Algebra and Discrete Mathematics Volume 14 (2012). Number 2. pp. 267 – 275 © Journal "Algebra and Discrete Mathematics"

Prethick subsets in partitions of groups

Igor Protasov and Sergiy Slobodianiuk

ABSTRACT. A subset S of a group G is called *thick* if, for any finite subset F of G, there exists $g \in G$ such that $Fg \subseteq S$, and *k*-prethick, $k \in \mathbb{N}$ if there exists a subset K of G such that |K| = kand KS is thick. For every finite partition \mathcal{P} of G, at least one cell of \mathcal{P} is *k*-prethick for some $k \in \mathbb{N}$. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each $k \in \mathbb{N}$, G can be partitioned in two not *k*-prethick subsets.

Introduction

For a group G and a natural number k, we use the standard notations $[G]^k$ and $[G]^{<\omega}$ for the set of all k-subsets of G and the set of all finite subsets of G.

A subset S of G is called

- large if G = KS for some $K \in [G]^{<\omega}$;
- thick if $G \setminus S$ is not large;
- *k*-prethick if there exists $K \in [G]^k$ such that KS is thick;
- prethick if S is k-prethick for some $k \in \mathbb{N}$;
- small if $L \setminus S$ is large for each large subset L of G;
- *P-small* if there exists an injective sequence $(g_n)_{n \in \omega}$ in *G* such that the subsets $\{g_n S : n \in \omega\}$ are pairwise disjoint;
- thin if $S \cap gS$ is finite for each $g \in G \setminus \{e\}$, e is the identity of G.

2010 MSC: 05B40, 20A05.

Key words and phrases: thick and k-prethick subsets of groups, k-meager partition of a group.

To be precise we should add the adjective "left" to each of above definitions because each of them has the "right" counterpart, for example, S is right large if G = SF for some $F \in [G]^{<\omega}$. But in this paper we deal only with left-side versions, so we omit the adjective "left". In the dynamical terminology [6, p. 85], a large subset is called syndetic. A subset S is prethick if and only if there exists $K \in [G]^{<\omega}$ such that, for each $F \in [G]^{<\omega}$, $Fg \subseteq KS$ for some $g \in G$, so a prethick subset is exactly a piecewise syndetic set in the terminology of [6, p. 85]. We note also that large, small, thick and thin subsets can be defined in much more general context of balleans [14], [16], [17].

Every infinite group G can be partitioned in \aleph_0 large subsets [11] and in \aleph_0 small subsets [12]. If G is amenable then G can not be partitioned in $> \aleph_0$ large subsets. If H is a countable subgroup of G and G = HR is a decomposition of G into right cosets then $\{hR : h \in H\}$ is a partition of Gin \aleph_0 P-small subsets. P-small subsets were introduced by I. Prodanov [10] and studied systematically by T. Banakh and N. Lyaskovska [1], [2], [8].

Every infinite group G can be partitioned in |G| thick subsets [9]. For generalizations and applications of this statement see [4], [13]. For an infinite group G, $\mu(G)$ denotes the minimal cardinal k such that G can be partitioned in k thin subsets. By [15], $\mu(G) = |G|$ if |G| is a limit cardinal and $\mu(G) = \kappa$ if $|G| = \kappa^+$.

Let G be a group and let $A_1, \cup \ldots \cup A_n$ be a partition of G. By [6, Corollary 4.41], at least one cell of the partition is prethick, for an elementary proof of much more general statement see [16, Theorem 11.2]. By [7, Theorem 12.7], there exists a cell A_i and $K \in [G]^{<\omega}$ such that $G = KA_iA_i^{-1}$ and $|K| \leq 2^{2^{n-1}-1}$. It is an open problem [7, Problem 13.4.4] whether K can be chosen so that $|K| \leq n$. This is so if G is amenable [16, Theorem 12.8]. Comparing these results, we run into the following question.

Given an infinite group G, does there exist a natural number k = k(G)such that, for any partition $G = A_1 \cup A_2$, at least one cell of the partition is k-prethick?

We give a negative answer to this question if G is either Abelian, or countable locally finite, or countable residually finite.

Recall that a group G is *locally finite* if every finite subset of G generates a finite subgroup and *residually finite* if for every $g \in G \setminus \{e\}$ there is a normal subgroup N of finite index such that $g \notin N$.

For convenience of formulations, we say that a partition \mathcal{P} of a group G is *k*-meager if each cell of \mathcal{P} is not *k*-prethick, equivalently, $G \setminus KP$ is large for all $P \in \mathcal{P}$ and $K \in [G]^k$.

1. Results

Theorem 1. For every countable residually finite group G and every $k \in \mathbb{N}$, there exists a k-meager 2-partition of G.

Proof. We enumerate the family $[G]^k$ as $\{K_n : n \in \omega\}$ and choose a decreasing chain $\{N_n : n \in \omega\}$ of subgroups of finite index of G such that $\bigcap_{n \in \omega} N_n = \{e\}$, e is the identity of G. Suppose that there exist two injective sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$ in G such that

$$K_i a_i N_i \cap K_j b_j N_j = \emptyset$$

for all $i, j \in \omega$. We put

$$A = \bigcup_{i \in \omega} K_i a_i N_i, \quad B = G \setminus A,$$

and show that A is not k-prethick. On the contrary, assume that KA is thick for some $K \in [G]^k$ and pick $n \in \omega$ such that $K = K_n^{-1}$. Let L_n be a set of representatives of left cosets of G by N_n . Since $K_n^{-1}A$ is thick and L_n is finite, there exists $g \in G$ such that $L_ng \subset K_n^{-1}A$. Clearly, $L_ngN_n = L_nN_n = G$ so $b_n \in K_n^{-1}AN_n$ and $K_nb_nN_n \cap A = \emptyset$, a contradiction. The same arguments show that B is not k-prethick.

To construct the sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$ we need some special choice of $\{N_n : n \in \omega\}$:

$$(2k)^2 \sum_{i=0}^n \frac{1}{|G:N_i|} < 1.$$

Since $|G: N_0| > (2k)^2 > k^2$, there is $g_0 \in G \setminus K_0^{-1} K_0 N_0$. We put $a_0 = e, b_0 = g_0$, so $K_0 a_0 N_0 \cap K_0 b_0 N_0 = \emptyset$. Suppose we have chosen a_0, \ldots, a_n and b_0, \ldots, b_n such that

$$K_i a_i N_i \cap K_j b_j N_j = \emptyset, \ i, j \in \{0, \dots, n\}.$$

Since $|G: N_{n+1}| > k^2$, there is g_{n+1} such that

$$K_{n+1}N_{n+1} \cap K_{n+1}g_{n+1}N_{n+1} = \emptyset.$$

Let us consider the set

$$S = \bigcup_{i=0}^{n} (K_i a_i N_i \cup K_i b_i N_i),$$

denote by pr the canonical projection $G \to G/N_{n+1}$ and observe that

$$|pr(K_{n+1} \cup K_{n+1}g_{n+1})^{-1}S| \leq (2k)^2 \sum_{i=0}^n |N_i : N_{n+1}| = (2k)^2 \sum_{i=0}^n \frac{|G : N_{n+1}|}{|G : N_i|} < |G : N_{n+1}|.$$

We take $h \in G$ such that $pr(h) \notin pr(K_{n+1} \cup K_{n+1}g_{n+1})^{-1}S$. Then $(K_{n+1}hN_{n+1}) \cup K_{n+1}g_{n+1}hN_{n+1}) \cap S = \emptyset$. We put $a_{n+1} = h$, $b_{n+1} = g_{n+1}h$.

After ω steps, we get the required sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$. \Box

Theorem 2. For every countable locally finite group G and every $k \in \mathbb{N}$, there exists a k-meager 2-partition of G.

Proof. We enumerate the family $[G]^k$ as $\{K_n : n \in \omega\}$ and write G as a union of an increasing chain of finite subgroups $\{G_n : n \in \omega\}$ and, for each $n \in \omega$, pick a system R_n of representatives of right cosets of G by G_n and note that $R_n \cap G_n = \{e\}$. Suppose there exist two injective sequences in G such that

$$a_i \in G_i, b_i \in G_i, \quad K_i a_i R_i \cap K_j b_j R_j = \emptyset$$

for all $i, j \in \omega$. We put

$$A = \bigcup_{i \in \omega} K_i a_i R_i, \ B = G \setminus A$$

and show that A is not k-prethick. On the contrary, assume that KA is thick for some $K \in [G]^k$ and pick $n \in \omega$ such that $K = K_n^{-1}$. Since $K_n^{-1}A$ is thick and G_n is finite, there exists $g \in R_n$ such $G_ng \subset K_n^{-1}A$. Then $b_ng \in K_n^{-1}A$ but $K_nb_nR_n \cap A = \emptyset$, a contradiction. The same arguments show that B is not k-prethick.

To construct the sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$ we need a special choice of $\{G_n : n \in \omega\}$ and $\{R_n : n \in \omega\}$. For each $n \in \omega$, we pick $g_n \in G$ such that $K_n \cap K_n g_n = \emptyset$. We choose $\{G_n : n \in \omega\}$ so that, for each $n \in \omega$:

$$K_n \cup K_n g_n \subset G_n, \quad K_n \cap K_n g_n = \varnothing, \quad (2k)^2 \sum_{i=0}^n \frac{1}{|G_i|} < 1.$$

For each $n \in \omega$, we take an arbitrary system X_n of representatives of right cosets of G_{n+1} by $G_n, X_n \cap G_n = \{e\}$ and put

$$R_{n,m} = X_n X_{n+1} \dots X_m, \quad R_n = \bigcup_{m \ge n} R_{n,m}.$$

We put $a_0 = e$, $b_0 = g_0$, so $a_0, b_0 \in G_0$, $K_0 a_0 \cup K_0 b_0 \subset G_0$, $K_0 a_0 R_0 \cap K_0 b_0 R_0 = \emptyset$. Suppose we have chosen a_0, \ldots, a_n and b_0, \ldots, b_n such that $a_i \in G_i, b_i \in G_i$ and

$$K_i a_i \cup K_i b_i \subset G_i, \quad K_i a_i R_i \cap K_j b_j R_j = \emptyset$$

for all $i, j \in \{0, \ldots, n\}$. We denote

$$S = \bigcup_{i=0}^{n} (K_i a_i R_{i,n+1} \cup K_i b_i R_{i,n+1}),$$

observe that $S \subset G_{n+1}$ and

$$|(K_{n+1} \cup K_{n+1}g_{n+1})^{-1}S| \leq (2k)^2 \sum_{i=0}^n \frac{|G_{n+1}|}{|G_n|} < |G_{n+1}|.$$

We take $h \in G_{n+1} \setminus (K_{n+1} \cup K_{n+1}g_{n+1})^{-1}S$, put $a_{n+1} = h$, $b_{n+1} = g_{n+1}h$. Then $(K_{n+1}a_{n+1} \cup K_{n+1}b_{n+1}) \cap S = \emptyset$. It follows that $K_i a_i R_i \cap K_j b_j R_j = \emptyset$ for all $i, j \in \{0, ..., n+1\}$.

After ω steps, we get the required sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$.

Lemma 1. Let G_1, G_2 be groups, G be a direct product of G_1 and G_2 , $k \in \mathbb{N}$. If there exists a k-meager 2-partition of G_1 then G also admits such a partition.

Proof. If $A \cup B$ is a k-meager partition of G_1 then $(A \otimes G_2) \cup (B \otimes G_2)$ is a k-meager partition of G.

Lemma 2. Let an infinite group G be a subgroup of a direct product $H = \bigotimes_{\alpha < \kappa} H_{\alpha}$ of countable groups, S be a countable subset of G. Then there exists a countable subgroup S' of G and a subgroup T of G such that $S \subseteq S'$ and $G = S' \otimes T$.

Proof. We denote by S_0 the subgroup of G generated by S and choose a countabe subset $I_0 \subseteq \kappa$ such that $S \subseteq \bigotimes_{\alpha \in I_0} H_\alpha$. If $pr_{I_0}G = S_0$ then $G = S_0 \otimes pr_{\kappa \setminus I_0}G$. Otherwise, we choose a countable subgroup S_1 of G such that $pr_{I_0}G = S_1$ and a countable subset $I_1 \subseteq \kappa$ such that $S_1 \subseteq \bigotimes_{\alpha \in I_1} H_\alpha$. If $pr_{I_1}G = S_1$ then S_1 is a direct factor of G. Otherwise, we choose a countable subgroup S_2 of G such that $pr_{I_1}G = pr_{I_1}S_2$ and a countable subset $I_2 \subseteq \kappa$ such that $S_2 \subseteq \bigotimes_{\alpha \in I_2} H_\alpha$. Proceeding by this way, we either get a direct factor S_n on some step $n \in \omega$ or a direct factor $S' = \bigcup_{n \in \omega} S_n$. **Lemma 3.** Each countable subset S of an Abelian group G is contained in some countable direct factor S' of G.

Proof. Apply Lemma 2 and Theorems 23.1 and 24.1 from [5].

Theorem 3. For every infinite Abelian group G and every $k \in \mathbb{N}$, there exists a k-meager 2-partition of G.

Proof. Applying Lemma 1 and Lemma 3, we may suppose that G is countable. We use [5, Theorem 21.3] to write G as a direct sum $G = D \oplus R$ of the divisible part D of G and some reduced group R. Since $\bigcap_{n \in \mathbb{N}} nR = \{0\}$ and R/nR is a direct sum of cyclic groups, R is residually finite. If R is infinite, we apply Theorem 1 and Lemma 1, so we may suppose that D is infinite. If D contains a Prüffer p-group, we apply Theorem 2 and Lemma 1. In view of [5, Theorem 23.1] and Lemma 1, it remains to prove theorem for the group \mathbb{Q} of rational numbers.

We put $I = \{x \in \mathbb{Q} : 0 \leq x < 1\}$ and write \mathbb{Q} as a sum $\mathbb{Z} + I$. By Theorem 1, there exists a 3k-meager partition $\mathbb{Z} = A_0 \cup B_0$. We put

$$A = A_0 + I, \ B = B_0 + I$$

and show that A, B are not k-prethick in \mathbb{Q} . On the contrary, assume that one cell, say A, is k-prethick and choose $K \in [\mathbb{Q}]^k$ such that K + A is thick. Take an arbitrary $C \in [\mathbb{Z}]^k$ and pick $q \in \mathbb{Q}$ such that $q+C \subset K+A$. We write $q = \lfloor q \rfloor + x, x \in I, \lfloor K \rfloor = \{\lfloor x \rfloor : x \in K\}$. Then

$$\lfloor q \rfloor + x + C \subset \lfloor K \rfloor + I + A_0 + I,$$

so $\lfloor q \rfloor + C \subset \lfloor K \rfloor + A_0 + I + I - I$ and

$$|q| + C \subseteq (\{-1, 0, 1\} + |K|) + A_0,$$

which is impossible because A_0 is not 3k-thick.

2. Comments

We do not know whether every infinite group G admits a k-meager 2-partition for each $k \in \mathbb{N}$, so we formulate some partial questions in this direction.

Question 1. Does an infinite group G admit a k-meager 2-partition, $k \in \mathbb{N}$ provided that G is finitely generated? G is amenable? G is a free group of uncountable rank? G is the group of all permutations of ω ?

By [16, Theorem 3.9], an infinite group G can be partitioned in two large subsets $G = A_1 \cup A_2$. Clearly, A_1, A_2 are not thick, so $A_1 \cup A_2$ is a a 1-meager 2-partition.

Question 2. Does an infinite group G admit a 2-meager 2-partition?

Let G be a finite group, A be a non-empty subset of G, |G| = n, |A| = m. By [18], there exists a subset B of G such that G = BA and $|B| < \frac{n}{m}(\log m + 2)$, so A is k-prethick for $k \ge \frac{n}{m}(\log m + 2)$. Hence, any 2-partition of G is not k-meager for $k \ge 2(\log n + 2)$.

For $k, m \in \mathbb{N}$, we say that a subset S of G is

- *m*-thick if, for every $F \in [G]^m$, there exists $g \in G$ such that $Fg \subseteq S$;
- (k, m)-prethick if there exists $K \in [G]^k$ such that KS is m-thick.

Question 3. Given a group G, does there exist k = k(G,m) such that, for every 2-partition of G, at least one cell is (k,m)-prethick? For m = 2, this is so: k = 2.

In what follows all group topologies are supposed to be Hausdorff.

Recall that a topological group G is *totally bounded* if each neighbourhood of e is large (equivalently, G is a subgroup of some compact topological group). If A is a thick subset of G then $A \cap gU \neq \emptyset$ for every $g \in G$ and every neighbourhood U of e, so A is dense in G. The converse statement does not hold: every countable totally bounded group has a small dense subset [3].

Question 4. Let G be an infinite totally bounded group, $k \in \mathbb{N}$. Does there exist a partition $G = A_1 \cup A_2$ such that KA_1 and KA_2 are not dense for each $K \in [G]^k$?

If G is countable, this is so. We take a sequence $(U_n)_{n\in\omega}$ of compact neighbourhoods of the identity in the completion H of G such that, for each $n \in \omega$,

$$(2k)^2 \sum_{i=0}^n \mu(U_i) < 1,$$

where μ is the Haar measure on H. Following the proof of Theorem 1 with U_n instead of N_n , we can choose two injective sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$ and a sequence of compact neighbourhoods $(V_n)_{n \in \omega}$ of the identity in H such that $V_i \subset U_i$ and $K_i a_i V_i \cap K_j b_j V_j = \emptyset$ for all $i, j \in \omega$. We put

$$A = \bigcup_{i \in \omega} K_i a_i (V_i \cap G), \quad B = G \setminus A,$$

and note that KA, KB are not dense in G for each $K \in [G]^k$.

Thus, Theorem 1 remains true if a countable group G is a subgroup of a compact topological group. Since each Abelian group admits a totally bounded topology, we get a proof of Theorem 3 with usage of Lemmas 1 and 3 but no reference to Theorem 2.

If a countable topological group G is not totally bounded then G can be easily partitioned $G = A \cup B$ so that KA, KB are not dense for each $K \in [G]^{<\omega}$. We choose a neighbourhood U of e such that $G \neq FU$ for each $F \in [G]^{<\omega}$, enumerate $\{K_n : n \in \omega\}$ the family $[G]^{<\omega}$ and choose inductively two injective sequences $\langle a_n \rangle_{n \in \omega}$, $(b_n)_{n \in \omega}$ in G such that

$$K_i a_i W \cap K_j b_j W = \emptyset$$

for all $i, j \in \omega$. Put $A = \bigcup_{i \in \omega} K_i a_i W$, $B = G \setminus A$.

Given a countable non-discrete topological group with countable base of topology, it is easy to find a thin dense subset.

Question 5. Let G be a countable totally bounded group. Has G a thin dense subset? What about $G = \mathbb{Z}^{\#}$, the group \mathbb{Z} endowed with the maximal totally bounded topology?

Question 6. How can one detect whether a given subset A of \mathbb{Z} is dense in $\mathbb{Z}^{\#}$?

References

- T. Banakh, N. Lyaskovska, Weakly P-small not P-small subsets in groups, Intern. J. Algebra Computation, 18(2008), 1–6.
- [2] T. Banakh, N. Lyaskovska, D. Repovš, Packing index of subsets in Polish groups, Notre Dame J. Formal Logic, 50(2009), 453–468.
- [3] A. Bella, V. Malykhin, Certain subsets of a group, Questions Answers General Topology, 17 (1999), 183–187.
- [4] T. Carlson, N. Hindman, J. Mcleod, D. Strauss, Almost disjoint large subsets of a semigroups, Topology Appl., 155(2008), 433–444.
- [5] L. Fuchs, *Infinite Abelian Groups*, Vol. 1, Academic Press, New York and London, 1970.
- [6] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: Theory and Applications, Walter de Grueter, Berlin, New York, 1998.
- [7] The Kourovka Notebook, Novosibirsk, 1995.
- [8] N. Lyaskovska, Constructing subsets of given packing index in Abelian groups, Acta Universitatis Carolinae, Mathematica et Phisica, 48 (2007), 69–80.
- [9] V. Malykhin, I. Protasov, Maximal resolvability of bounded groups, Topology Appl., 20 (1996), 1–6.

- [10] I. Prodanov, Some minimal topologies are precompact, Math. Ann., 227 (1977), 117–125.
- [11] I. Protasov, Partition of groups into large subsets, Math. Notes, 73 (2003), 271–281.
- [12] I. Protasov, Small systems of generators of groups, Math. Notes, 76 (2004), 420– 426.
- [13] I. Protasov, Cellularity and density of balleans, Appl. General Topology, 8 (2007), 283–291.
- [14] I. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull.,7(2010), 220-257.
- [15] I. Protasov, Partition of groups into thin subsets, Algebra and Discrete Math, 11(2011), 88–92.
- [16] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.
- [17] I. Protasov, M. Zarichnyi, *General Asymptology*, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007
- [18] G. Weinstein, Minimal complementary sets, Trans. AMS, 212(1975), 131-137.

CONTACT INFORMATION

I. V. Protasov	Department of Cybernetics, Kyiv National University, Volodymirska 64, 01033, Kyiv, Ukraine <i>E-Mail:</i> i.v.protasov@gmail.com
S. Slobodianiuk	Department of Mathematics, Kyiv National University, Volodymirska 64, 01033, Kyiv, Ukraine <i>E-Mail:</i> slobodianiuk@gmail.com

Received by the editors: 11.09.2012 and in final form 11.09.2012.