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Abstract. A proper edge t-coloring of a graphG is a coloring
of edges of G with colors 1, 2, . . . , t such that all colors are used,
and no two adjacent edges receive the same color. The set of colors
of edges incident with a vertex x is called a spectrum of x. Any
nonempty subset of consecutive integers is called an interval. A
proper edge t-coloring of a graph G is interval in the vertex x if the
spectrum of x is an interval. A proper edge t-coloring ϕ of a graph
G is interval on a subset R0 of vertices of G, if for any x ∈ R0, ϕ is
interval in x. A subset R of vertices of G has an i-property if there
is a proper edge t-coloring of G which is interval on R. If G is a
graph, and a subset R of its vertices has an i-property, then the
minimum value of t for which there is a proper edge t-coloring of G
interval on R is denoted by wR(G). We estimate the value of this
parameter for biregular bipartite graphs in the case when R is one
of the sides of a bipartition of the graph.

We consider undirected, finite graphs without loops and multiple
edges. V (G) and E(G) denote the sets of vertices and edges of a graph G,
respectively. For any vertex x ∈ V (G), we denote by NG(x) the set of
vertices of a graph G adjacent to x. The degree of a vertex x of a graph
G is denoted by dG(x), the maximum degree of a vertex of G by ∆(G).
For a graph G and an arbitrary subset V0 ⊆ V (G), we denote by G[V0]
the subgraph of G induced by the subset V0 of its vertices.
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Using a notation G(X,Y,E) for a bipartite graph G, we mean that G
has a bipartition (X,Y ) with the sides X,Y, and E = E(G).

An arbitrary nonempty subset of consecutive integers is called an
interval. An interval with the minimum element p and the maximum
element q is denoted by [p, q].

A function ϕ : E(G) → [1, t] is called a proper edge t-coloring of a
graph G, if all colors are used, and no two adjacent edges receive the same
color.

The minimum t ∈ N for which there exists a proper edge t-coloring of
a graph G is denoted by χ′(G) [26].

For a graph G and any t ∈ [χ′(G), |E(G)|], we denote by α(G, t) the
set of all proper edge t-colorings of G. Let

α(G) ≡

|E(G)|
⋃

t=χ′(G)

α(G, t).

If G is a graph, x ∈ V (G), ϕ ∈ α(G), then let us set SG(x, ϕ) ≡
{ϕ(e)/e ∈ E(G), e is incident with x}.

We say that ϕ ∈ α(G) is persistent-interval in the vertex x0 ∈ V (G)
of the graph G iff SG(x0, ϕ) = [1, dG(x0)]. We say that ϕ ∈ α(G) is
persistent-interval on the set R0 ⊆ V (G) iff ϕ is persistent-interval in
∀x ∈ R0.

We say that ϕ ∈ α(G) is interval in the vertex x0 ∈ V (G) of the graph
G iff SG(x0, ϕ) is an interval. We say that ϕ ∈ α(G) is interval on the set
R0 ⊆ V (G) iff ϕ is interval in ∀x ∈ R0.

We say that a subset R of vertices of a graph G has an i-property
iff there exists ϕ ∈ α(G) interval on R; for a subset R ⊆ V (G) with an
i-property, the minimum value of t warranting existence of ϕ ∈ α(G, t)
interval on R is denoted by wR(G).

Notice that the problem of deciding whether the set of all vertices of
an arbitrary graph has an i-property is NP -complete [7, 8, 17]. Unfortu-
nately, even for an arbitrary bipartite graph (in this case the interest is
strengthened owing to the application of an i-property in timetablings
[6,17]) the problem keeps the complexity of a general case [3,12,25]. Some
positive results were obtained for graphs of certain classes with numerical
or structural restrictions [9,11,13–15,17,19–22,28,29]. The examples of
bipartite graphs whose sets of vertices have not an i-property are given
in [6, 13,16,23,25].

The subject of this research is a parameter wR(G) of a bipartite graph
G = G(X,Y,E) in the case when R is one of the sides of the bipartition
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of G (the exact value of this parameter for an arbitrary bipartite graph
is not known as yet). We obtain an upper bound of the parameter being
discussed for biregular [2–5,24] bipartite graphs, and the exact values of
it in the case of the complete bipartite graph Km,n (m ∈ N, n ∈ N) as
well.

The terms and concepts that we do not define can be found in [27].

First we recall some known results.

Theorem 1 ([7, 8, 17]). If R is one of the sides of a bipartition of
an arbitrary bipartite graph G = G(X,Y,E), then: 1) there exists ϕ ∈
α(G, |E|) interval on R, 2) for ∀t ∈ [wR(G), |E|], there exists ψt ∈ α(G, t)
interval on R.

Theorem 2 ([1, 7, 8]). Let G = G(X,Y,E) be a bipartite graph. If for
∀e = (x, y) ∈ E, where x ∈ X, y ∈ Y , the inequality dG(y) 6 dG(x) is
true, then ∃ϕ ∈ α(G,∆(G)) persistent-interval on X.

Corollary 1 ([1, 7, 8]). Let G = G(X,Y,E) be a bipartite graph. If
maxy∈Y dG(y) 6 minx∈X dG(x), then ∃ϕ ∈ α(G,∆(G)) persistent-inter-
val on X.

Remark 1. Note that Corollary 1 follows from the result of [10].

Let H = H(µ, ν) be a (0, 1)-matrix with µ rows, ν columns, and with
elements hij , 1 6 i 6 µ, 1 6 j 6 ν. The i-th row of H, i ∈ [1, µ], is called
collected, iff hip = hiq = 1, t ∈ [p, q] imply hit = 1, and the inequality
∑ν

j=1 hij > 1 is true. Similarly, the j-th column of H, j ∈ [1, ν], is called
collected, iff hpj = hqj = 1, t ∈ [p, q] imply htj = 1, and the inequality
∑µ

i=1 hij > 1 is true. If all rows and all columns of H are collected, then for
i-th row of H, i ∈ [1, µ], we define the number ε(i,H) ≡ min{j/hij = 1}.

H is called a collected matrix (see Figure 1), iff all its rows and all
its columns are collected, h11 = hµν = 1, and ε(1, H) 6 ε(2, H) 6 · · · 6
ε(µ,H).

H is called a b-regular matrix (b ∈ N), iff for ∀i ∈ [1, µ],
∑ν

j=1 hij = b.
H is called a c-compressed matrix (c ∈ N), iff for ∀j ∈ [1, ν],

∑µ
i=1 hij 6 c.

Lemma 1 ([18]). If a collected n-regular (n ∈ N) matrix P = P (m,w)
with elements pij (1 6 i 6 m, 1 6 j 6 w) is n-compressed, then
w >

⌈

m
n

⌉

· n.

Proof. We use induction on
⌈

m
n

⌉

.

If
⌈

m
n

⌉

= 1, the statement is trivial.
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Figure 1. An example of the visual image of a collected matrix. The dark
area is filled by 1s, the light area — by 0s.

Now assume that
⌈

m
n

⌉

= λ0 > 2, and the statement is true for all

collected n′-regular n′-compressed matrixes P ′(m′, w′) with
⌈

m′

n′

⌉

6 λ0 −1.
First of all let us prove that ε(n+ 1, P ) > n+ 1. Assume the contrary:

ε(n + 1, P ) 6 n. Since P is a collected n-regular matrix, we obtain
∑m

i=1 pin >
∑n+1

i=1 pin > n+ 1, which is impossible because P (m,w) is an
n-compressed matrix. This contradiction shows that ε(n+ 1, P ) > n+ 1.

Now let us form a new matrix P ′(m − n,w − (ε(n + 1, P ) − 1)) by
deleting from the matrix P the elements pij , which satisfy at least one of
the inequalities i 6 n, j 6 ε(n+ 1, P ) − 1.

It is not difficult to see that P ′(m − n,w − (ε(n + 1, P ) − 1)) is a
collected n-regular n-compressed matrix with

⌈

m−n
n

⌉

= λ0 − 1. By the
induction hypothesis, we have

w − (ε(n+ 1, P ) − 1) >

⌈

m− n

n

⌉

· n,

which means that

w > (λ0 − 1)n+ ε(n+ 1, P ) − 1 > (λ0 − 1)n+ n = λ0n =

⌈

m

n

⌉

· n.

Now, for arbitrary positive integers m, l, n, k, where m > n and ml =
nk, let us define the class Bip(m, l, n, k) of biregular bipartite graphs:

Bip(m, l, n, k) ≡











G = G(X,Y,E)

∣

∣

∣

∣

∣

|X| = m, |Y | = n,
for ∀x ∈ X, dG(x) = l,
for ∀y ∈ Y, dG(y) = k.











Remark 2. Clearly, if G ∈ Bip(m, l, n, k), then χ′(G) = k.
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Theorem 3. If G = G(X,Y,E) ∈ Bip(m, l, n, k), then wY (G) = k,
wX(G) 6 l ·

⌈

m
l

⌉

.

Proof. The equality follows from Remark 2. Let us prove the inequality.
Let X = {x1, . . . , xm}. For ∀r ∈ [1, ⌊m

l
⌋], define Xr ≡ {x(r−1)l+1, . . . ,

xrl}. Define X1+⌊ m

l
⌋ ≡ X\

(

⋃⌊ m

l
⌋

i=1 Xi

)

. For ∀r ∈ [1, ⌊m
l

⌋], define Yr ≡
⋃

x∈Xr
NG(x). Define Y1+⌊ m

l
⌋ ≡

⋃

x∈X1+⌊ m

l
⌋
NG(x). For ∀r ∈ [1,

⌈

m
l

⌉

],

define Gr ≡ G[Xr ∪ Yr].
Consider the sequence G1, G2, . . . , G⌈ m

l
⌉ of subgraphs of the graph G.

From Corollary 1, we obtain that for ∀i ∈ [1, ⌈m
l

⌉], there is ϕi ∈ α(Gi, l)
persistent-interval on Xi.

Clearly, for ∀e ∈ E(G), there exists the unique ξ(e), satisfying the
conditions ξ(e) ∈ [1, ⌈m

l
⌉] and e ∈ E(Gξ(e)).

Define a function ψ : E(G) → [1, l ·
⌈

m
l

⌉

]. For an arbitrary e ∈ E(G),
set ψ(e) ≡ (ξ(e) − 1) · l + ϕξ(e)(e).

It is not difficult to see that ψ ∈ α(G, l ·
⌈

m
l

⌉

) and ψ is interval on X.
Hence, wX(G) 6 l ·

⌈

m
l

⌉

.

Theorem 4. Let R be an arbitrary side of a bipartition of the complete
bipartite graph G = Km,n, where m ∈ N, n ∈ N. Then

wR(G) = (m+ n− |R|) ·

⌈

|R|

m+ n− |R|

⌉

.

Proof. Without loss of generality we can assume that G has a bipartition
(X,Y ), where X = {x1, . . . , xm}, Y = {y1, . . . , yn}, and m > n.

Case 1 . R = Y . In this case the statement follows from Theorem 3;
thus wY (G) = m.

Case 2 . R = X.
The inequality wX(G) 6 n ·

⌈

m
n

⌉

follows from Theorem 3. Let us prove
that wX(G) > n ·

⌈

m
n

⌉

.
Consider an arbitrary proper edge wX(G)-coloring ϕ of the graph G,

which is interval on X.
Clearly, without loss of generality, we can assume that

min(SG(x1, ϕ)) 6 min(SG(x2, ϕ)) 6 . . . 6 min(SG(xm, ϕ)).

Let us define a (0, 1)-matrix P (m,wX(G)) with m rows, wX(G)
columns, and with elements pij , 1 6 i 6 m, 1 6 j 6 wX(G). For
∀i ∈ [1,m], and for ∀j ∈ [1, wX(G)], set

pij =

{

1, if j ∈ SG(xi, ϕ)
0, if j 6∈ SG(xi, ϕ).
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It is not difficult to see that P (m,wX(G)) is a collected n-regular
n-compressed matrix. From Lemma 1, we obtain wX(G) > n ·

⌈

m
n

⌉

.

From Theorems 1 and 3, taking into account the proof of Case 2 of
Theorem 4, we also obtain

Corollary 2. If G ∈ Bip(m, l, n, k), then

1) for ∀t ∈
[

l ·
⌈

m
l

⌉

,ml
]

, there exists ϕt ∈ α(G, t) interval on X,

2) for ∀t ∈ [k, nk], there exists ψt ∈ α(G, t) interval on Y .
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