a surjective function γ is said to
be a group function on G if it satisfies the following conditions:

(GF 1) γ(xy) > γ(x) ∧ γ(y) for all x, y ∈ G,

(GF 2) γ(x−1) > γ(x) for every x ∈ G.

Let γ, κ group functions on G. If γ 6 κ, then we will say that γ is a
subgroup function of κ. This fact we will denote γ � κ.

Proposition 2. Let G be a group, L be a finite distributive lattice, γ ∈ LG,
and suppose that γ is a group function on G. Then the following assertions
hold:

(i) γ(x−1) = γ(x) for every x ∈ G (in order words, a function γ is
even).

(ii) γ(xy−1) > γ(x) ∧ γ(y) for all x, y ∈ G.

(iii) γ(xn) > γ(x) for every x ∈ G and every integer n.

(iv) γ(e) > γ(x) for every x ∈ G.

(v) Let λ, κ 6 γ, then λ⊙ κ 6 γ, in particular, γ ⊙ γ 6 γ.

Proof. (i) We have x = (x−1)−1, so (GF 2) implies that γ(x) > γ(x−1),
which together with γ(x−1) > γ(x) gives γ(x) = γ(x−1) for every element
x ∈ G.

(ii) Let x, y be arbitrary elements of G. By (GF 1) γ(xy−1) > γ(x) ∧
γ(y−1), and by (i) γ(y−1) = γ(y), so that γ(xy−1) > γ(x) ∧ γ(y).
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(iii) Let x ∈ G. By (GF 1) γ(x2) = γ(xx) > γ(x)∧γ(y) = γ(x). Using
ordinary induction, we obtain that γ(xn) > γ(x) for every n ∈ N. Suppose
now that n = −k where k ∈ N. Then xn = (x−1)k. By proved above

γ(xn) = γ((x−1)k) > γ(x−1) = γ(x).

(iv) Let x ∈ G. By (GF 1) we have

γ(e) = γ(xx−1) > γ(x) ∧ γ(x−1) = γ(x) ∧ γ(x) = γ(x).

(v) Let x be an arbitrary element of G. The inclusions λ, κ 6 γ imply
λ(y)∧κ(z) 6 γ(y)∧γ(z). Since γ is a group function, γ(y)∧γ(z) 6 γ(yz),
thus

(λ⊙ κ)(x) = ∨y,z∈G,yz=x(γ(y) ∧ κ(z)) 6 ∨y,z∈G,yz=xγ(yz) = γ(x).

Proposition 3 (A criterion of group function). Let G be a group, L be
a finite distributive lattice and γ ∈ LG. Then γ is a group function on G
if and only if the following assertions hold:

(GF 3) χ(x, γ(x))⊙ χ(y, γ(y)) ⊆ γ for all x, y ∈ G.

(GF 4) χ(x−1, γ(x)) ⊆ γ for every x ∈ G.

Proof. Suppose first that γ is a group function. Clearly χ(x, γ(x)) ⊆ γ
and χ(y, γ(y)) ⊆ γ for all elements x, y ∈ G. Using Proposition 2 (v) we
obtain that

χ(x, γ(x))⊙ χ(y, γ(y)) ⊆ γ.

Let x be an arbitrary element of G. We have (χ(x−1, γ(x)))(x−1) =
γ(x). Since γ is a group function, γ(x) 6 γ(x−1). We note that if y 6= x−1,
then (χ(x, γ(x)))(y) = 0, so that (χ(x−1), γ(x)))(y) 6 γ(y) for every
y ∈ G. This means that χ(x−1, γ(x)) ⊆ γ.

Conversely, suppose that γ satisfies both conditions (GF 3) and (GF 4).
Let x, y be arbitrary elements of G. Then (GF 3) shows that χ(x, γ(x))⊙
χ(y, γ(y)) ⊆ γ. By Proposition 1 (vi),

(χ(x, γ(x))⊙ χ(y, γ(y)))(xy) = γ(x) ∧ γ(y).

The inclusion χ(x, γ(x)) ⊙ χ(y, γ(y)) ⊆ γ implies that (χ(x, γ(x)) ⊙
χ(y, γ(y)))(xy) 6 γ(xy), thus we obtain γ(x) ∧ γ(y) 6 γ(xy), and γ
satisfies (GF 1).

Let x ∈ G. Since χ(x−1, γ(x)) ⊆ γ, (χ(x−1, γ(x)))(y) 6 γ(y) for every
y ∈ G. In particular, (χ(x−1, γ(x)))(x−1) = γ(x) 6 γ(x−1), so that γ
satisfies (GF 2).
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Let G be a group and L be a finite distributive lattice. Consider
the Cartesian product A = G× L. Define the operation (multiplication)
on A by the following rule: (u, a)(v, b) = (uv, a ∧ b) for all u, v ∈ G,
a, b ∈ L. This operation is associative because multiplication in G and the
operation ∧ in L are associative. The pair (e,m) is the identity element
for this operation. The obtained above criterion allows us to transform
the definition of the group function in the following.

A nonempty subset Λ of G × L is called a lattice group over L if it
satisfies the following conditions:

(LG 1) if (x, a) ∈ Λ and b 6 a, then (x, b) ∈ Λ;

(LG 2) if (x, a), (y, b) ∈ Λ, then (x, a)(y, b) ∈ Λ;

(LG 3) if (x, a) ∈ Λ, then (x−1, a) ∈ Λ.

For every element x ∈ prG(Λ) put CΛ(x) = {a ∈ L|(x, a) ∈ Λ}.
Observe at once that a lattice group Λ defines a group function on

G. Indeed, for every element x ∈ prG(Λ) the set CΛ(x) is not empty. Put
λ(x) = ∨CΛ(x). If x /∈ prG(Λ), then put λ(x) = 0. Then λ is a function. If
u, v ∈ G and λ(u) = a, λ(v) = b, then (uv, a∧b) ∈ Λ by condition (LG 2).
It follows that λ(uv) > a ∧ b = λ(u) ∧ λ(v), so that λ satisfies (GF 1).
Similarly, let λ(u) = a, then (u−1, a) ∈ Λ by condition (LG 3). It follows
that λ(u−1) > a = λ(u), so that λ satisfies (GF 2).

Let Λ, Γ be the lattice groups over L. If Λ includes Γ, then we will
say that Γ is a lattice subgroup of Λ, and will denote this by Γ 6 Λ.

If γ is a defined by Γ group function, then γ � λ.

Clearly G× L is the greatest lattice group over L, and E = {(e, 0)}
is the least lattice group over L; the last lattice group is called trivial.
Furthermore, if a ∈ L, then {(e, b)|b 6 a} is a lattice group over L.

Every lattice group Λ includes prG(Λ)× {0}. For every subgroup H
of G the subset H × {0} is a lattice group. Recall that a subset M of L
is called a lower (respectively upper) segment of L, if from a ∈M and
b 6 a (respectively a 6 b) it follows that b ∈M.

If a ∈ L, then the subset {x|x ∈ L and x 6 a} (respectively {x|x ∈ L

and x > a}) is a lower segment (respectively upper segment) of L. It called
the principal lower (respectively upper) segment of L generated by a.

Consider some preliminary properties of the lattice groups.

Proposition 4. Let G be a group, L be a finite distributive lattice and S

be a family of lattice subgroups over L. Then intersection ∩S is a lattice
subgroup.
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Proof. The proof is almost obvious.

Proposition 5. Let G be a group, L be a finite distributive lattice and Λ
a lattice group. Then:

(i) prL(Λ) is a semigroup by operation ∧ with identity e(Λ) = ∨CΛ(1)
and zero 0. Moreover, prL(Λ) is the principal lower segment of L,
generated by e(Λ).

(ii) prG(Λ) is a subgroup of G. Conversely, for every subgroup H of
prG(Λ) the subset {(x, a)|(x, a) ∈ Λ and x ∈ H} = pr−1

G (H) is a
lattice subgroup of Λ.

(iii) If M is a lower segment of L, then {(x, a)|(x, a) ∈ Λ and a ∈M}
is a lattice subgroup of Λ. In particular, pr−1

L (M) is a lattice group.

Proof. (i) Indeed, if a, b ∈ prL(Λ), then there are elements u, v ∈ G such
that (u, a), (v, b) ∈ Λ. Since Λ is a lattice group, (uv, a∧b) = (u, a)(v, b) ∈
Λ. It follows that a ∧ b ∈ prL(Λ). In particular, e(Λ) = ∨CΛ(e) ∈ prL(Λ).

Let a ∈ prL(Λ) and u be an element of G such that (u, a) ∈ Λ. Since
Λ is a lattice group, (u−1, a) ∈ Λ by condition (LG 3). Using (LG 2), we
obtain that (e, a) = (uu−1, a) = (uu−1, a ∧ a) = (u, a)(u−1, a) ∈ Λ. Hence
a ∈ C(e), which follows that a 6 e(Λ). In other words, e(Λ) is the greatest
element of prL(Λ).

Let c be an arbitrary element of L such that c6e(Λ). Since (e, e(Λ))∈Λ.
(e, c) ∈ Λ by condition (LG 1). It follows that prL(Λ) is the principal
lower segment of L, generated by e(Λ).

(ii) Let K = prG(Λ), u, v ∈ K. Then there are the elements a, b ∈ L

such that (u, a), (v, b) ∈ Λ. Since Λ is a lattice group, (uv, a ∧ b) =
(u, a)(v, b) ∈ Λ. It follows that uv ∈ K. If (u, a) ∈ Λ, then (u−1, a) ∈ Λ by
condition (LG 3), which follows that u−1 ∈ K. Hence K is a subgroup
of G.

Let now H be a subgroup of prG(Λ), (u, a), (v, b) ∈ pr−1
G (H). Since

Λ is a lattice group, (uv, a ∧ b) = (u, a)(v, b) ∈ Λ. The fact that H is a
subgroup implies that uv ∈ H, so that (uv, a ∧ b) ∈ pr−1

G (H). Since H is
a subgroup, then from u ∈ H it follows that u−1 ∈ H. Since Λ is a lattice
group, (u, a) ∈ Λ implies that (u−1, a) ∈ Λ. Hence (u−1, a) ∈ pr−1

G (H),
so that pr−1

G (H) satisfies the conditions (LG 2), (LG 3), and (uv, a∧ b) =
(u, a)(v, b) ∈ Λ. Hence K is a subgroup of G. Let (u, a) ∈ pr−1

G (H) and
b be an element of L such that b 6 a. Then (u, b) ∈ Λ and hence
(u, b) ∈ pr−1

G (H).
(iii) Let M is a lower segment of L, K a subgroup ofG andM = K×M.

Then M is a lattice group. Indeed, if (x, a) ∈M and b 6 a, then b ∈M,
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because M is a lower segment of L. It follows that (x, b) ∈M, so that M
satisfies (LG 1). Suppose that (x, a), (y, b) ∈M. Since a ∧ b 6 b, a ∧ b ∈
M. The fact that K is a subgroup of G implies xy ∈ K, and hence
(xy, a ∧ b) ∈M. We note that (xy, a ∧ b) = (x, a)(y, b), which shows that
M satisfies (LG 2). Finally, let (x, a) ∈M. Since K is a subgroup of G,
x−1 ∈ K. Therefore (x−1, a) ∈M, and M satisfies (LG 3).

Let again H = prG(Λ), then it is not hard to see that

{(x, a)|(x, a) ∈ Λ and a ∈M} = H ×M ∩ Λ.

Proposition 4 shows that this subset is a lattice subgroup of Λ.

Let Λ be a lattice group. Unlike abstract groups, a lattice group
can contains more than one idempotent. Moreover, Λ contains a pair
(1, a) for each element a ∈ prL(Λ). Indeed, let u be an element of G
such that (u, a) ∈ Λ. Since Λ is a lattice group, (u, a)(u−1, a) ∈ Λ. But
(u, a)(u−1, a) = (e, a ∧ a) = (e, a). It shows that a semigroup Λ can be a
group only in the case when prL(Λ) contains only one element a. Let b ∈ Λ
and b 6 a, then condition (LG 1) implies that (u, b) ∈ Λ. Hence a = b. In
other words, a is the least element of L, i.e. a = 0. Consequently, a lattice
group Λ is a group if and only if prL(Λ) = {0}. In this regard, we note
that the semigroup Λ may include many subsemigroups, which are groups
by multiplication. Indeed, let H be a subgroup of G and a ∈ L, then it
is not hard to see that the subset H × {a} is a group by multiplication.
Furthermore, for every a ∈ L the subset {(u, a)|(u, a) ∈ Λ} is also a group
by multiplication.

If Λ is a lattice subgroup over L, then put E(Λ) = {(e, b)|b 6 e(Λ)}.
Clearly E(Λ) is a lattice subgroup of Λ.

Let Γ be a lattice subgroup of Λ. The pair (e, e(Λ)) is an identity
element of Λ and (e, e(Γ)) is an identity element of Γ. Since Γ 6 Λ,
Proposition 5 shows that e(Γ) 6 e(Λ). We say that Γ is an unitary
lattice subgroup of Λ, if (e, e(Λ)) ∈ Γ. Every lattice subgroup of Λ can be
extended to an unitary lattice subgroup. Indeed, put Γu(Λ) = Γ∪{(e, b)|b 6

e(Λ)} = Γ ∪ E(Λ), then Γu(Λ) is a lattice group. In fact, if (u, a) ∈ Λ,
then (u, a)(e, b) = (u, a∧ b). Since a∧ b 6 a, (u, a∧ b) ∈ Γ. It shows that
Γu(Λ) satisfies all conditions (LG 1)–(LG 3).

Let M be a subset of G× L and S be a family of all lattice groups,
including M. By Proposition 4, the intersection ∩S is a lattice group. It
called the lattice group generated by M and will be denoted by 〈M〉.

Let (x, a) ∈ G×L. If Λ is a lattice group containing (x, a), then it is not
hard to prove that (x, a)n = (xn, a∧ . . .∧a) = (xn, a) ∈ Λ for each positive



136 Lattice groups

integer n. By (LG 3), (x−1, a) ∈ Λ, and hence (e, a) = (x, a)(x−1, a) ∈ Λ.
From (x−1, a) ∈ Λ we obtain that (x, a)−n = (x−n, a) ∈ Λ, so that
{(xn, a)|n ∈ Z} ⊆ Λ. Let A be the principal lower segment of L, generated
by a. If b 6 a, then (LG 1) implies that (xn, b) ∈ Λ for each integer
n. Thus {(xn, b)|b 6 a, n ∈ Z} ⊆ Λ. It is not hard to check that the
subset {(xn, b)|b 6 a, n ∈ Z} is a lattice group. It follows that 〈(x, a)〉 =
{(xn, b)|b 6 a, n ∈ Z}.

Let Λ, Γ be the lattice subgroups. Define its product in the usual way:
put

ΛΓ = {(x, a)(y, b) = (xy, a ∧ b)|(x, a) ∈ Λ, (y, b) ∈ Γ}.

The following result is a rationale for this determination.

Proposition 6. Let G be a group, L be a finite distributive lattice and
γ, κ : G→ L be functions. Then

γ ⊙ κ = ∪y∈Supp(γ),z∈Supp(κ)χ(y, γ(y))⊙ χ(z, κ(z)).

Proof. By definition we have

(γ ⊙ κ)(x) = ∨y,z∈G,yz=x(γ(y) ∧ κ(z)).

If y /∈ Supp(γ), then γ(y) = 0 and γ(y) ∧ κ(z) = 0. Similarly, if z /∈
Supp(κ), then κ(z) = 0, and again γ(y) ∧ κ(z) = 0. It follows that

(γ ⊙ κ)(x) = ∨y∈Supp(γ),z∈Supp(κ),yz=x(γ(y) ∧ κ(z)).

On the other hand, let ξ = ∪y∈Supp(γ),z∈Supp(κ)χ(y, γ(y)) ⊙ χ(z, κ(z)).
By Proposition 1, χ(y, γ(y)) ⊙ χ(z, κ(z)) = χ(yz, (γ(y) ∧ κ(z))). If x ∈
G and x = yz, then χ(yz, (γ(y) ∧ κ(z)))(x) = γ(y) ∧ κ(z), otherwise
χ(yz, (γ(y) ∧ κ(z)))(x) = 0. Therefore

ξ(x) = ∨y∈Supp(γ),z∈Supp(κ)(χ(yz, (γ(y) ∧ κ(z))))(x)

= ∨y∈Supp(γ),z∈Supp(κ),yz=x(γ(y) ∧ κ(z)) = (γ ⊙ κ)(x).

Since it is true for each x ∈ G,

γ ⊙ κ = ∪y∈Supp(γ),z∈Supp(κ)χ(y, γ(y))⊙ χ(z, κ(z)).

Corollary. Let G be a group, L be a finite distributive lattice, a ∈ L, and
κ : G→ L be functions. Then for every x ∈ G

χ(x, a)⊙ κ = ∪z∈Supp(κ)χ(x, a)⊙ χ(z, κ(z)),

κ⊙ χ(x, a) = ∪z∈Supp(κ)χ(z, κ(z))⊙ χ(x, a).
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Let λ : G→ L be a function defined by Λ and γ : G→ L be a function
defined by Γ. Consider a function κ : G→ L defined by the product ΛΓ.
Let g be an arbitrary element of G. If g /∈ prG(ΛΓ), then κ(g) = 0. On
the other hand, let u, v be an arbitrary elements of G such that g = uv.
Since g /∈ prG(ΛΓ) = prG(Λ) prG(Γ), then either u /∈ prG(Λ), v /∈ prG(Γ),
or u ∈ prG(Λ) but v /∈ prG(Γ) or u /∈ prG(Λ) but v ∈ prG(Γ). In each of
these cases either λ(u) = 0 or γ(v) = 0, so that

∨u,v∈G,uv=g(λ(u) ∧ γ(v)) = 0 = κ(g).

Suppose now that g ∈ prG(ΛΓ), then κ(g) = ∨CΛΓ(g). Let again u, v be
arbitrary elements of G such that g = uv. If u /∈ prG(Λ) or v /∈ prG(Γ),
then (λ(u)∧γ(v)) = 0. Suppose that u ∈ prG(Λ) and v ∈ prG(Γ) and let a,
b be the elements of L such that (u, a), (v, b) ∈ L. We have (u, a)(v, b) =
(uv, a ∧ b). This shows that CΛΓ(g) = {a ∧ b|a ∈ CΛ(u), b ∈ CΓ(v)}. Since
λ(u) = ∨CΛ(u), γ(v) = ∨CΓ(v), CΛΓ(g) = λ(u) ∧ γ(v). In other words, in
this case we have also

κ(g) = ∨u,v∈G,uv=g(λ(u) ∧ γ(v)).

Thus κ = λ⊙ γ. Thus, from the bulky and not very transparent product
of functions we come to the intuitively clear and convenient product of
subsets.

Let us now see how another important concept, the concept of normal
fuzzy subgroup can be transformed. Again, it should be recalled that we
use different terminology.

Let λ, κ : G → L be a group functions and κ � λ. We say that κ
is a normal subgroup function of λ, if κ(yxy−1) > κ(x) ∧ λ(y) for every
elements x, y ∈ G.

We will need the following criteria of normality.

Proposition 7. Let G be a group, L be a finite distributive lattice and
λ, κ : G → L be group functions such that κ � γ. Then the following
assertions are equivalent:

(i) κ is a normal subgroup function of γ;

(ii) χ(x, γ(x))⊙ κ⊙ χ(x−1, γ(x)) � κ for every element x ∈ G;

(iii) χ(x, γ(x))⊙χ(y, κ(y))⊙χ(x−1, γ(x)) ⊆ κ for every elements x, y∈G;

(iv) χ(x, a) ⊙ χ(y, b) ⊙ χ(x−1, a) ⊆ κ for every elements x, y ∈ G,
a 6 γ(x), b 6 κ(y).
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Proof. (i) ⇒ (ii). Suppose that κ is a normal subgroup function of λ.
For arbitrary element y ∈ G we consider the product χ(y, γ(y)) ⊙ κ ⊙
χ(y−1, γ(y)). Let x be an arbitrary element of G. From Proposition 1 we
obtain

(χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)))(x) = γ(y) ∧ κ(y−1xy).

Put u = y−1xy, then x = y(y−1xy)y−1 = yuy−1, so that

(χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)))(yuy−1) = γ(y) ∧ κ(u).

Since κ(u) ∧ γ(y) 6 κ(yuy−1), we obtain

(χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)))(yuy−1) 6 κ(yuy−1),

that is
(χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)))(x) 6 κ(x).

Since this is valid for every element x ∈ G,

χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)) � κ.

(ii) ⇒ (iii). Indeed, Corollary to Proposition 6 shows that

χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y))

= ∪z∈Supp(κ)χ(y, γ(y))⊙ χ(z, κ(z))⊙ χ(y−1, γ(y)).

Hence the inclusion χ(y, γ(y))⊙ κ⊙ χ(y−1, γ(y)) � κ implies that

χ(y, γ(y))⊙ χ(z, κ(z))⊙ χ(y−1, γ(y)) ⊆ κ for every elements y, z ∈ G.

(iii) ⇒ (iv). Indeed, Proposition 1 shows that

χ(x, γ(x))⊙ χ(y, κ(y))⊙ χ(x−1, γ(x)) = χ(xyx−1, γ(x) ∧ κ(y)).

We have

χ(x, a)⊙ χ(y, b)⊙ χ(x−1, a) = χ(xyx−1, a ∧ b) ⊆ χ(xyx−1, γ(x) ∧ κ(y)).

(iv) ⇒ (i). Using again Proposition 1, we obtain that

χ(x, γ(x))⊙ χ(y, κ(y))⊙ χ(x−1, γ(x)) = χ(xyx−1, γ(x) ∧ κ(y)).

Now (vi) shows that χ(xyx−1, γ(x) ∧ κ(y)) ⊆ κ. Then

γ(x) ∧ κ(y) = χ(xyx−1, γ(x) ∧ κ(y))(xyx−1) 6 κ(xyx−1).

This means that κ is a normal subgroup function of γ.
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Proposition 7 leads us to the following analogue of normality in lattice
groups.

Let Γ be a lattice subgroup of Λ. We say that Γ is a normal lattice
subgroup of Λ, if (y−1, b)(x, a)(y, b) ∈ Γ for all pairs (y, b) ∈ Λ, (x, a) ∈ Γ.

We remark that (y−1, b)(x, a)(y, b) = (y−1xy, a∧b). At once this shows
that if Γ a normal lattice subgroup of Λ, then prG(Γ) is a normal subgroup
of prG(Λ). Conversely, suppose that H is a normal subgroup of G and
ΛH = {(x, a) ∈ Λ|x ∈ H}. Then (y−1, b)(x, a)(y, b) = (y−1xy, a ∧ b) ∈ Λ
for each pair (y, b) ∈ Λ. Since H is normal in G, y−1xy ∈ H, so that
(y−1, b)(x, a)(y, b) ∈ ΛH .

Let M be a lower segment of L . Then Proposition 5 proves that
Λ[M] = {(x, a)|(x, a) ∈ Λ and a ∈M} is a lattice subgroup of Λ. Λ[M] is
called an M-layer of Λ. We note that Λ[M] is a normal lattice subgroup
of Λ. In fact, let (x, a) ∈ Λ[M] and (y, b) ∈ Λ, then (y−1, b)(x, a)(y, b) =
(y−1xy, a ∧ b). Since a ∧ b 6 a, a ∈ M and M is a lower segment of L,
a ∧ b ∈M. Thus (y−1, b)(x, a)(y, b) ∈ Λ[M].

If Γ is a normal lattice subgroup of Λ, then Γu(Λ) is a normal lattice
subgroup of Λ. Indeed, let (x, a) ∈ Γu(Λ) and (y, b) ∈ Λ. If x 6= e, then
(x, a) ∈ Γ and (y−1, b)(x, a)(y, b) ∈ Γ. If x = e, then (y−1, b)(e, a)(y, b) =
(1, a ∧ b) ∈ E(Λ).

The layers of lattice group play a very important role. Especially it is
useful in the case when prL(Λ) is a chain. This case arises in theory of
fuzzy group when a group G is finite. Suppose that |prL(Λ)| = k. Then
prL(Λ) is isomorphic (as an ordered set) to the set Ch[1, k] = {1, 2, . . . , k}
with the natural ordering 1 6 2 6 . . . 6 k. In this case, we will say that
Λ is a lattice group over Ch[1, k].

For this case we construct some natural series of subgroups both in
the lattice group Λ and in prG(Λ). The subset {1} is the lower segment
of Ch[1, k], and therefore the {1}-layer Λ[1] of Λ is a lattice subgroup
of Λ. If (u,m) ∈ Λ, then (u, 1) ∈ Λ by condition (LG 1). This im-
plies that prG(Λ) = prG(Λ[1]). For every m, 1 6 m 6 k, the subset
Km = {(u,m)|(u,m) ∈ Λ} is the subgroup by multiplication, so that
H(m) = prG(Km) is a subgroup of H(1) = prG(Λ). A subgroup H(m) is
called the m-hoop of Λ. From (u,m) ∈ Λ we obtain (u,m − 1) ∈ Λ by
condition (LG 1). This implies the inclusion H(m) 6 H(m − 1), so we
obtain the following descending series of subgroups

H(1) > H(2) > . . . > H(k).

Clearly the mapping u→ (u,m), u ∈ H(m), is an isomorphism of H(m)
on Km for each m, 1 6 m 6 k.
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Figuratively speaking, the pictured structure of a lattice group over
Ch[1, k] reminds the cake “Napoleon”. Here the groups play the role of
the cakes lays, and the idempotents play the role of cream lays. Indeed,
in the first step, by above remarked the Λ[1] is a normal lattice subgroup
of Λ. We have seen also that Λ[1] is a group by multiplication (moreover,
it is isomorphic to prG(Λ)). Now add the cream: put Λ1 = Λ[1]∪ {(e, 2)}.
It is not hard to see, that Λ1 is a normal lattice subgroup of Λ. Next step:
consider the {1, 2}-layer Λ[1, 2] of Λ, which is a normal lattice subgroup
of Λ. We note that Λ1 6 Λ[1, 2], moreover Λ1 is a normal lattice subgroup
of Λ. For every element (x, j) ∈ Λ[1, 2] denote by (x, j)Λ1 the product
{(x, j)}Λ1. This subset is called a coset by Λ1. Since (x, j) ∈ Λ[1, 2],
j 6 2, so that (x, j) = (xe, j ∧ 2) = (x, j)(e, 2) ∈ (x, j)Λ1. It follows that
Λ[1, 2] is an union of all subsets (x, j)Λ1. Suppose that (x, j)Λ1 6= Λ1.
Then x 6= e and j = 2. Thus we can see that the equality (x, 2) =
(y, 2)(z,m) where (z,m) ∈ Λ1 is possible only in the case when m = 2.
In turn, the single pair of Λ1, whose second component is equal to 2,
is the pair (e, 2). Hence (x, 2) = (y, 2)(e, 2), so that x = y. In other
words, the equality (x, 2)Λ1 = (y, 2)Λ1 is possible only in the case, when
x = y. Consider the product of subsets ((x, 2)Λ1)((y, 2)Λ1). Its arbitrary
element has a form (x, 2)(u, j)(y, 2)(v,m) where (u, j), (v,m) ∈ Λ1. If
j = 1 or m = 1, then (x, 2)(u, j)(y, 2)(v,m) = (xuyv, 1) ∈ Λ1. Hence if
(x, 2)(u, j)(y, 2)(v,m) /∈ Λ1, then j = m = 2. But it is possible only if
u = v = e. In this case, (x, 2)(u, j)(y, 2)(v,m) = (xy, 2). In turn it follows
that ((x, 2)Λ1)((y, 2)Λ1) = (xy, 2)Λ1. Hence the set of all cosets by Λ1

becomes a semigroup. Moreover, this semigroup is a group, because it
has an identity element (e, 2)Λ1 = Λ1, and for every coset (x, 2)Λ1 we
have (x−1, 2)Λ1(x, 2)Λ1 = (e, 2)Λ1 = (x, 2)Λ1(x−1, 2). Therefore we can
talk here about a factor-group of a lattice group Λ[1, 2] by the normal
lattice subgroup Λ1. For it we will use a common notation Λ[1, 2]/Λ1.
We emphasize that here we are talking about a factor-group, rather
than a lattice factor-group. It is our special selection provides such an
opportunity; in general, is not always the family of cosets by normal
lattice subgroup is a group or a lattice group.The mapping Φ, defined
by the rule Φ((x, 2)) = (x, 2)Λ1, (x, 2) ∈ K2, is an epimorphism. As we
have seen early, the equality (x, 2)Λ1 = Λ1 is possible only in the case
when x = e, which shows that Φ is an isomorphism. Since K2

∼= H(2), we
obtain that Λ[1, 2]/Λ1 is isomorphic to the 2-hoop of Λ.

Adding the next lay of the cream {(e, 3)} to Λ[1, 2], we come to the
normal lattice subgroup Λ2 = Λ[1, 2]∪ {(e, 3)}, and then we cover it with
the next lay of cake, i.e. extend Λ2 to the {1, 2, 3}-layer Λ[1, 2, 3] of Λ,
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which is a normal lattice subgroup of Λ. Using the above arguments, we
shows that a family of cosets (x, 3)Λ2 is a group by multiplication and
this group is isomorphic to the 2-hoop of Λ. And so on. As the result we
obtain the sequences

Λ0 = {(e, 1)} 6 Λ[1] 6 Λ1 6 Λ[1, 2] 6 Λ2 6 Λ[1, 2] 6 . . . 6 Λk−1 6 Λ

of normal lattice subgroups such that Λm = Λ[1, . . . ,m] ∪ {(e,m+ 1)},
and Λ[1, . . . ,m+ 1]/Λm

∼= H(m+ 1), 0 6 m 6 k − 1.
Note, that in the theory of fuzzy groups we could not find any similar

description of a general structure of a fuzzy group γ for the case when
Im(γ) is finite.
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On the units of integral group ring of Cn × C6
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Communicated by I. Ya. Subbotin

Abstract. There are many kind of open problems with
varying difficulty on units in a given integral group ring. In this
note, we characterize the unit group of the integral group ring of
Cn × C6 where Cn = 〈a : an = 1〉 and C6 = 〈x : x6 = 1〉. We show
that U1(Z[Cn × C6]) can be expressed in terms of its 4 subgroups.
Furthermore, forms of units in these subgroups are described by the
unit group U1(ZCn). Notations mostly follow [11].

1. Introduction

Let G given as a finite group. Its integral group ring is denoted by ZG.
Invertible elements in ZG is called by units and the set of units forms
a group according to the multiplication and is shown by U(ZG). The
group of units with augmentation 1 is displayed by U1(ZG). If one pay
attention to the corresponding literature, that can easily see that the
obtained results mostly arises from finite groups especially finite abelian
groups. Fundamentals of the unit problem have come from the thesis of
G. Higman in 1940. Higman stated and proved the following [4]:

Lemma 1. If U(ZG) = ±G, then U(Z[G× C2]) = ±[G× C2].

Also, the following useful lemma was shown in [4] and [3].

2010 MSC: 16U60, 16S34.
Key words and phrases: group ring, integral group ring, unit group, unit prob-

lem.
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Lemma 2. U(ZG) has a torsion-free complement of finite rank ρ =
1
2(|G|+ n2 + 1− 2l) where n2 shows the number of elements of order 2 in
G and l is the number of all distinct cyclic subgroups of G.

On the other hand, in [7], Li considered the question: If U(ZG) has a
normal complement generated by bicyclic units, does U(Z[G× C2]) has
also a normal complement generated by bicyclic units? Jespers showed
that the answer for this question is yes while G = D6 or D8 [8–10]. Li gave
a counterexample for showing this is not true in general by considering
the group D8×C2×C2 [7]. However, Li proved that if U(ZG) is generated
by unitary units, then U(Z[G×C2]) is also generated by unitary units [7].
Another description of U(Z[G× C2]) was given by Low in [6] by linearly
extending some group epimorphisms to the group ring homomorphisms.
He also tried to generalize the problem for U(Z[G × Cp]) where p is a
prime integer. In [6], He showed that

U(Z[G× Cp]) = K ⋊ U(ZG) ∼= M ⋊ U(ZG)

where K is the kernel of the natural group homomorphism:
π : U(Z[G× Cp]) −→ U(ZG) and M is a subgroup of finite index in
U(Z[ζ]G) such that ζ is a primitive pth root of unity. Low also explicitly
proved the following 4 lemmas [6]:

Lemma 3. Let G∗ = G× 〈x : x2 = 1〉. Then, U(ZG∗) is obtained as

{u = 1 + (x− 1)α : α ∈ ZG, u ∈ U(ZG∗)}⋊ U(ZG).

Further, 1 + (x− 1)α ∈ U(ZG∗)⇔ 1− 2α ∈ U(ZG).

Lemma 4. Let P = 〈a, b : a4 = b4 = 1, [b, a] = a2〉 be the indecomposable
group of order 16. Then,

U(Z[P × C2]) = ±[F65 ⋊ F9] ⋊ (P × C2)

where Fi denotes a free group of rank i.

Lemma 5. Let C∗
5 = 〈c : c5 = 1〉 × 〈x : x2 = 1〉. Then, the unit group

U(ZC∗
5 ) = 〈1 + (x− 1)P 〉 × 〈v〉 × C∗

5

where P = −3− c+ 3c2 + 3c3 − c4 and v = (c+ 1)2 − ĉ.

Lemma 6. Let C∗
8 = 〈c : c8 = 1〉 × 〈x : x2 = 1〉. Then, the unit group

U(ZC∗
8 ) = 〈1 + (x− 1)P 〉 × 〈v〉 × C∗

8

where P = −4−3c+3c3+4c4+3c5−3c7 and v = 3− ĉ+2(c+c7)+(c2+c6).
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Kelebek and Bilgin considered the finite abelian group Cn×K4 where
K4 is the Klein 4-group and characterized the unit group of its integral
group ring in terms of 4 components as follows [1]:

Theorem 1. U1(Z[Cn×K4]) = U1(ZCn)×(1+Kx)×(1+Ky)×(1+Kxy)
where

1 +Kx = {1 + (x− 1)P : 1− 2P ∈ U1(ZCn)}

1 +Ky = {1 + (y − 1)P : 1− 2P ∈ U1(ZCn)}

1 +Kxy = {1 + (x− 1)(y − 1)P : 1 + 4P ∈ U1(ZCn)}

2. Motivation for construction of U1(Z[Cn × C6])

Now, let us begin with some remarks.

Remark 1. The following maps are group epimorphisms:

πx2 : Cn × C6 −→ Cn × 〈x
2〉

a 7→ a

x 7→ x2

πx3 : Cn × C6 −→ Cn × 〈x
3〉

a 7→ a

x 7→ x3

Remark 2. Ker(πx2) = 〈x3〉 and Ker(πx3) = 〈x2〉 .

Since Cn × 〈x
2〉 →֒ Cn ×C6, Cn × 〈x

3〉 →֒ Cn ×C6 and i denotes the
inclusion map, we get the following short exact sequences at group level:

0 −→ 〈x3〉
i
→ Cn × C6

π
x2
−−→ Cn × 〈x

2〉 −→ 0

0 −→ 〈x2〉
i
→ Cn × C6

π
x3
−−→ Cn × 〈x

3〉 −→ 0

0 −→ 〈x〉 i
→ Cn × C6

π
x2 π

x3
−−−−→ Cn −→ 0

If we linearly extend πx2 and πx3 to integral group rings over Z, we obtain
the following ring homomorphisms:

πx2 : Z[Cn × C6] −→ Z[Cn × 〈x
2〉]

5∑

j=0

Pjx
j 7→ (P0 + P3) + (P1 + P4)x2 + (P2 + P5)x4
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and

πx3 : Z[Cn × C6] −→ Z[Cn × 〈x
3〉]

5∑

j=0

Pjx
j 7→ (P0 + P2 + P4) + (P1 + P3 + P5)x3

Lemma 7. Kx2
:= Ker(πx2) = (x3 − 1)Z[Cn × 〈x

2〉]

Proof.

Ker(πx2) =
{ 5∑

i=0

Pix
i : πx2(

5∑

i=0

Pix
i) = 0, Pi ∈ ZCn

}

=
{ 5∑

i=0

Pix
i : P0 + P3 = P1 + P4 = P2 + P5 = 0

}

=
{ 5∑

i=0

Pix
i : P0 = −P3, P1 = −P4, P2 = −P5

}

= {−P3 − P4x− P5x
2 + P3x

3 + P4x
4 + P5x

5}

= {(x3 − 1)P3 + (x4 + x)P4 + (x5 − x2)P5}

= (x3 − 1)[ZCn ⊕ x
2
ZCn ⊕ x

4
ZCn]

= (x3 − 1)Z[Cn × 〈x
2〉].

Lemma 8. Kx3
:= Ker(πx3) = (x2− 1)[ZCn⊕ xZCn⊕ x

2
ZCn⊕ x

3
ZCn]

Proof.

Ker(πx3) =
{ 5∑

i=0

Pix
i : πx3(

5∑

i=0

Pix
i) = 0, Pi ∈ ZCn

}

=
{ 5∑

i=0

Pix
i : P0 + P2 + P4 = P1 + P3 + P5 = 0

}

=
{ 5∑

i=0

Pix
i : P0 = −(P2 + P4), P1 = −(P3 + P5)

}

= {(x2 − 1)[P2 + xP3 + (x2 + 1)P4 + (x2 + 1)xP5]}

= (x2 − 1)[ZCn ⊕ xZCn ⊕ x
2
ZCn ⊕ x

3
ZCn]
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Similarly, we can write the following ring homomorphism:

πx2πx3 : Z[Cn × C6] −→ ZCn

5∑

j=0

Pjx
j 7→

5∑

j=0

Pj .

Lemma 9. Kx2x3
:= Ker(πx2πx3) = ⊕5

j=1(xj − 1)ZCn

Proof.

Ker(πx2πx3) =
{ 5∑

i=0

Pix
i : πx2πx3(

5∑

i=0

Pix
i) = 0, Pi ∈ ZCn

}

=
{ 5∑

i=0

Pix
i :

5∑

i=0

Pi = 0, Pi ∈ ZCn

}

=
{ 5∑

i=0

Pix
i : P0 = −

5∑

i=1

Pi, Pi ∈ ZCn

}

=
{
−

5∑

i=1

Pi +
5∑

i=1

Pix
i : Pi ∈ ZCn

}

=
{ 5∑

j=1

(xj − 1)Pj : Pj ∈ ZCn

}

= ⊕5
j=1(xj − 1)ZCn.

By Remarks 1 and 2, we get the following short exact sequences at group
ring level:

0 −→ Kx2 i
→ Z[Cn × C6]

π
x2
→ Z[Cn × 〈x

2〉] −→ 0

0 −→ Kx3 i
→ Z[Cn × C6]

π
x3
→ Z[Cn × 〈x

3〉] −→ 0

0 −→ Kx2x3 i
→ Z[Cn × C6]

π
x2 π

x3
→ ZCn −→ 0

If we restrict πx2 and πx3 to the unit level, we conclude that the
followings are also short exact sequences:

1 −→ U1(1 +Kx2
) i
→ U1(Z[Cn × C6])

π
x2
→ U1(Z[Cn × 〈x

2〉]) −→ 1

1 −→ U1(1 +Kx3
) i
→ U1(Z[Cn × C6])

π
x3
→ U1(Z[Cn × 〈x

3〉]) −→ 1

1 −→ U1(1 +Kx2x3
) i
→ U1(Z[Cn × C6])

π
x2 π

x3
→ U1(ZCn) −→ 1
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Since we can consider embeddings U1(Z[Cn × 〈x
2〉]) →֒ U1(Z[Cn × C6])

and U1(Z[Cn × 〈x
3〉]) →֒ U1(Z[Cn × C6]), the following split extensions

hold:

U1(Z[Cn × C6]) = U1(1 +Kx2
)× U1(Z[Cn × 〈x

2〉])

= U1(1 +Kx3
)× U1(Z[Cn × 〈x

3〉])

= U1(1 +Kx2x3
)× U1(ZCn).

Remark 3. In U1(Z[Cn × C6]) the normal subgroups U1(1 + Kx2
),

U1(1 +Kx3
) and U1(1 +Kx2x3

) are determined as in the following forms
respectively:

(i) {u = 1 + (x3 − 1)[P0 + P2x
2 + P4x

4] : u is a unit};

(ii) {u = 1 + (x2 − 1)[P0 + P1x+ P2x
2 + P3x

3] : u is a unit};

(iii) {u = 1 +
∑5

j=1(xj − 1)Pj : u is a unit}.

3. An explicit characterization of U1(Z[Cn × C6])

In this section, an explicit characterization of U1(Z[Cn ×C6]) is given
with the help of the results in the previous section. First, we should
give some restrictions of the maps πx2 , πx3 and πx2πx3 . Let πx3 |U1(1+Kx2 )

denote the restriction of πx3 on U1(1 +Kx2
).

Lemma 10. W1 := Im(πx3 |U1(1+Kx2
)
) = 1 + (x3 − 1)ZCn.

Proof. Let us take an element from U1(1 +Kx2
) as γ = 1 + (x3 − 1)[P0 +

P2x
2 + P4x

4] where Pi ∈ ZCn.Then,

πx3 : γ 7→ 1 + (x3 − 1)[P0 + P2 + P4].

Say P0 + P2 + P4 = P . Thus, Im(πx3 |U1(1+Kx2
)
) consists of elements of

the form 1 + (x3 − 1)P .

Lemma 11. W2 :=Ker(πx3 |U1(Z[Cn×〈x2〉]))=1+(x2−1)ZCn ⊕ (x4−1)ZCn.

Proof. Let us take an element from U1(Z[Cn × 〈x
2〉]) as σ = P0 + P2x

2 +
P4x

4. Here, we can manipulate the parameter P0 = 1 + P
′

0. Then, we get

πx3 : σ 7→ 1 + P
′

0 + P2 + P4 = 1⇐⇒ P
′

0 = −P2 − P4.

This means that the kernel consists of elements of the form

1 + (−P2 − P4) + P2x
2 + P4x

4 = 1 + (x2 − 1)P2 + (x4 − 1)P4.

Hence the required is obtained.
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Lemma 12.

W3 := Ker(πx3 |U1(1+Kx2
)
) = 1+(x3−1)(x2−1)ZCn⊕(x3−1)(x4−1)ZCn.

Proof. Again, let us consider an element from U1(1 + Kx2
) as η = 1 +

(x3 − 1)[P0 + P2x
2 + P4x

4]. Then,

πx3 : η 7→ 1 + (x3 − 1)[P0 + P2 + P4] = 1⇐⇒ P0 = −P2 − P4

Thus, Ker(πx3 |U1(1+Kx2 )
) consists of

1 + (x3 − 1)[P0 + P2x
2 + P4x

4] = 1 + (x3 − 1)[−P2 − P4 + P2x
2 + P4x

4]

= 1 + (x3 − 1)[(x2 − 1)P2 + (x4 − 1)P4].

Therefore, by Lemma 10, Lemma 11 and Lemma 12, we can construct
the following commutative diagram:

W3
i //

i

��

U1(1 +Kx3
)

π
x2 //

i

��

W2

i

��
U1(1 +Kx2

) i //

π
x3

��

U1(Z[Cn × C6])
π

x2 //

π
x3

��

U1(Z[Cn × 〈x
2〉])

π
x3

��
W1

i // U1(Z[Cn × 〈x
3〉])

π
x2 // U1(ZCn)

Since we can take embeddings as the inverses of πx2 and πx3 , this diagram
splits as follows:

U1(Z[Cn × C6]) = W1 ×W2 ×W3 × U1(ZCn).

Now, let us characterize explicitly W1, W2 and W3.

Proposition 1. u = 1+(x3−1)P ∈W1 is a unit⇐⇒ 1−2P ∈ U1(ZCn)

Proof.

u = 1 + (x3 − 1)P is unit ⇐⇒ ∃v = 1 + (x3 − 1)Q : uv = 1

⇐⇒ 1 + (x3 − 1)[P +Q− 2PQ] = 1

⇐⇒ P +Q− 2PQ = 0

⇐⇒ 1− 2P − 2Q+ 4PQ = 1

⇐⇒ (1− 2P )(1− 2Q) = 1

⇐⇒ 1− 2P ∈ U1(ZCn).
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Proposition 2. u = 1 + (x2 − 1)P + (x4 − 1)Q ∈ W2 is a unit ⇐⇒
P 2 +Q2 − PQ− P −Q = 0

Proof. First, we need to define a closed operation. If we define α = x2− 1
and β = x4 − 1, we get the following straightforward computations:

α2 = (x2 − 1)2 = −2(x2 − 1) + (x4 − 1) = −2α+ β

αβ = (x2 − 1)(x4 − 1) = −(x2 − 1)− (x4 − 1) = −α− β

β2 = (x4 − 1)2 = −2(x4 − 1) + (x2 − 1) = α− 2β

Let us state this operation in a table as follows:

• α β

α −2α+ β −α− β
β −α− β α− 2β

Now, we can give a necessary and sufficient condition to be a unit for the
element u. u = 1 + (x2 − 1)P + (x4 − 1)Q ∈ W2 is a unit if and only if
∃v = 1 + (x2 − 1)P

′

+ (x4 − 1)Q
′

such that uv = 1. Hence,

1 + αP + βQ+ αP
′

+ βQ
′

+ α2PP
′

+ β2QQ
′

+ αβ(PQ
′

+ P
′

Q) = 1.

By the above operation, we can arrange this equation as

1 + α(P + P
′

) + β(Q+Q
′

) + (−2α+ β)PP
′

+ (α− 2β)QQ
′

+ (−α− β)(PQ
′

+ P
′

Q) = 1

That is,

1 + α(P + P
′

− 2PP
′

+QQ
′

− PQ
′

− P
′

Q)

+ β(Q+Q
′

+ PP
′

− 2QQ
′

− PQ
′

− P
′

Q) = 1.

This equation holds if and only if the following system of matrix has a
unique solution:

[
1− 2P −Q Q− P
P −Q 1− 2Q− P

] [
P

′

Q
′

]
=

[
−P
−Q

]

Therefore,
[

1− 2P −Q Q− P
P −Q 1− 2Q− P

]
∈ SL2(ZCn)

A straightforward calculation shows that P 2 +Q2−PQ−P −Q = 0.
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Proposition 3. u = 1 + (x3 − 1)(x2 − 1)P + (x3 − 1)(x4 − 1)Q ∈W3 is
a unit if and only if the following equation holds:

2P 2 + 2Q2 − 2PQ− P −Q = 0

Proof. First, let λ = (x3 − 1)(x2 − 1) and µ = (x3 − 1)(x4 − 1). One can
easily compute the followings:

λ2 = (x3 − 1)2(x2 − 1)2 = 4λ− 2µ,

λµ = (x3 − 1)2(x2 − 1)(x4 − 1) = 2λ+ 2µ,

µ2 = (x3 − 1)2(x4 − 1)2 = −2λ+ 4µ.

In a better expression, we write

• λ µ

λ 4λ− 2µ 2λ+ 2µ
µ 2λ+ 2µ −2λ+ 4µ

Now, let us determine the necessary and sufficient condition to be a
unit for an element u. u = 1 + λP + µQ ∈ W3 is a unit if and only if
∃v = 1 +λP

′

+µQ
′

: uv = 1. Thus, a straight forward computation shows
us that

1 + λ(P + P
′

+ 4PP
′

+ 2P
′

Q+ 2PQ
′

− 2QQ
′

)

+ µ(Q+Q
′

− 2PP
′

+ 2P
′

Q+ 2PQ
′

+ 4QQ
′

) = 1.

This equation holds if and only if the following system of matrix has a
unique solution:

[
1 + 4P + 2Q 2P − 2Q

2Q− 2P 1 + 2P + 4Q

] [
P

′

Q
′

]
=

[
−P
−Q

]

Then, the required result comes from the following:
[

1 + 4P + 2Q 2P − 2Q
2Q− 2P 1 + 2P + 4Q

]
∈ SL2(ZCn).

Consequently, we can summarize all the obtained results as follows:

Corollary 1. U1(Z[Cn × C6]) = U1(ZCn)× U × V ×W where

U = {1 + (x3 − 1)P : 1− 2P ∈ U1(ZCn)}

V = {1 + αP + βQ : P 2 +Q2 − PQ− P −Q = 0}

W = {1 + λP + µQ : 2P 2 + 2Q2 − 2PQ− P −Q = 0}

such that

α = x2 − 1, β = x4 − 1, λ = (x3 − 1)(x2 − 1), µ = (x3 − 1)(x4 − 1).
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of continuous fruitful serving to Algebra

Abstract. Special family of non-bijective multivariate maps
Fn of Zm

n into itself is constructed for n = 2, 3, . . . and composite m.
The map Fn is injective on Ωn = {x|x1 + x2 + . . . xn ∈ Zm

∗} and
solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the
solution of equation zr = α, z ∈ Zm

∗, (r, φ(m)) = 1. The “hidden
RSA cryptosystem” is proposed.

Similar construction is suggested for the case Ωn = Zm
∗n.

1. Introduction

The RSA is one of the most popular cryptosystems. It is based on a
number factorisation problem and Euler Theorem. Peter Shor discovered
that factorisation problem can be effectively solved with the usage of
theoretical quantum computer. It means that RSA could not be a security
tool in the future postquantum era. One of the research directions which
can lead to a postquantum secure public key is the Multivariate Cryptog-
raphy which uses polynomial maps of affine space Kn defined over a finite
commutative ring into itself as encryption tools (see [1]). This is a young
promising research area with the current lack of known cryptosystems

Key words and phrases: multivariate cryptography, linguistic graphs, hidden
Eulerian equation, hidden discrete logarithm problem.
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with the proven resistence against attacks with the use of Turing machines.
Other important direction of Postquantum Cryptography is a study of
Super-elliptic Curves cryptosystems.

Applications of Algebraic Graph Theory to Multivariate Cryptography
were observed in my talk at Central European Conference on Cryptology
2014 (Alfred Renyi Institute, Budapest) [2]. This talk was dedicated
to algorithms based on bijective maps of affine spaces into themselves.
Applications of algebraic graphs to cryptography started from symmetric
algorithms based on explicit constructions of extremal graph theory and
their directed analogs (see survey [3], [4]). The main idea is to convert
an algebraic graph in finite automaton and use the preudorandom walks
on the graph as encryption tools. This approach can be also used for
the key exchange protocols. Nowadays the idea of “symbolic walks” on
algebraic graphs when the walk on the graph depends on parameters given
as special multivariate polynomials in variables depending on plainspace
vector brings several public key cryptosystems. Other source of graphs
suitable for cryptography is connected with finite geometries and their
flag system (see [3], [5], [6] and further references).

This paper presents new cryptoalgorithm in terms of Algebraic Com-
binatorics which use non-bijective transformations of Kn.

Multivariate cryptography started from studies of potential for the
special quadratic encryption multivariate bijective map of Kn, where K
is an extention of finite field Fq of characteristic 2. One of the first such
cryptosystems was proposed by Imai and Matsumoto, cryptanalysis for
this system was invented by J. Patarin [1], [7]. The survey on various
modifications of this algorithm and corresponding cryptanalysis the reader
can find in [1]. Bijective multivariate sparse encryption maps of rather
high degree based on walks in algebraic graphs were proposed in [8].

One of the first usage of non bijective map of multivariate cryptography
was in oil and vinegar crptosystem proposed in [9] and analysed in [10].
Nowadays this general idea is strongly supported by the publication [11]
dedicated to security analysis of direct attacks on modified unbalanced oil
and vinegar systems. It looks like such systems and rainbow signatures
schemes may lead to promising Public Key Schemes of Multivariate
Encryption defined over finite fields. Non bijective multivariate sparse
encryption maps of degree 3 and > 3 based on walks on algebraic graphs
D(n,K) defined over general commutative ring and their homomorphic
images were proposed in [12].

The paper is dedicated to other constructions of non bijective maps.
We introduce the concept of family of multivariate maps F = Fn of
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the free modules Kn onto itself decomposed into transition functions
F 1, F 2, . . . , F s(n) of special symbolic vertex automata of linguistic graphs.
In case K = Zm, where m is composite, it allows us to construct partially
invertible Fn respectively to subsets Ωn of Zm

n. It means that the restric-
tion of F on Ωn is injective and the decomposition above allows us to solve
the equation F (x)) = b for unknown (x) ∈ Ωn and b ∈ F (Ωn) in polyno-
mial time. We are interested in the case of Eulerian maps Fn when the
solution of the equation can be reduced to the study of equations of kind
zr = d, where z in Zm

∗ and (r, φ(m)) = 1. We construct infinite families
of maps of kind Hn = τ1Fnτ2, where τi are bijective affine transformations
of Zm

n, with Eulerian Fn of bounded degree such that Hn is partially
invertible for Ωn = Zm

∗n and Ωn = {x ∈ Zm
n|x1 + x2 + . . . xn ∈ Zm

∗}.
So the following scheme of a cryptosystem can be used. Alice (the

public key owner) uses special linguistic graph Ln(Zm), its symbolic
automaton with a special symbolic key to generate the Eulerian map
Fn and the list of transition functions F 1, F 2, . . . , F s(n) of the symbolic
computation. She chooses appropriate bijective affine transformations τ1

and τ2 and creates a deformation Hn = τ1Fnτ2 which is partially invertible
for Ωn as above. Alice writes the following standard form for Hn:

x1 → h1(x1, x2, . . . , xn), x2 → h2(x1, x2, . . . , xn), . . . ,

xn → hn(x1, x2, . . . , xn)

where polynomials hi(x1, x2, . . . , xn), i = 1, 2, . . . , n are given by their
lists of monomial terms with respect to the chosen order.

She announces the form and the plainspace Ωn in public way.
Notice that Alice keeps the transition functions generating Fn and

deformation rule Hn = τ1Fnτ2 in secret. Cryptanalytic knows only the
list of hi and the graph Ln(Zm).

Public user (Bob) writes his message (p1, p2, . . . , pn) from the
plainspace Ωn. He computes the ciphertext c = (c1, c2, . . . , cn), ci =
hi(p1, p2, . . . , pn), i = 1, 2, . . . , n and sends it to Alice.

Alice solves the equation Fn(x1, x2, . . . , xn) = (c1, c2, . . . , cn) due
to her knowledge of symbolic key of the automaton. So she reads the
plaintext.

Notice that to make this scheme feasible we need to care about
polynomiality of generation time, bound for the degree of Hn, Eulerian
nature of the map Fn. We achieve it via special choice of linguistic graph
(well known graphs D(n,K)) and some restriction on symbolic keys.

Section 2 is dedicated to linguistic graphs and related to them au-
tomata. In Section 3 the reader can find information on chosen linguistic
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graph D(n,K). The properties af chosen computation of vertex automa-
ton for graph D(n,Zm) are justified in section 4. Last section gives precise
descryption of cryptosystem.

2. Linguistic graphs and their vertex automata

The missing definitions of graph-theoretical concepts which appear in
this paper can be found in [13]. All graphs we consider are simple , i.e.
undirected without loops and multiple edges. Let V (G) and E(G) denote
the set of vertices and the set of edges of G respectively. Then |V (G)|
is called the order of G, and |E(G)| is called the size of G. When it is
convenient we shall identify G with the corresponding anti-reflexive binary
relation on V (G), i.e. E(G) is a subset of V (G)× V (G) and write v G u
for the adjacent vertices u and v (or neighbours). We assume that V (G)
is a finite or an infinite set. The majority of examples will be locally finite
graphs G, i.e. each vertex v has finite number of neighbours (x ∈ V (G),
such that xG v). We refer to |{x ∈ V (G)|xG v}| as degree of the vertex v.

The sequence of distinct vertices v0, v1, . . . , vt, such that vi G vi+1 for
i = 1, . . . , t − 1 is a path in the graph. The path in G is called simple
if all its vertices are distinct. The graph is connected if each two of its
vertices are joined by some path. The length of the path is a number
of its edges. The distance between two vertices u and v of the graph,
denoted by dist(u, v), is the length of the shortest path between them.
The diameter of the graph, denoted by diam(G), is the maximal distance
between two vertices u and v of the graph. Let Cm denote the cycle
of length m, i.e. the sequence of distinct vertices v0, . . . , vm such that
vi G vi+1, i = 1, . . . ,m− 1 and vm G v1. The girth of a graph G, denoted
by g = g(G), is the length of the shortest cycle in G.

The incidence structure is the set V with partition sets P (points)
and L (lines) and symmetric binary relation I such that the incidence
of two elements implies that one of them is a point and another one is a
line. We shall identify I with the simple graph of this incidence relation
(bipartite graph).

We refer to a triple consisting of set V , its partition V = P ∪ L and
symmetric and antireflexive binary relation I (incidence) on the set V ,
such that xIy implies x ∈ P , y ∈ L or x ∈ L and y ∈ P as incidence
structure. The pair {x, y}, x ∈ P , y ∈ L such that xIy is called a flag of
incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure
with a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as
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linguistic incidence structure Im if point

(x) = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m)

is incident to line

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]

if and only if the following relations hold

ξ1xs+1 + ζ1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξ2xs+2 + ζ2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

. . .

ξmxs+m + ζmyr+m = fm(x1, x2, . . . , xs+m−1, y1, y2, . . . , yr+m−1)

where ξj and ζj , j = 1, 2, . . . ,m are not zero divisors, and fj are multi-
variate polynomials with coefficients from K. Brackets and parenthesis
allow us to distinguish points from lines (see [14]).

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is
defined as projection of an element (x) ([y]) from a free module on its
initial s (relatively r) coordinates. As it follows from the definition of
linguistic incidence structure for each vertex of incidence graph there
exists unique neighbour of a chosen colour. We also consider a linguistic
incidence structures defined by infinite number of equations.

We refer to ρ((x)) = (x1, x2, . . . , xs) for (x) = (x1, x2, . . . , xs+m) and
ρ([y]) = (y1, y2, . . . , yr) for [y1, y2, . . . , ys+m] as the colour of the point
and the colour of the line respectively. For each b ∈ Kr and (p) =
(p1, p2, . . . , ps+m) there is a unique neighbour of the point [l] = Nb(p)
with the colour b. Similarly for each b ∈ Ks and [l] = [l1, l2, . . . , lr+m]
there is a unique neighbour of the line [p] = Nb([l]) with the colour b.
Let S(Kn) be the semigroup of all polynomial maps from Kn into Kn,
where K is a commutative ring.

Assume that the transformation F (n) ∈ S(Kn) is written in the form
xj → f(n)j(x1, x2, . . . , xn) where each f(n)j , j = 1, 2, . . . , n is determined
by the list of all monomial terms with the respect to some chosen order.

Let us refer to the sequence of maps F (n) from S(Kn), n = 2, 3, . . .
as a family of bounded degree, if the degree of each transformation F (n)
is bounded by some constant d, d > 0.

Let τ(n)L and τ(n)R be affine transformations of kind x → xA+ b,
where x ∈ Kn, b ∈ Kn, A = (aij), 1 6 i, j 6 n.

We assume, that the transformations τL(i) and τR(i) are invertible.
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We refer to the sequence ofG(n) = τL(n)F (n)τR(n) as the deformation
of the family F (n), n = 2, 3, . . . .

Notice that deg g(n) = deg f(n), but densities of the maps can be
different. In fact densities of g(n) heavily depend on the choices of an
affine transformation τL.

Let us convert the bipartite graph of incidence relation I = Im to
vertex automaton V A(Im) in the following way. We announce that vertices
of the graph are states of V A(Im). If (p)I[l)] and [l] = Nb(p) then we
draw an arrow from (p) to [l] with the weight b ∈ Kr. If (p)I[l)] and
[p] = Nb(p) then we draw an arrow from [l] to (p) with the weight b ∈ Ks.
We assume that all vertices of the bipartite graph are accepting states.

Let us assume that r = s = 1 in all further considerations. We assume
that graph Im has connectivity invariants d1(x), d2(x), . . . , dt(x) which
are multivariate functions from Ks+m into K such that for two vertices
v1 and v2 (points or lines) from the same connected component of the
graph equalities di(v2) = di(v1), i = 1, 2, . . . , t hold.

We consider symbolic vertex automaton SV (Im) correspond-
ing to Im defined in the following way. Its states are divided
into points (f1, f2, . . . , fm+1) and lines [g1, g2, . . . , gm+1] where
fi ∈ K[x1, x2, . . . , x1+m] and gi ∈ K[x1, x2, . . . , x1+m], i = 1, 2, . . . ,m+ 1.
There are two options for an by initial state: symbolic point
(x1, x2, . . . , x1+m) or symbolic line [x1, x2, . . . , x1+m]. The computation
of SV (Im) is given by its symbolic key hj ∈ K[z1, z2, . . . , z1+t],
j = 1, 2, . . . , k and its initial state (point for example) in the fol-
lowing way. One has to form the specialisation of a symbolic key
h̃j = h(x1, d1(x), d2(x), . . . , dt(x)) ∈ K[x1, x2, . . . x1+m] and compute the
chain (x1, x2, . . . , x1+m),

Nh̃1(x1,x2,...,x1+m)(x) = v1,

Nh̃2(x1,x2,...,x1+m)(v1) = v2,

Nh̃3(x1,x2,...,x1+m)(v2) = v3,

. . . ,

Nh̃k(x1,x2,...,x1+m)(vk−1) = vk

via symbolic computations. We refer to F = vk as a result of symbolic
computation with the given symbolic key and refer to a chain (x), vj ,
j = 1, 2, . . . , k as decomposition of vk into transition function of symbolic
automaton SV (Im). We identify vk with the corresponding multivariate
map from S(Km+1).
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We refer to the deformation rule G = τLvkτR and the chain vi,
i = 1, 2, . . . , k as decomposition of G of rank k into transition function of
symbolic vertex automaton of the graph Im. We say that G is symbolically
decomposed via linguistic graph Im.

Notice that for F = (f1, f2, . . . , fm+1) polynomial f1 coincides with
hk(x1, d1(x), d2(x), . . . , dt(x). Let us investigate the equation

F (p1, p2, . . . , pm+1) = (b1, b2, . . . , bm+1).

Assume that (b1, b2, . . . , bm+1) is an element of image of F and pi are
variables. Then hk(p1, d1(p), d2(p), . . . , dt(p)) = b1. We can rewrite it as
hk(p1, d1(b), d2(b), . . . , dt(b)) = b1. Notice that here we use the fact that
vertices (p1, p2, . . . , pm+1) and (b1, b2, . . . , bm+1) (points or lines) are in
the same connected component of the graph. Let us assume that for the
subset Ω of K the equation hk(p1, d1(b), d2(b), . . . , dt(b)) = b1, p1 ∈ Ω
has at most one solution. If b ∈ F (Ω×Km) then we can find the solution
p1 = p∗

1. After that we can compute

βk−1 = hk−1(p∗
1, d1(b), d2(b), . . . , dt(b)),

βk−2 = hk−2(p∗
1, d1(b), d2(b), . . . , dt(b)),

. . .

β1 = hk−2(p∗
1, d1(b), d2(b), . . . , dt(b)).

It allows us to compute

uk−1 = Nβk−1
(b1, b2, . . . , bm+1),

uk−2 = Nβk−2
(uk−1),

. . .

u1 = Nβk−2
(u2),

(p∗
1, p

∗
2, . . . , p

∗
m+1) = Np∗

1
(u1).

So the restriction of the map F on Ω×Km is injective. The equation
F (x) = b, where x ∈ Ω×Km, b ∈ F (Ω×Km) has a unique solution.

Let F ′ = τLFτR be the deformation of F and T = τL
−1(Ω × Km).

Then the equation F ′(x) = b for x ∈ T and b ∈ F ′(T ) has a unique
solution. We say that the multivariate transformation F ′ of Km+1 is
partially invertible on T . Such maps F ′ together with deformation rule
τLFτR and decomposition of F via transition functions of symbolic vertex
automaton of linguistic graph can be used in symmetric cryptography.
Let us consider two general examples in case K = Zl, l > 2.
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Example. Correspondents (Alice and Bob) take a linguistic graph Im

in cases r = s = 1 as above. Assume that they know the list of con-
nectivity invariants di(x1, x2, . . . , xm+1), i = 1, 2, . . . , t. They choose the
type of an initial state. Without loss of generality we can take point
(x1, x2, . . . , xm+1). They set the length of computation of vertex symbolic
automaton k and symbolic key

h1(z1, z2, . . . , zt+1), h2(z1, z2, . . . , zt+1), . . . hk(z1, z2, . . . , zt+1),

where hk = axr + f(z2, z3, . . . , zt+1), a ∈ Zl
∗, (r, φ(l)) = 1. They choose

affine transformation τL of kind

x1 → x1 + x2 + . . . xm+1, xj → lj(x1, x2, . . . , xm+1),

where lj(x1, x2, . . . , xm+1) are general linear transformation of Zl
m+1 into

Zl for j = 2, 3, . . . ,m+ 1, and general bijective affine transformation τR.
We assume that the graph Im, its connectivity invariants, and the

plainspace T = {(x1, x2, . . . , xm+1) ∈ Zl
m+1|x1 + x2 + · · · + xn ∈ Zl

∗}
are known to public. Cryptanalytic knows the general algorithm which
depends on some unknown τL, τR and some symbolic key. Correspondents
share the symbolic key hi(x1, x2, . . . , xt+1), i = 1, 2, . . . , k and affine
transformations τL and τR as above. Alice writes her plaintext p =
(p1, p2, . . . , pm+1). She computes the tuple τL(p) = (u1, u2, . . . , um+1) = u.
She computes values of connectivity invariants βi = di(u1, u2, . . . , um+1),
i = 1, 2, . . . , t. After that Alice gets the values of symbolic keys

γ1 = h1(u1, β1, β2, . . . , βt),

γ2 = h2(u1, β1, β2, . . . , βt),

. . . ,

γk = hk(u1, β1, β2, . . . , βt).

If chosen k is odd she takes the chain (u), Nγ1(u) = [u1], Nγ2([u1]) = (u2),
. . . , Nγk

((uk−1)) = [uk]. She takes τR(uk) = c as ciphertext. Notice that
in case of even K Alice gets Nγk

([uk−1]) = (uk).
Let us consider the decryption process. For simplicity we take the

case when k is odd. Bob takes c. He computes τR
−1(c) = uk. He takes

[uk] = [b1, b2, . . . , bn]. Bob computes parameters βi as di([b1, b2, . . . , bn])
for i = 1, 2, . . . , t.

Bob looks at expression axr + f(z2, z3, . . . , zt+1) and writes
the equation axr + f(β1, β2, . . . , βt) = b1. So he computes xr =
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(b1 − f(β1, β2, . . . , βt))a−1 = α. So Bob gets u1 as αr′

where r′ is a
multiplicative inverse in Zφ(l).

Now, Bob computes γi = hi(u1, β1, β2, . . . , βt), i = 1, 2, . . . , k − 1. So
he gets

Nγk−1
([uk]) = (uk−1), Nγk−2

((uk−1)) = [uk−2], . . . ,

Nγ1((u2)) = [u1], Nu1([u1]) = (u).

Finally Bob obtains τL
−1(u) = (p1, p2, . . . , ps).

Remark 1. It is easy to see that the scheme above can be easily modi-
fied in various ways. For instance, correspondents can use T = Zl

∗m+1

and take τL as linear monomial transformation (x1, x2, . . . , xm+1) →
(λ1x1, λ2x2, . . . , λm+1xm+1), where (λ1, λ2, . . . , λm+1) ∈ Zl

∗m+1.

Remark 2. The above scheme can produce rather fast symmetric en-
cryption algorithm in case of various linguistic graphs. It is easy to define
linguistic graph Im such that the neighbour of each vertex can be com-
puted in time O(m). We can take an empty list of connectivity invariants
(parameter t is zero). Assume that we work with sparse affine transforma-
tion τL and τR which can be completed in O(m) elementary steps. Then
the encryption algorithm above takes O(m) operations.

Towards public key algorithm. Alice can take a linguistic graph
Im in case r = s = 1 as above. She knows the list of connectivity invariants
di(x1, x2, . . . , xm+1), i = 1, 2, . . . , t. She chooses the type of initial state.
Without loss of generality we can take point (x1, x2, . . . , xm+1). Alice
chooses the length k of computation of vertex symbolic automaton k and
symbolic key

h1(z1, z2, . . . , zt+1), h2(z1, z2, . . . , zt+1), . . . , hk(z1, z2, . . . , zt+1),

where hk = axr + f(z2, z3, . . . , zt+1), a ∈ Zl
∗, (r, φ(l)) = 1. She chooses

affine transformation τL of kind

x1 → x1 + x2 + . . . xm+1, xj → lj(x1, x2, . . . , xm+1),

where lj(x1, x2, . . . , xm+1) are general linear transformation of Zl
m+1 into

Zl for j = 2, 3, . . . ,m+ 1, and general bijective affine transformation τR.
Alice takes the initial state x = (x1, x2, . . . , xm+1). She computes the

tuple τL(x) = (v1, v2, . . . , vm+1) = v, where vi are linear expressions in
variables x1, x2, . . . , xm+1. Notice that v1 = x1+x2+· · ·+xm+1. After that
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Alice takes computation of symbolic vertex automaton with symbolic key
hi, i = 1, 2, . . . , k starting in a new initial state (v1, v2, . . . , vm+1). It means
that Alice uses symbolic computations for the constructions of multivariate
invariants dt(v1, v2, . . . , vm+1) = d′

t(x1, x2, . . . , xm+1), i = 1, 2, . . . , t.
She computes h̃1 = h1(v1, d

′
2, . . . , d

′
t+1), h̃2 = h2(v1, d

′
2, . . . , d

′
t+1), . . .

h̃k = hk(v1, d
′
2, . . . , d

′
t+1).

Alice computes the chain of elements from Zl[x1, x2, . . . , xm+1]m+1

(vertices of symbolic automaton, points and lines). The point
v = (v1, v2, . . . , vm+1), line [v1] = Nh̃1

(v), point (v2) = Nh̃2
([v1]), . . . ,

(vk−1) = N ˜hk−1
((vk−2)), [vk] = Nh̃k

(vk−1). For simplicity we take odd k.
Alice treats F = vk as multivariate map and computes G = FτR

(composition of two maps).
Assume that Alice can complete all steps as above in polynomial time

and get a resulting map G of finite degree. Then she can write the standard
form of G: x1 → g1(x1, x2, . . . , xm+1), x2 → g2(x1, x2, . . . , xm+1), . . . ,
xm+1 → gm+1(x1, x2, . . . , xm+1), where gi, i = 1, 2, . . . ,m + 1 are given
by the lists of their monomial terms with respect to some standard order.

Then Alice can announce the public rules gi ∈ Zl[x1, x2, . . . , xm+1],
i = 1, 2, . . . ,m+1 to all of her correspondents together with the plainspace
Ωm+1 = {x ∈ Zl

m+1|x1 + x2 + · · ·+ xm ∈ Zl
∗}.

Public user (Bob) writes a message (p1, p2, . . . , pm+1) ∈ Ωm+1 and
computes the ciphertext (c1, c2, . . . , cm+1) where ci = gi(p1, p2, . . . , pm+1),
i = 1, 2, . . . ,m+ 1 and sends it to Alice.

Alice knows the deformation rule G = τLFτR and the symbolic
key which gives the decomposition of F into transition functions of the
symbolic vertex automaton of the graph. So she can use the decryption
process of symmetric encryption algorithm above and restore the plaintext
(p1, p2, . . . , pm+1).

Remark 3. Similarly to symmetric algorithm Alice can change Ωm+1

for T = Zl
∗m+1 and take τL as linear monomial transformation

(x1, x2, . . . , xm+1)→ (λ1x1, λ2x2, . . . , λm+1xm+1),

where (λ1, λ2, . . . , λm+1) ∈ Zl
∗m+1.

Remark 4. One can assume that cryptanalytic knows the family of
graphs Im defined over Zl, where l is known composite number.

We introduce free symbolic computation of odd case k for the general
linguistic graph Im over commutative ring K in case r = s = 1 as the
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sequence x = (x1, x2, . . . , xm+1) (initial state), line

Nz1(x) = [u1], u1 ∈ K[z1, x1, x2, . . . , xm+1]m+1,

Nz2([u1]) = (u2), u2 ∈ K[z1, z2, x1, x2, . . . , xm+1]m+1,

. . .

Nzk
((uk−1)) = [uk)], uk ∈ K[z1, z2, . . . , zk, x1, x2, . . . , xm+1]m+1.

3. On some extremal algebraic graphs

Recall that the girth is the length of minimal cycle in the simple graph.
Studies of maximal size ex(C3, C4, . . . , C2m, v) of the simple graph on v
vertices without cycles of length 3, 4, . . . , 2m, i. e. graphs of girth > 2m,
form an important direction of Extremal Graph Theory.

As it follows from the famous Even Circuit Theorem by P. Erdős’ we
have inequality

ex(C3, C4, . . . , C2n, v) 6 cv1+1/n,

where c is a certain constant. The bound is known to be sharp only for
2n = 4, 6, 8. The first general lower bounds of kind ex(v, C3, C4, . . . Cn) =
Ω(v1+c/n), where c is some constant < 1/2 were obtained in the 50th
by Erdős’ via studies of families of graphs of a large girth, i.e. infinite
families of simple regular graphs Γi of degree ki and order vi such that
g(Γi) > clogki

vi, where c is the independent of i constant. Erdős’ proved
the existence of such a family with arbitrary large but bounded degree
ki = k with c = 1/4 by his famous probabilistic method.

One of the first examples of the family of graphs of large girth is
the family of algebraic graphs CD(n, q) (see [15] and further references).
Graphs CD(n, q) appear as connected components of graphs D(n, q)
defined via system of quadratic equations [16].

Graphs D(n, q) and CD(n, q) have been used in symmetric cryptog-
raphy together with their natural analogs D(n,K) and CD(n,K) over
general finite commutative rings K since 1998 (see [17]). The theory of
directed graphs and language of dynamical system were very useful for
studies of public key and private key algorithms based on graphs D(n,K),
CD(n,K) (see [18–25] and further references).

There are several implementations of symmetric algorithms for cases of
fields ([26], [27], [30]) and arithmetical rings ([28], [29]). Some comparison
of bijective multivariate maps based on D(n,K) and other graphs A(n,K)
are considered in [31].
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4. Graphs D(n, K) and new algorithms related to them

Let P and L be two copies of Cartesian power K
N, where K is the

commutative ring and N is the set of positive integer numbers. Elements
of P will be called points and these of L lines.

To distinguish points from lines we use parentheses and brackets. If
x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt
the notation for co-ordinates of points and lines introduced in [16] for the
case of general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of
elements from K, such that only finite number of components are different
from zero.

We now define a linguistic incidence structure (P,L, I) defined by
infinite system of equations as follows. We say the point (p) is incident
with the line [l], and we write (p)I[l], if the following relations between
their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i,

l′i,i − p
′
i,i = li,i−1p0,1,

li,i+1 − pi,i+1 = li,ip0,1,

li+1,i − pi+1,i = l1,0p
′
i,i.

(1)

(These four relations are defined for i > 1, p′
1,1 = p1,1, l′1,1 = l1,1). The

incidence structure (P,L, I) we denote as D(K). We speak now of the
incidence graph of (P,L, I), which has the vertex set P ∪ L and edge set
consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer k > 2 we obtain a symplectic quotient
(Pk, Lk, Ik) as follows. Firstly, Pk and Lk are obtained from P and L,
respectively, by simply projecting each vector into its k initial coordinates.
The incidence Ik is then defined by imposing the first k−1 incidence
relations and ignoring all others. The incidence graph corresponding to
the structure (Pk, Lk, Ik) is denoted by D(k,K) (see [17]).

To facilitate notation in the future results on "connectivity invariants",
it will be convenient for us to define p−1,0 = l0,−1 = p1,0 = l0,1 = 0,
p0,0 = l0,0 = −1, p′

0,0 = l′0,0 = −1, p′
1,1 = p1,1, l

′
1,1 = l1,1 and to assume

that (1) are defined for i > 0.
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Notice, that for i = 0, the four conditions (6) are satisfied by every
point and line, and, for i = 1, the first two equations coincide and give
l1,1 − p1,1 = l1,0p0,1.

Let k > 6, t = [(k + 2)/4], and let u = (uα, u11, · · · , utt, u
′
tt,

ut,t+1, ut+1,t, · · · ) be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not
matter whether u is a point or a line). For every r, 2 6 r 6 t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). Similarly, we assume a = a(u) =
(a2, a3, · · · , at, . . . ) for the vertex u of infinite graph D(K).

Let ηn (η) be the equivalence relation:

uηnv ⇔ a(u) = a(v) (uτv ⇔ a(u) = a(v))

on the vertex set of graph D(k,K) (D(K)), respectively.

Proposition 1 (see [19] and further references).

(i) For any t− 1 ring elements xt ∈ K, 2 6 t 6 [(k+ 2)/4], there exists
a vertex v of D(n,K) for which a(v) = (x2, . . . , xt) = (x).

(ii) The equivalence class Cn for the equivalence relation τ on the set
K

n∪Kn is an isomorphic to the affine variety K
t∪Kt , t = [4/3n]+1

for n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

(iii) the vertex set Cn is the union of several connected components of
D(n,K).

Let C be the equivalence class on τ on the vertex set D(K), then the
induced subgraph with the vertex set C is the union of several connected
components of D(K).

We shall use notation C(t,K) (C(K)) for the induced subgraph of
D(n,K) (D(K)) with the vertex set Cn (vertex set C respectively).

The graph C(t,K) in the case of K = Fq coincides with CD(n, q)
which was introduced in [17].

The following statement was proven in [32].

Theorem 1. Let K be commutative ring with unity of characteristic d,
d 6= 2. Then graphs C(t,K), t > 6 and C(K) are connected.

If K = Fq, q is odd, then graph C(Fq) is a q-regular tree. In cases
char(K) = 2 the questions of the description of connected components of
C(t,K) and C(K) are open.
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5. The cryptosystem

We can rewrite result of [33] in the following form.

Proposition 2. Let Fn be a regular computation of free symbolic automa-
ton of linguistic graph D(n,Zl) and α1, α2, . . . , αk, where k is even, are
fixed elements of Zl. Then the map F̃n corresponding to a specialisation of
z2 = y+α1, z3 = z1 +α1, z4 = y+α3, z5 = z1 +α5, . . . , zk−1 = z1 +αk−1,
zk = y + αk is cubical multivariate map from K[z1, y, x1, x2, . . . , xn]m+1.

Remark 5. Similar proposition is true for odd k. The map F̃n corre-
sponding to a specialisation of z2 = y + α1, z3 = z1 + α1, z4 = y + α3,
z5 = z1 +α5, . . . , zk−1 = y+αk−1, zk = z1 +αk is cubical transformation
of Zl

n.

Proposition 3. Let Fn be a regular computation of an odd length s of
a symbolic vertex automaton of D(n.K) corresponding to symbolic key
h(z1, z2, . . . , zt)+α1, z1 +α2, h(z1, z2, . . . , zt)+α3, z1 +α4. . . . , z1 +αs−1,
h(z1, z2, . . . , zt) + αs, where h ∈ K[z1, z2, . . . , zt] has finite degree and αi,
i = 1, 2, . . . , s are constants from K. Then the degree of Fn is bounded by
3 deg h(x01, a2(x), a3(x), . . . , at(x)).

We say that the map Fn of Zl
n to itself is Eulerian partially invertible

map on the domain Ωn = {x|λ1x1 + λ2x2 + · · ·+ λnxn + αn+1 ∈ Zl
∗} if

it is partially invertible on Ωn and solution of equation Fn(x) = b, x ∈ Ω
and b ∈ Fn(Ωn) can be reduced to a solution of zr = a, z ∈ Zl

∗, r 6= 1,
(r, φ(l)) = 1.

Theorem 2. Let K = Zl, n be a natural number > 2, s is an odd
number > 3. For each domain of kind Ωn = {x|λ1x1 +λ2x2 + · · ·+λnxn +
λn+1 ∈ Zl

∗} in Zl
n, where λi 6= 0, i = 1, 2, . . . , n there is Eulerian map

Fn of finite degree which has a symbolic decomposition of rank s. If l is a
prime number, then Eulerian map Fn is a bijection.

Proof. Let us consider a symbolic vertex automaton constructed for the
family of graphs D(n,Zl). Let a2(x), a3(x), . . . , at(x), t = [(n + 2)/4]
be the list of quadratic connectivity invariants of the graph. We shall
use polynomials from Zl[u1, u2, . . . , ut] to form special symbolic key. For
f ∈ Zl[u1, u2, . . . , ut] we define f̃ as f(z1, a2(z), a3(z), . . . , at(z), where
(z) = (z1, z2, . . . , zn) is initial point of the symbolic vertex automaton of
graph D(n,Zl). We avoid double indexes for points and lines here. We
have a free choice to take H ∈ Zl[u1, u2, . . . , ut] to form a sequence of
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weights α1(z) = H̃+β1, α2(z) = z1 +β2, α3(z) = H̃+β3 , α4(z) = z1 +β4,
. . . , αs−1(z) = z1 +βs−1, αs(z) = H̃+βs, where βi, i = 1, 2, . . . , s are fixed
elements of Zl. Let F = Fn : Zl

n → Zl
n be the multivariate map generated

by symbolic computation above. We assume that H(u1, u2, . . . , ut) is
written in the form u1

r + S(u2, u3, . . . , ut), where S is arbitrary element
of Zl[u2, u3, . . . , ut] and r, r 6= 1 is a parameter such that (r, φ(m)) = 1.
Symbol φ standardly stands for Euler function. Let us consider non-
singular linear transformation τL : Zl

n → Zl
n of kind

z1 → λ1z1 + λ2z2 + · · ·+ λnzn + λn+1,

z2 → l2(z1, z2, . . . , zn),

z3 → l3(z1, z2, . . . , zn),

. . .

zn → ln(z1, z2, . . . , zn),

where li are linear expressions from Zl[z1, z2, . . . , zn] of general kind. We
form a composition Gn = τLFn.

Assume that z = (z1, z2, . . . , zn) is an element of Ωn. Let us identify
τL(z) = (y1, y2, . . . , yn) with the point of the graph D(n,Zl). Notice that
y1 ∈ Zl

∗. Let us show that the reimage of Gn(z) is uniquely determined.
We write the equation Gn(z) = (b1, b2, . . . , bn). It is clear that b1 =
y1

r + S(u2, u3, . . . , ut) + βs. Notice that tuples y (point) and b (line)
are located in the same connected component of the graph. So we have
ai(y) = ai(b) = γi, i = 2, 3, . . . , t. Thus y1

r + S(γ2, γ3, . . . , γt) + βs = b1.
Ler r′ be the multiplicative inverse of r in Zφ(l). We have y1 =

(b1 − S(γ2, γ3, . . . , γt)− βs)r′

= α.
The knowledge of parameter α allows us to compute all coordinates

of tuple y. Really, we can compute values αs−1 = α + βs−1, αs−2 =
H(α, γ2, γ3, . . . , γt)+βs−2,αs−3 = α+βs−3, . . . ,α1 = H(α, γ2, γ3, . . . , γt)+
β1, α0 = α.

The value of y can be computed recursively ys−1 = Nαs−1([b]), ys−2 =
Nαs−2((ys−1)), . . . y1 = Nα1((y2)), y0 = Nα((y1)) = (y1, y2, . . . , yn). The
tuple z equals τl

−1(y0).
The Proposition 3 establishes that the degree of Gn or Fn is bounded

by 3 deg(H̃(z)). If d = deg(S̃) > r then the degree of Gn is bounded by 3d.
Notice, that in case of prime l the equation y1

r +S(γ2, γ3, . . . , γt)+βs = b1,
r 6= 0 mod p−1 is always solvable for y1. So maps Fn andGn are bijections.

Remark 6. In the theorem above we can change domain Ωn for Zl
∗n.
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Really we have to change a transformation τL in the proof for a linear
monomial map (x1, x2, . . . , xn) → (λ1xπ(1), λ2xπ(2), . . . , λnxπ(n)), where
λi, i = 1, 2, . . . , n are elements of Zl

∗ and π is a permutation from Sn.

The cryptosystem. Assume that Alice is the holder of a public key
based on the family of maps used in the constructive proof of the previous
theorem. So she takes l, l > 2 and parameter r, such that (r, φ(l)) = 1.
She chooses the odd length s, s > 3 of symbolic key for practical use
we set size O(n) for value of s. For example, Alice chooses the area
Ωn = {x|x1 + x2 + · · ·+ xn ∈ Zl

∗} which will be a domain for Eulerian
map of G = Zl

n. Alice has a rather wide choice to pick the function
S ∈ Zl[u2, u3, . . . , ut], t = [(n + 2)/4] and parameters β1, β2, . . . , βs to
form the symbolic key. She has set l1 = x1 + x2 + . . . , xn and may choose
various linear functions li ∈ Zl[x1, x3, . . . , xn], i = 2, 3, . . . , n to form
bijective affine map τl of Zl

n to itself. Finally, she has a free choice for
another affine map τR.

So in polynomial time Alice generates map Fn via computation of
symbolic vertex automaton of linguistic graph D(n,Zl) with the symbolic
key: α1(z) = H̃ + β1, α2(z) = z1 + β2, α3(z) = H̃ + β3, α4(z) = z1 + β4,
. . . , αs−1(z) = z1 + βs−1, αs(z) = H̃ + βs, where βi, i = 1, 2, . . . , s
are fixed elements of Zl. She computes the deformation Gn = τLFnτR

in standard form x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . ,
xn → gn(x1, x2, . . . , xn), where gi, i = 1, 2, . . . , n are given by list of their
monomial terms in some chosen order. Notice, that the degree of Gn is
bounded by constant.

Alice announces the public the standard form of Gn and keeps data
described above in secret. Cryptanalytic knows used graph and general
form of a symbolic key.

Assume that a public user (Bob) creates an open text p=(p1,p2,. . . ,pn).
He computes Gn((p1, p2, . . . , pn)) = (c1, c2, . . . , cn). Bounded degree of
Gn insures that the computation of ciphertext can be computed in a
polynomial time O(nc) for some positive constant c.

The knowledge of deformation rule Gn = τLFnτR and the docompo-
sition of Fn into transition functions of symbolic vertex automaton of
D(n,Zl) allows her to decrypt in polynomial time with the algorithm
described in a previous section.

Remark 7. Alice can use Zl
∗n instead of Ωn = {x|x1+x2+· · ·+xn ∈ Zl

∗}.
In this case τL has to be chosen as monomial transformation.

Remark 8. In case of prime l we can change function H + bs for
much more sophisticated expression. For instance Z(x2, x3, . . . , xt)f(x1)+
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S(x2, x3, . . . , xt) where Z(x2, x3, . . . , xt) = 0 has no solution but f(x1) =
d has exactly one solution in variable x1 for each d.

Let h(x) ∈ Zp[x] has no linear divisors. Then Z(x2, x3, . . . , xt) =
h(M(x2, x3, . . . , xt))) is always different from zero for each M ∈
K[x2, x3, . . . , xt].

The simplest case where we can use M(x2, x3, . . . , xt)(x1
r) +

S(x2, x3, . . . , xt), where (r, p−1) = 1 and the equationM(x2, x3, . . . , xt) =
0 has no solution. We say that such a cryptosystem is based on hidden
discrete logarithm problem. For general parameter l we use the term
hidden Eulerian equation. We can use recurrent expressions

Mk(. . . (M2(M1(x2, x3, . . . , xt)(x1
r1) + S1(x2, x3, . . . , xt))

r2

+S2(x2, x3, . . . , xt)) + . . .Mk−1(x2, x3, . . . , xt)(x1
rk−1)

+Sk−1(x2, x3, . . . , xt))
rk + Sk(x2, x3, . . . , xt)),

where Mi(x2, x3, . . . , xt) = 0 have no solutions for each i = 1, 2, . . . , k.

References
[1] J. Ding, J. E. Gower, D. S. Schmidt, Multivariate Public Key Cryptosystems, 260.

Springer, Advances in Information Security, v. 25, (2006).

[2] V. A. Ustimenko, Explicit constructions of extremal graphs and new multivari-
ate cryptosystems, Studia Scientiarum Mathematicarum Hungarica, Special issue
“Proceedings of The Central European Conference, 2014, Budapest”,volume 52,
issue, June 2015, pp. 185-204.

[3] V. A. Ustimenko, Graphs with Special Arcs and Cryptography, Acta Applicandae
Mathematicae, vol. 71, N2, November 2002, 117-153.

[4] V. Ustimenko, On the extremal graph theory for directed graphs and its crypto-
graphical applications, In: T. Shaska, W.C. Huffman, D. Joener and V. Ustimenko.
Advances in Coding Theory and Cryptography. Series on Coding and Cryptology,
V. 3, 2007, P. 181–200.

[5] V. A. Ustimenko, On the flag geometry of simple group of Lie type and Multivariate
Cryptography, Algebra and Discrete Mathematics. V. 19. No 1. 2015. P. 130-144.

[6] V. Ustimenko, On walks of variable length in Schubert incidence systems and
multivariate flow ciphers, Dopovidi of Nathional Acad. Sci. of Ukraine, 2014, No
3, P. 55 - 150.

[7] N. Koblitz, Algebraic aspects of cryptography, Springer (1998).

[8] V. Ustimenko, On Multivariate Cryptosystems Based on Computable Maps with
Invertible Decompositions, Annales of UMCS, Informatica, volume 14 (2014) ,
Special issue “Proceedings of International Conference Cryptography and Security
Systems”, pp. 7-18.

[9] J. Patarin, The Oil and Vinegar digital signatures, Dagstuhl Workshop on Cryp-
tography. 1997.



V. Ustimenko 169

[10] Kipnis A., Shamir A., Cryptanalisis of the Oil and Vinegar Signature Scheme,
Advances in Cryptology - Crypto 96, Lecture Notes in Computer Science, V. 1462,
1996, P. 257–266.

[11] S. Bulygin, A. Petzoldt, and J. Buchmann, Towards provable security of the
unbalanced oil and vinegar signature scheme under direct attacks, In Guang Gong
and Kishan Chand Gupta, editors, “Progress in Cryptology - INDOCRYPT”,
Guang Gong and Kishan Chand Gupta, editors, Lecture notes in Computer
Science, V. 6498, 2010. P. 17–32.

[12] U. Romanczuk-Polubiec, V. Ustimenko, On two windows multivariate cryptosystem
depending on random parameters, Algebra and Discrete Mathematics, 2015, V. 19.
No. 1. P. 101–129.

[13] F. Harary, Graph Theory, Addison-Wesley Publishing Co, Reading, MA (1966).

[14] V. Ustimenko, Maximality of affine group, hidden graph cryptosystem and graph’s
stream ciphers, Journal of Algebra and Discrete Mathematics, 2005, v.1, pp 51-65.

[15] F.Lazebnik , V. Ustimenko and A.J.Woldar, A new series of dense graphs of high
girth, Bulletin of the AMS 32 (1) (1995), 73-79.

[16] F. Lazebnik, V. Ustimenko, Explicit construction of graphs with arbitrary large
girth and of large size, Discrete Applied Mathematics 60 (1995), 275-284.

[17] V. Ustimenko, Coordinatisation of Trees and their Quotients, in the Voronoj’s
Impact on Modern Science, Kiev, Institute of Mathematics, 1998, vol. 2, 125-152.

[18] V. Ustimenko, CRYPTIM: Graphs as Tools for Symmetric Encryption, Lecture
Notes in Computer Science, Springer, LNCS 2227, Proceedings of AAECC-14
Symposium on Applied Algebra, Algebraic Algorithms and Error Correction Codes,
November 2001, p. 278-286.

[19] V. Ustimenko, Linguistic Dynamical Systems, Graphs of Large Girth and Cryptog-
raphy, Journal of Mathematical Sciences, Springer, vol.140, N3 (2007) pp. 412-434.

[20] V. Ustimenko, On the graph based cryptography and symbolic computations, Serdica
Journal of Computing, Proceedings of International Conference on Application of
Computer Algebra, ACA-2006, Varna, N1 (2007).

[21] V. Ustimenko, U. Romanczuk, On Extremal Graph Theory, Explicit Algebraic
Constructions of Extremal Graphs and Corresponding Turing Encryption Machines,
in "Artificial Intelligence, Evolutionary Computing and Metaheuristics ", In the
footsteps of Alan Turing Series: Studies in Computational Intelligence, Vol. 427,
Springer, January, 2013, 257-285.

[22] V. Ustimenko, U. Romanczuk, On Dynamical Systems of Large Girth or Cycle
Indicator and their applications to Multivariate Cryptography, in "Artificial Intel-
ligence, Evolutionary Computing and Metaheuristics ", In the footsteps of Alan
Turing Series: Studies in Computational Intelligence, Volume 427/2012, 257-285.

[23] V. Ustimenko, On the cryptographical properties of extreme algebraic graphs, in
“Algebraic Aspects of Digital Communications” IOS Press (Lectures of Advanced
NATO Institute, NATO Science for Peace and Security Series - D: Information
and Communication Security, Volume 24, July 2009, 296 pp.

[24] U. Romanczuk-Polubiec, V. Ustimenko, On Multivariate Cryptosystems Based
on Polynomially Compressed Maps with Invertible Decompositions, Cryptogra-
phy and Security Systems, Third International Conference, CSS 2014, Lublin,



170 On algebraic graph theory in cryptography

Poland, September 22-24, 2014. Proceedings, Communications in Computer and
Information Science, 448, p. 23-37.

[25] M. Klisowski, V. Ustimenko, Graph based cubical multivariate maps and their
cryptographical applications, in “Advances on Superelliptic curves and their Applica-
tionsions”, IOS Press, NATO Science for Peace and Security series –D: Information
and Communication Security, 2015, v. 41, 201, pp. 305-327.

[26] A. Tousene, V. Ustimenko, CRYPTALL - a System to Encrypt All types of Data,
Notices of Kiev-Mohyla Academy, v. 23, 2004, pp. 12-15.

[27] A. Touzene, V. Ustimenko, Graph Based Private Key Crypto System, International
Journal on Computer Research, Nova Science Publisher, v. 13 (2006), issue 4,
12pp.

[28] J. Kotorowicz, V. Ustimenko, On the implementation of cryptoalgorithms based on
algebraic graphs over some commutative rings, Condenced Matters Physics, Special
Issue: Proceedings of the international conferences “Infinite particle systems,
Complex systems theory and its application", Kazimerz Dolny, Poland, 2006, 11
(no. 2(54)) (2008) 347–360.

[29] V. Ustimenko, S. Kotorowicz, On the properties of Stream Ciphers Based on Ex-
tremal Directed graphs, In "Cryptography Research Perspectives", Nova Publishers,
Ronald E. Chen (the editor), 2008.

[30] , A. Touzene, V. Ustimenko, Marwa AlRaisi, Imene Boudelioua, Performance
of Algebraic Graphs Based Stream-Ciphers Using Large Finite Fields, Annalles
UMCS Informatica AI X1, 2 (2011), 81-93.

[31] V. A. Ustimenko, M. Klisowski, On the Comparison of Cryptographical Properties
of Two Different Families of Graphs with Large Cycle Indicator, Mathematics in
Computer Science, 2012, V. 6, Number 2, pp. 181-198.

[32] V. A. Ustimenko, Algebraic groups and small world graphs of high girth, Albanian
J. Math, vol3, N1 (2009), 25-33.

[33] V. A. Ustimenko, A. Wroblevska, On the key exchange with nonlinear polynomial
map of stable degree, arXiv:1304, 2920, v.1.

Contact information

V. Ustimenko University of Maria Curie Skłodowska in Lublin
E-Mail(s): vasyl@hektor.umcs.lublin.pl

Received by the editors: 30.09.2015
and in final form 30.09.2015.



Contents

Editorial board A

Instructions for authors B

Efim Zelmanov. To the 60th anniversary C

* * *

J. P. Acosta,

O. Lezama

Universal property of skew PBW
extensions

1

O. D. Artemovych,

M. P. Lukashenko

Lie and Jordan structures of

differentially semiprime rings

13

V. M. Bondarenko,

Y. V. Zaciha

On characteristic properties of

semigroups

32

P. Catarino,

P. Vasco,

H. Campos,

A. P. Aires,

A. Borges

New families of Jacobsthal and

Jacobsthal-Lucas numbers

40

M. Dokuchaev,

V. Kirichenko,

M. Plakhotnyk

Quivers of 3× 3-exponent matrices 55
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