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Prethick subsets in partitions of groups

Igor Protasov and Sergiy Slobodianiuk

Abstract. A subset S of a group G is called thick if, for
any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and
k-prethick, k ∈ N if there exists a subset K of G such that |K| = k
and KS is thick. For every finite partition P of G, at least one
cell of P is k-prethick for some k ∈ N. We show that if an infinite
group G is either Abelian, or countable locally finite, or countable
residually finite then, for each k ∈ N, G can be partitioned in two
not k-prethick subsets.

Introduction

For a group G and a natural number k, we use the standard notations
[G]k and [G]<ω for the set of all k-subsets of G and the set of all finite
subsets of G.

A subset S of G is called

• large if G = KS for some K ∈ [G]<ω;
• thick if G \ S is not large;
• k-prethick if there exists K ∈ [G]k such that KS is thick;
• prethick if S is k-prethick for some k ∈ N;
• small if L \ S is large for each large subset L of G;
• P -small if there exists an injective sequence (gn)n∈ω in G such that

the subsets {gnS : n ∈ ω} are pairwise disjoint;
• thin if S ∩ gS is finite for each g ∈ G \ {e}, e is the identity of G.
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To be precise we should add the adjective ”left” to each of above
definitions because each of them has the "right" counterpart, for example,
S is right large if G = SF for some F ∈ [G]<ω. But in this paper we
deal only with left-side versions, so we omit the adjective "left". In the
dynamical terminology [6, p. 85], a large subset is called syndetic. A
subset S is prethick if and only if there exists K ∈ [G]<ω such that, for
each F ∈ [G]<ω, Fg ⊆ KS for some g ∈ G, so a prethick subset is exactly
a piecewise syndetic set in the terminology of [6, p. 85]. We note also that
large, small, thick and thin subsets can be defined in much more general
context of balleans [14], [16], [17].

Every infinite group G can be partitioned in ℵ0 large subsets [11] and
in ℵ0 small subsets [12]. If G is amenable then G can not be partitioned
in > ℵ0 large subsets. If H is a countable subgroup of G and G = HR is a
decomposition of G into right cosets then {hR : h ∈ H} is a partition of G
in ℵ0 P -small subsets. P -small subsets were introduced by I. Prodanov [10]
and studied systematically by T. Banakh and N. Lyaskovska [1], [2], [8].

Every infinite group G can be partitioned in |G| thick subsets [9]. For
generalizations and applications of this statement see [4], [13]. For an
infinite group G, µ(G) denotes the minimal cardinal k such that G can be
partitioned in k thin subsets. By [15], µ(G) = |G| if |G| is a limit cardinal
and µ(G) = κ if |G| = κ+.

Let G be a group and let A1, ∪ . . . ∪ An be a partition of G. By
[6, Corollary 4.41], at least one cell of the partition is prethick, for an
elementary proof of much more general statement see [16, Theorem 11.2].
By [7, Theorem 12.7], there exists a cell Ai and K ∈ [G]<ω such that
G = KAiA

−1
i and |K| 6 22n−1−1. It is an open problem [7, Problem

13.4.4] whether K can be chosen so that |K| 6 n. This is so if G is
amenable [16, Theorem 12.8]. Comparing these results, we run into the
following question.

Given an infinite group G, does there exist a natural number k = k(G)
such that, for any partition G = A1 ∪ A2, at least one cell of the partition

is k-prethick?

We give a negative answer to this question if G is either Abelian, or
countable locally finite, or countable residually finite.

Recall that a group G is locally finite if every finite subset of G
generates a finite subgroup and residually finite if for everyg ∈ G \ {e}
there is a normal subgroup N of finite index such that g /∈ N .

For convenience of formulations, we say that a partition P of a group
G is k-meager if each cell of P is not k-prethick, equivalently, G \ KP is
large for all P ∈ P and K ∈ [G]k.
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1. Results

Theorem 1. For every countable residually finite group G and every

k ∈ N, there exists a k-meager 2-partition of G.

Proof. We enumerate the family [G]k as {Kn : n ∈ ω} and choose a
decreasing chain {Nn : n ∈ ω} of subgroups of finite index of G such
that

⋂
n∈ω Nn = {e}, e is the identity of G. Suppose that there exist two

injective sequences 〈an〉n∈ω, (bn)n∈ω in G such that

KiaiNi ∩ KjbjNj = ∅

for all i, j ∈ ω. We put

A =
⋃

i∈ω

KiaiNi, B = G \ A,

and show that A is not k-prethick. On the contrary, assume that KA
is thick for some K ∈ [G]k and pick n ∈ ω such that K = K−1

n . Let
Ln be a set of representatives of left cosets of G by Nn. Since K−1

n A
is thick and Ln is finite, there exists g ∈ G such that Lng ⊂ K−1

n A.
Clearly, LngNn = LnNn = G so bn ∈ K−1

n ANn and KnbnNn ∩ A = ∅, a
contradiction. The same arguments show that B is not k-prethick.

To construct the sequences 〈an〉n∈ω, (bn)n∈ω we need some special
choice of {Nn : n ∈ ω}:

(2k)2
n∑

i=0

1

|G : Ni|
< 1.

Since |G : N0| > (2k)2 > k2, there is g0 ∈ G \ K−1
0 K0N0. We put

a0 = e, b0 = g0, so K0a0N0 ∩ K0b0N0 = ∅. Suppose we have chosen
a0, . . . , an and b0, . . . , bn such that

KiaiNi ∩ KjbjNj = ∅, i, j ∈ {0, . . . , n}.

Since |G : Nn+1| > k2, there is gn+1 such that

Kn+1Nn+1 ∩ Kn+1gn+1Nn+1 = ∅.

Let us consider the set

S =
n⋃

i=0

(KiaiNi ∪ KibiNi),
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denote by pr the canonical projection G → G/Nn+1 and observe that

|pr(Kn+1 ∪ Kn+1gn+1)−1S| 6 (2k)2
n∑

i=0

|Ni : Nn+1| =

(2k)2
n∑

i=0

|G : Nn+1|

|G : Ni|
< |G : Nn+1|.

We take h ∈ G such that pr(h) /∈ pr(Kn+1 ∪ Kn+1gn+1)−1S. Then
(Kn+1hNn+1) ∪ Kn+1gn+1hNn+1) ∩ S = ∅. We put an+1 = h, bn+1 =
gn+1h.

After ω steps, we get the required sequences 〈an〉n∈ω, (bn)n∈ω.

Theorem 2. For every countable locally finite group G and every k ∈ N,

there exists a k-meager 2-partition of G.

Proof. We enumerate the family [G]k as {Kn : n ∈ ω} and write G as a
union of an increasing chain of finite subgroups {Gn : n ∈ ω} and, for
each n ∈ ω, pick a system Rn of representatives of right cosets of G by Gn

and note that Rn ∩ Gn = {e}. Suppose there exist two injective sequences
in G such that

ai ∈ Gi, bi ∈ Gi, KiaiRi ∩ KjbjRj = ∅

for all i, j ∈ ω. We put

A =
⋃

i∈ω

KiaiRi, B = G \ A

and show that A is not k-prethick. On the contrary, assume that KA is
thick for some K ∈ [G]k and pick n ∈ ω such that K = K−1

n . Since K−1
n A

is thick and Gn is finite, there exists g ∈ Rn such Gng ⊂ K−1
n A. Then

bng ∈ K−1
n A but KnbnRn ∩ A = ∅, a contradiction. The same arguments

show that B is not k-prethick.
To construct the sequences 〈an〉n∈ω, (bn)n∈ω we need a special choice

of {Gn : n ∈ ω} and {Rn : n ∈ ω}. For each n ∈ ω, we pick gn ∈ G such
that Kn ∩ Kngn = ∅. We choose {Gn : n ∈ ω} so that, for each n ∈ ω:

Kn ∪ Kngn ⊂ Gn, Kn ∩ Kngn = ∅, (2k)2
n∑

i=0

1

|Gi|
< 1.

For each n ∈ ω, we take an arbitrary system Xn of representatives of
right cosets of Gn+1 by Gn, Xn ∩ Gn = {e} and put

Rn,m = XnXn+1 . . . Xm, Rn =
⋃

m>n

Rn,m.
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We put a0 = e, b0 = g0, so a0, b0 ∈ G0, K0a0 ∪ K0b0 ⊂ G0, K0a0R0 ∩
K0b0R0 = ∅. Suppose we have chosen a0, . . . , an and b0, . . . , bn such that
ai ∈ Gi, bi ∈ Gi and

Kiai ∪ Kibi ⊂ Gi, KiaiRi ∩ KjbjRj = ∅

for all i, j ∈ {0, . . . , n}. We denote

S =
n⋃

i=0

(KiaiRi,n+1 ∪ KibiRi,n+1),

observe that S ⊂ Gn+1 and

|(Kn+1 ∪ Kn+1gn+1)−1S| 6 (2k)2
n∑

i=0

|Gn+1|

|Gn|
< |Gn+1|.

We take h ∈ Gn+1 \ (Kn+1 ∪ Kn+1gn+1)−1S, put an+1 = h, bn+1 = gn+1h.
Then (Kn+1an+1 ∪Kn+1bn+1)∩S = ∅. It follows that KiaiRi ∩KjbjRj =
∅ for all i, j ∈ {0, . . . , n + 1}.

After ω steps, we get the required sequences 〈an〉n∈ω, (bn)n∈ω.

Lemma 1. Let G1, G2 be groups, G be a direct product of G1 and G2,

k ∈ N. If there exists a k-meager 2-partition of G1 then G also admits

such a partition.

Proof. If A ∪ B is a k-meager partition of G1 then (A ⊗ G2) ∪ (B ⊗ G2)
is a k-meager partition of G.

Lemma 2. Let an infinite group G be a subgroup of a direct product

H = ⊗α<κHα of countable groups, S be a countable subset of G. Then

there exists a countable subgroup S′ of G and a subgroup T of G such

that S ⊆ S′ and G = S′ ⊗ T .

Proof. We denote by S0 the subgroup of G generated by S and choose
a countabe subset I0 ⊆ κ such that S ⊆ ⊗α∈I0

Hα. If prI0
G = S0 then

G = S0⊗prκ\I0
G. Otherwise, we choose a countable subgroup S1 of G such

that prI0
G = S1 and a countable subset I1 ⊆ κ such that S1 ⊆ ⊗α∈I1

Hα.
If prI1

G = S1 then S1 is a direct factor of G. Otherwise, we choose a
countable subgroup S2 of G such that prI1

G = prI1
S2 and a countable

subset I2 ⊆ κ such that S2 ⊆ ⊗α∈I2
Hα. Proceeding by this way, we

either get a direct factor Sn on some step n ∈ ω or a direct factor
S′ =

⋃
n∈ω Sn.
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Lemma 3. Each countable subset S of an Abelian group G is contained

in some countable direct factor S′ of G.

Proof. Apply Lemma 2 and Theorems 23.1 and 24.1 from [5].

Theorem 3. For every infinite Abelian group G and every k ∈ N, there

exists a k-meager 2-partition of G.

Proof. Applying Lemma 1 and Lemma 3, we may suppose that G is
countable. We use [5, Theorem 21.3] to write G as a direct sum G =
D ⊕ R of the divisible part D of G and some reduced group R. Since⋂

n∈N nR = {0} and R/nR is a direct sum of cyclic groups, R is residually
finite. If R is infinite, we apply Theorem 1 and Lemma 1, so we may
suppose that D is infinite. If D contains a Prüffer p-group, we apply
Theorem 2 and Lemma 1. In view of [5, Theorem 23.1] and Lemma 1, it
remains to prove theorem for the group Q of rational numbers.

We put I = {x ∈ Q : 0 6 x < 1} and write Q as a sum Z + I. By
Theorem 1, there exists a 3k-meager partition Z = A0 ∪ B0. We put

A = A0 + I, B = B0 + I

and show that A, B are not k-prethick in Q. On the contrary, assume that
one cell, say A, is k-prethick and choose K ∈ [Q]k such that K + A is
thick. Take an arbitrary C ∈ [Z]k and pick q ∈ Q such that q+C ⊂ K +A.
We write q = ⌊q⌋ + x, x ∈ I, ⌊K⌋ = {⌊x⌋ : x ∈ K}. Then

⌊q⌋ + x + C ⊂ ⌊K⌋ + I + A0 + I,

so ⌊q⌋ + C ⊂ ⌊K⌋ + A0 + I + I − I and

⌊q⌋ + C ⊆ ({−1, 0, 1} + ⌊K⌋) + A0,

which is impossible because A0 is not 3k-thick.

2. Comments

We do not know whether every infinite group G admits a k-meager
2-partition for each k ∈ N, so we formulate some partial questions in this
direction.

Question 1. Does an infinite group G admit a k-meager 2-partition,

k ∈ N provided that G is finitely generated? G is amenable? G is a free

group of uncountable rank? G is the group of all permutations of ω?
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By [16, Theorem 3.9], an infinite group G can be partitioned in two
large subsets G = A1 ∪ A2. Clearly, A1, A2 are not thick, so A1 ∪ A2 is a
a 1-meager 2-partition.

Question 2. Does an infinite group G admit a 2-meager 2-partition?

Let G be a finite group, A be a non-empty subset of G, |G| = n,
|A| = m. By [18], there exists a subset B of G such that G = BA and
|B| < n

m
(log m + 2), so A is k-prethick for k >

n
m

(log m + 2). Hence, any
2-partition of G is not k-meager for k > 2(log n + 2).

For k, m ∈ N, we say that a subset S of G is

• m-thick if, for every F ∈ [G]m, there exists g ∈ G such that Fg ⊆ S;

• (k, m)-prethick if there exists K ∈ [G]k such that KS is m-thick.

Question 3. Given a group G, does there exist k = k(G, m) such that,

for every 2-partition of G, at least one cell is (k, m)-prethick? For m = 2,

this is so: k = 2.

In what follows all group topologies are supposed to be Hausdorff.
Recall that a topological group G is totally bounded if each neigh-

bourhood of e is large (equivalently, G is a subgroup of some compact
topological group). If A is a thick subset of G then A ∩ gU 6= ∅ for every
g ∈ G and every neighbourhood U of e, so A is dense in G. The converse
statement does not hold: every countable totally bounded group has a
small dense subset [3].

Question 4. Let G be an infinite totally bounded group, k ∈ N. Does

there exist a partition G = A1 ∪ A2 such that KA1 and KA2 are not

dense for each K ∈ [G]k?

If G is countable, this is so. We take a sequence (Un)n∈ω of compact
neighbourhoods of the identity in the completion H of G such that, for
each n ∈ ω,

(2k)2
n∑

i=0

µ(Ui) < 1,

where µ is the Haar measure on H. Following the proof of Theorem 1 with
Un instead of Nn, we can choose two injective sequences 〈an〉n∈ω, (bn)n∈ω

and a sequence of compact neighbourhoods (Vn)n∈ω of the identity in H
such that Vi ⊂ Ui and KiaiVi ∩ KjbjVj = ∅ for all i, j ∈ ω. We put

A =
⋃

i∈ω

Kiai(Vi ∩ G), B = G \ A,
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and note that KA, KB are not dense in G for each K ∈ [G]k.
Thus, Theorem 1 remains true if a countable group G is a subgroup of

a compact topological group. Since each Abelian group admits a totally
bounded topology, we get a proof of Theorem 3 with usage of Lemmas 1
and 3 but no reference to Theorem 2.

If a countable topological group G is not totally bounded then G can
be easily partitioned G = A ∪ B so that KA, KB are not dense for each
K ∈ [G]<ω. We choose a neighbourhood U of e such that G 6= FU for
each F ∈ [G]<ω, enumerate {Kn : n ∈ ω} the family [G]<ω and choose
inductively two injective sequences 〈an〉n∈ω, (bn)n∈ω in G such that

KiaiW ∩ KjbjW = ∅

for all i, j ∈ ω. Put A =
⋃

i∈ω KiaiW , B = G \ A.
Given a countable non-discrete topological group with countable base

of topology, it is easy to find a thin dense subset.

Question 5. Let G be a countable totally bounded group. Has G a thin

dense subset? What about G = Z#, the group Z endowed with the maximal

totally bounded topology?

Question 6. How can one detect whether a given subset A of Z is dense

in Z#?
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