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ABSTRACT. A proper edge t-coloring of a graph G is a coloring
of edges of G with colors 1,2,...,¢ such that all colors are used,
and no two adjacent edges receive the same color. The set of colors
of edges incident with a vertex x is called a spectrum of z. Any
nonempty subset of consecutive integers is called an interval. A
proper edge t-coloring of a graph G is interval in the vertex x if the
spectrum of x is an interval. A proper edge t-coloring ¢ of a graph
G is interval on a subset Ry of vertices of G, if for any z € Ry, ¢ is
interval in z. A subset R of vertices of G has an i-property if there
is a proper edge t-coloring of G which is interval on R. If G is a
graph, and a subset R of its vertices has an i-property, then the
minimum value of ¢ for which there is a proper edge t-coloring of G
interval on R is denoted by wr(G). We estimate the value of this
parameter for biregular bipartite graphs in the case when R is one
of the sides of a bipartition of the graph.

We consider undirected, finite graphs without loops and multiple
edges. V(G) and E(G) denote the sets of vertices and edges of a graph G,
respectively. For any vertex € V(G), we denote by Ng(x) the set of
vertices of a graph G adjacent to x. The degree of a vertex x of a graph
G is denoted by dg(x), the maximum degree of a vertex of G by A(G).
For a graph G and an arbitrary subset V C V(G), we denote by G[Vp]
the subgraph of G induced by the subset Vj of its vertices.
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Using a notation G(X,Y, E) for a bipartite graph G, we mean that G
has a bipartition (X,Y) with the sides X,Y, and E = E(G).

An arbitrary nonempty subset of consecutive integers is called an
interval. An interval with the minimum element p and the maximum
element ¢ is denoted by [p, ¢q|.

A function ¢ : E(G) — [1,t] is called a proper edge t-coloring of a
graph G, if all colors are used, and no two adjacent edges receive the same
color.

The minimum ¢ € N for which there exists a proper edge t-coloring of
a graph G is denoted by x'(G) [26].

For a graph G and any t € [X'(G),|E(G)|], we denote by «(G,t) the
set of all proper edge t-colorings of G. Let

12((6]
a(G) = a(G,t).
t=x'(G)

If G is a graph, z € V(G), ¢ € a(G), then let us set Sg(z,p) =
{¢(e)/e € E(G), e is incident with x}.

We say that ¢ € a(G) is persistent-interval in the vertex zp € V(G)
of the graph G iff Sg(xo,¢) = [1,dg(x0)]. We say that ¢ € a(G) is
persistent-interval on the set Ry C V(G) iff ¢ is persistent-interval in
Vx € Ry.

We say that ¢ € a(QG) is interval in the vertex 2y € V(G) of the graph
G iff Sq(xo, ) is an interval. We say that ¢ € a(G) is interval on the set
Ry C V(G) iff ¢ is interval in Vz € Ry.

We say that a subset R of vertices of a graph G has an i-property
iff there exists ¢ € a(G) interval on R; for a subset R C V(G) with an
i-property, the minimum value of ¢t warranting existence of ¢ € a(G,t)
interval on R is denoted by wg(G).

Notice that the problem of deciding whether the set of all vertices of
an arbitrary graph has an i-property is N P-complete [7,8,17]. Unfortu-
nately, even for an arbitrary bipartite graph (in this case the interest is
strengthened owing to the application of an i-property in timetablings
[6,17]) the problem keeps the complexity of a general case [3,12,25]. Some
positive results were obtained for graphs of certain classes with numerical
or structural restrictions [9,11,13-15,17,19-22,28,29]. The examples of
bipartite graphs whose sets of vertices have not an i-property are given
in [6,13,16,23,25).

The subject of this research is a parameter wgr(G) of a bipartite graph
G = G(X,Y, E) in the case when R is one of the sides of the bipartition
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of G (the exact value of this parameter for an arbitrary bipartite graph
is not known as yet). We obtain an upper bound of the parameter being
discussed for biregular [2-5,24] bipartite graphs, and the exact values of
it in the case of the complete bipartite graph K,, , (m € N;n € N) as
well.
The terms and concepts that we do not define can be found in [27].
First we recall some known results.

Theorem 1 ([7,8,17]). If R is one of the sides of a bipartition of
an arbitrary bipartite graph G = G(X,Y, E), then: 1) there exists ¢ €
a(G, |E)) interval on R, 2) forVt € [wr(G), |E|], there exists iy € a(G,t)
interval on R.

Theorem 2 ([1,7,8]). Let G = G(X,Y, E) be a bipartite graph. If for
Ve = (x,y) € E, where v € X,y € Y, the inequality dg(y) < dg(z) is
true, then 3o € a(G, A(Q)) persistent-interval on X .

Corollary 1 ([1,7,8]). Let G = G(X,Y,E) be a bipartite graph. If
maxyey da(y) < mingex dg(z), then Ip € a(G, A(G)) persistent-inter-
val on X.

Remark 1. Note that Corollary 1 follows from the result of [10].

Let H = H(u,v) be a (0, 1)-matrix with x4 rows, v columns, and with
elements h;;, 1 <i < p, 1 < j <v. The i-th row of H, i € [1, p], is called
collected, iff hj, = hjy = 1, t € [p,q] imply hyy = 1, and the inequality
> %1 hij = 1is true. Similarly, the j-th column of H, j € [1,v], is called
collected, iff hy; = hy; =1, t € [p,q] imply hy; = 1, and the inequality
S hij > 1is true. If all rows and all columns of H are collected, then for
i-th row of H, i € [1, p], we define the number e(i, H) = min{j/h;; = 1}.

H is called a collected matrix (see Figure 1), iff all its rows and all
its columns are collected, h11 = hy, =1, and e(1,H) < e(2,H) < --- <
e(p, H).

H is called a b-regular matrix (b € N), iff for Vi € [1, u], 375 hij = b.
H is called a c-compressed matrix (¢ € N), iff for Vj € [1,v], Y1, hyj < e

Lemma 1 ([18]). If a collected n-regular (n € N) matriz P = P(m,w)
with elements p;; (1 < i < m,1 < j < w) is n-compressed, then
w> [2] n.

Proof. We use induction on [2].

If [™] =1, the statement is trivial.
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FIGURE 1. An example of the visual image of a collected matrix. The dark
area is filled by 1s, the light area — by 0s.

Now assume that [Z] = Xg > 2, and the statement is true for all
collected n/-regular n’-compressed matrixes P’(m’, w’) with (’:—/’W <Ao—1.
First of all let us prove that e(n+1, P) > n+ 1. Assume the contrary:
e(n +1,P) < n. Since P is a collected n-regular matrix, we obtain
T Din = Z?jll Pin, = n + 1, which is impossible because P(m,w) is an
n-compressed matrix. This contradiction shows that e(n+ 1, P) > n + 1.
Now let us form a new matrix P'(m —n,w — (e(n + 1, P) — 1)) by
deleting from the matrix P the elements p;;, which satisfy at least one of
the inequalities i < n, j <e(n+1,P) — 1.
It is not difficult to see that P'(m —n,w — (e(n + 1,P) — 1)) is a
collected n-regular n-compressed matrix with [™=2] = \g — 1. By the
induction hypothesis, we have

w—(e(n+1,P)—1) > {m_n-‘ -,

n

which means that
w3 o—n+en+1,P)—13 (ho—1)n+n=rn= [m] ‘n O
n

Now, for arbitrary positive integers m, [, n, k, where m > n and ml =
nk, let us define the class Bip(m, 1, n, k) of biregular bipartite graphs:

| X|=m,|Y|=n,
Bip(m,l,n, k) =< G=G(X,Y,E)| forVxe X, dg(x)=1,
for Vy € Y,dg(y) = k.

Remark 2. Clearly, if G € Bip(m,l,n, k), then x'(G) = k.
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Theorem 3. If G = G(X,Y,E) € Bip(m,l,n, k), then wy(G) = k,
wx (G) <1-[7].

Proof. The equality follows from Remark 2. Let us prove the inequality.
Let X = {z1,..., %y }. For Vr € [1, [} ]], define X, = {z_1)41,- -5

Ty} Define Xqy m| = X\(U@'lej XZ-). For vr € [1, |7 ]], define Y, =

Uzex, Na(x). Define Y1+L%J = UxeXlﬂ%J Ng(z). For Vr e [1,[%]],
define G, = G[X, UY,].

Consider the sequence G1,Go, ..., G[%1 of subgraphs of the graph G.
From Corollary 1, we obtain that for Vi € [1, [7*]], there is ¢; € (G, 1)
persistent-interval on X;.

Clearly, for Ve € E(G), there exists the unique £(e), satisfying the
conditions {(e) € [1, [7]] and e € E(G¢(e))-

Define a function ¢ : E(G) — [1,1- [7]]. For an arbitrary e € E(G),
set () = (€(e) — 1) L+ peey(©).

It is not difficult to see that 1) € (G, - [7]) and 9 is interval on X.
Hence, wx (G) <1- [T]. O

Theorem 4. Let R be an arbitrary side of a bipartition of the complete
bipartite graph G = Ky, ,, where m € N, n € N. Then

wr(G) = (m-+n— R [T ]

Proof. Without loss of generality we can assume that G has a bipartition
(X,Y), where X ={z1,...,2m}, Y ={y1,...,yn}, and m > n.

Case 1. R =Y. In this case the statement follows from Theorem 3;
thus wy (G) = m.

Case 2. R=X.

The inequality wx (G) < n-[2] follows from Theorem 3. Let us prove
that wx (G) > n - [2].

Consider an arbitrary proper edge wx (G)-coloring ¢ of the graph G,
which is interval on X.

Clearly, without loss of generality, we can assume that

min(Sg(z1, ) < min(Sg(z2, ¢)) < ... < min(Sg(zm, ¢)).

Let us define a (0,1)-matrix P(m,wx(G)) with m rows, wx(G)
columns, and with elements p;;, 1 < i< m, 1 <j < wx(G). For
Vi € [1,m], and for Vj € [1,wx(G)], set

)1, it e Sal, p)
Pi=9 0, it j & Sa(wi, ).
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It is not difficult to see that P(m,wx(G)) is a collected n-regular
n-compressed matrix. From Lemma 1, we obtain wx(G) > n - [2]. O

From Theorems 1 and 3, taking into account the proof of Case 2 of
Theorem 4, we also obtain

Corollary 2. If G € Bip(m,l,n,k), then

1) forVt e [l . [%],ml} , there exists o € a(G,t) interval on X,
2) for ¥t € [k,nk], there exists Y € a(G,t) interval on'Y.
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