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Abstract. Let D = 〈α, β〉 be a dihedral group generated by
the involutions α and β and let F = 〈αβ〉. Suppose that D acts on a
finite group G by automorphisms in such a way that CG(F ) = 1. In
the present paper we prove that the nilpotent length of the group G
is equal to the maximum of the nilpotent lengths of the subgroups
CG(α) and CG(β).

1. Introduction

Throughout the paper all groups are finite. Let F be a nilpotent group
acted on by a group H via automorphisms and let the group G admit the
semidirect product FH as a group of automorphisms so that CG(F ) = 1.
By a well known result [1] due to Belyaev and Hartley, the solvability
of G is a drastic consequence of the fixed point free action of the nilpotent
group F . A lot of research, [7, 10,11,13–15], investigating the structure
of G has been conducted in case where FH is a Frobenius group with
kernel F and complement H. So the immediate question one could ask was
whether the condition of being Frobenius for FH could be weakened or
not. In this direction we introduced the concept of a Frobenius-like group
in [8] as a generalization of Frobenius group and investigated the structure
of G when the group FH is Frobenius-like [3],[4],[5],[6]. In particular,
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we obtained in [3] the same conclusion as in [10]; namely the nilpotent
lengths of G and CG(H) are the same, when the Frobenius group FH is
replaced by a Frobenius-like group under some additional assumptions.
In a similar attempt in [16] Shumyatsky considered the case where FH is
a dihedral group and proved the following.

Let D = 〈α, β〉 be a dihedral group generated by the involutions α and
β and let F = 〈αβ〉. (Here, D = FH where H = 〈α〉) Suppose that D
acts on the group G by automorphisms in such a way that CG(F ) = 1. If
CG(α) and CG(β) are both nilpotent then G is nilpotent.

In the present paper we extend his result as follows.

Theorem. Let D = 〈α, β〉 be a dihedral group generated by the involutions
α and β and let F = 〈αβ〉. Suppose that D acts on the group G by
automorphisms in such a way that CG(F ) = 1. Then the nilpotent length
of G is equal to the maximum of the nilpotent lengths of the subgroups
CG(α) and CG(β).

After completing the proof we realized that it follows as a corollary of
the main theorem of a recent paper [2] by de Melo. The proof we give
relies on the investigation of D-towers in G in the sense of [17] and the
following proposition which, we think, can be effectively used in similar
situations.

Proposition. Let D = 〈α, β〉 be a dihedral group generated by the invo-
lutions α and β. Suppose that D acts on a q-group Q for some prime q
and let V be a kQD-module for a field k of characteristic different from
q such that the group F = 〈αβ〉 acts fixed point freely on the semidirect
product V Q. If CQ(α) acts nontrivially on V then we have CV (α) 6= 0
and Ker(CQ(α) on CV (α)) = Ker(CQ(α) on V ).

Notation and terminology are standard unless otherwise stated.

2. Proof of the proposition

We first present a lemma to which we appeal frequently in our proofs.

Lemma. Let D = 〈α, β〉 be a dihedral group generated by the involutions
α and β and let F = 〈αβ〉. Suppose that D acts on the group S by
automorphisms in such a way that CS(F ) = 1. Then the following hold.

(i) For each prime p dividing its order, the group S contains a unique
D-invariant Sylow p-subgroup.
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(ii) Let N be a normal D-invariant subgroup of S. Then CS/N (F ) = 1,
CS/N (α) = CS(α)N/N and CS/N (β) = CS(β)N/N .

(iii) S = CS(α)CS(β).

Proof. See the proofs of Lemma 2.6, Lemma 2.7 and Lemma 2.8 in [16].

We are now ready to prove the proposition.
Notice that V = CV (α)CV (β) by Lemma (iii) applied to the action

of D on V. Suppose first that CV (α) = 0. Then [V, β] = 0 whence [Q, β] 6
Ker(Q on V ) by the Three Subgroup Lemma. Set Q = Q/ Ker(Q on V ).
We observe that CQ(F ) = 1 implies CQ(F ) = 1 by Lemma (ii). This forces

CQ(α) = 1. As the equality CQ(α) = CQ(α) holds by Lemma (ii), we
get CQ(α) acts trivially on V . This contradiction shows that CV (α) 6= 0
establishing the first claim.

To ease the notation we set H = 〈α〉 and K = Ker(CQ(H) on CV (H)).
Here D = FH. To prove the second claim we use induction on dimk V +
|QD|. We choose a counterexample with minimum dimk V + |QD| and
proceed over several steps.

1) We may assume that k is a splitting field for all subgroups of QFH.

We consider the QD-module V̄ = V ⊗k k̄ where k̄ is the algebraic
closure of k. Notice that dimk V = dimk̄ V̄ and CV̄ (H) = CV (H) ⊗k k̄.
Therefore once the proposition has been proven for the group QD on V̄ ,
it becomes true for QD on V also.

2) V is an indecomposable QD-module on which Q acts faithfully.

Notice that V is a direct sum of indecomposable QD-submodules.
Let W be one of these indecomposable QD-submodules on which K acts
nontrivially. If W 6= V , then the proposition is true for the group QD on
W by induction. That is,

Ker(CQ(H) on CW (H)) = Ker(CQ(H) on W )

and hence
K = Ker(K on CW (H)) = Ker(K on W )

which is a contradiction with the assumption that K acts nontrivially on
W . Hence V = W .

Recall that Q = Q/ Ker(Q on V ) and consider the action of the group
QD on V assuming Ker(Q on V ) 6= 1. An induction argument gives
Ker(CQ(H) on CV (H)) = Ker(CQ(H) on V ). This leads to a contra-

diction as CQ(H) = CQ(H) by Lemma(ii). Thus we may assume that Q
acts faithfully on V .
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3) Let Ω denote the set of Q-homogeneous components of V . K acts

trivially on every element W in Ω such that StabH(W ) = 1 and so H
fixes an element of Ω.

Let W be in Ω such that StabH(W ) = 1. Then the sum X = W +W α

is direct. It is straightforward to verify that CX(H) = {v + vα : v ∈ W} .
By definition, K acts trivially on CX(H). Note also that K normalizes
both W and W α as K 6 Q. It follows now that K is trivial on X and
hence on W. This shows that H fixes at least one element of Ω because
otherwise K = 1, a contradiction.

4) F acts transitively on Ω.

Let Ωi, i = 1, . . . , s be all distinct D-orbits of Ω. Then V =⊕s
i=1

⊕
W ∈Ωi

W. Since
⊕

W ∈Ωi
W is QD-invariant for each i we have

s = 1 by (2), that is, D acts transitively on Ω. Let W be an H-invariant
element of Ω whose existence is guaranteed by (3). Then the F -orbit
containing W in Ω is the whole of Ω.

From now on W denotes an H-invariant element of Ω. It should
be noted that the group Z(Q/ Ker(Q on W )) acts by scalars on the
homogeneous Q-module W , and so [Z(Q), H] 6 Ker(Q on W ). Set F1 =
StabF (W ) and let T be a transversal containing 1 for F1 in F . Then
F =

⋃
t∈T F1t and so V =

⊕
t∈T W t. Note that an H-orbit on Ω = {W t :

t ∈ T} is of length at most 2.

5) The number of H-invariant elements in Ω is at most 2, and is equal

to 2 if and only if |F/F1| is even. Furthermore V = U ⊕ X where X is a

Q-submodule centralized by K and U is the direct sum of all H-invariant

elements in Ω.

If W t is H-invariant then W tα = W t implies tαt−1 ∈ F1. On the other
hand tαt−1 = t−2 since α inverts F . That is, tF1 is an element of F/F1

of order at most 2. If tF1 = F1 then t = 1. Otherwise tF1 is the unique
element of order 2 in F/F1. Thus the number of H-invariant elements in
Ω is at most 2 and if it is equal to 2 then |F/F1| is even. If conversely
F/F1 is of even order, let yF1 be the unique element of order 2 in F/F1.
Then yαF1 = yF1 and so (W y)α = W yα

= W y 6= W . This shows that
there exist exactly two H-invariant elements in Ω if and only if F/F1 is
of even order.

6) Since 1 6= K E CQ(H), we can choose a nonidentity element z ∈
K ∩Z(CQ(H)). Set L = 〈z〉. Then Q = LF2CQ(U) where F2 = StabF (U).

It follows from an induction argument applied to the action of LF D
on V that Q = LF . Let F2 = StabF (U) and observe that for any f ∈
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F − F2, Uf 6 X and hence is centralized by L by (5). Thus we get
Q = LF2CQ(U) = LF2CQ(W ).

7) Set Y = Fq′ . Then Y ∩ F1 6= Y ∩ F2.

Suppose that Y ∩ F1 = Y ∩ F2. Pick a simple commutator c =
[zf1 , . . . , zfm ] of maximal weight in the elements zf , f ∈ F1 such that
c 6∈ CQ(W ). Since Q = LF2CQ(W ), the weight of this commutator is
equal to the nilpotency class of Q/CQ(W ). It should be noted that the
nilpotency classes of Q/CQ(W ) and Q are the same, since Q can be
embedded into the direct product of Q/CQ(W f ) as f runs through F .
Hence c ∈ Z(Q). Clearly, CQ(F ) = 1 implies CQ(Y ) = 1 and hence∏

x∈Y cx = 1, as
∏

x∈Y cx is contained in Z(Q) and is fixed by Y. In fact
we have

1 =
∏

x∈Y

cx =
∏

x∈Y −F1

cx
∏

x∈Y ∩F1

cx.

Recall that [Z(Q), F1] 6 CQ(W ) and hence [Z(Q), F1] 6
⋂

f∈F CQ(W f ) =

CQ(V ) = 1. This gives
∏

x∈Y ∩F1
cx = c|Y ∩F1|. On the other hand, for any

f ∈ F1 and any x ∈ Y − F1, fx 6∈ F2 and so z centralizes W (fx)−1

, that is,
zfx ∈ CQ(W ). Therefore cx lies in CQ(W ) for any x in Y − F1. It follows
that

∏
x∈Y −F1

cx ∈ CQ(W ). This forces that c|Y ∩F1| ∈ CQ(W ) which is
impossible as c 6∈ CQ(W ).

8) Final contradiction.

By (5) and (7), |F2 : F1| = 2 and q is odd. Now Z2(Q) =
[Z2(Q), H]CZ2(Q)(H) as (|Q|, |H|) = 1. Notice that U = W ⊕ W t for
some t ∈ T which may be assumed to lie in F2 = StabF (U). We
have [Z2(Q), L, H] 6 [Z(Q), H] 6 CQ(W ) ∩ CQ(W t) = CQ(U). We also
have [L, H, Z2(Q)] = 1 as [L, H] = 1. It follows now by the Three
Subgroup Lemma that [H, Z2(Q), L] 6 CQ(U). On the other hand
[CZ2(Q)(H), L] = 1 by the definition of L. Thus [L, Z2(Q)] 6 CQ(U).

Then we have [LF2 , Z2(Q)] 6 CQ(U), as U is F2- invariant, which yields

that [Q, Z2(Q)] 6 CQ(U). Thus [Q, Z2(Q)] 6
⋂

f∈F CQ(U)f = CQ(V ) = 1
and hence Q is abelian.

Now [Q, F1H] 6 CQ(W ) due to the scalar action of Q/CQ(W ) on W.
Notice that CW (H) = 0 because otherwise L is trivial on W due to its
action by scalars. So H inverts every element of W. Since StabF (W t) =
StabF (W )t = F1

t = F1, we can replace W by W t and conclude that H
inverts every element in U. That is, H acts by scalars and hence lies in
the center of QF2H/CQF2

(U). On the other hand H inverts F2/CF2
(U).

It follows that |F2/CF2
(U)| = 1 or 2. Since |F2 : F1| = 2, we have

F1 6 CF2
(U). This contradicts the fact that CW (F1) = 0 as CV (F ) = 0.
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3. Proof of the theorem

Suppose that n = f(G) > f(CG(α)) > f(CG(β)) and set H = 〈α〉. We
may assume by Proposition 5 in [9] that CG(F ) = 1 implies [G, F ] = G.
In view of Lemma (i) for each prime p dividing the order of G there is a
unique D-invariant Sylow p-subgroup of G. This yields the existence of
an irreducible D-tower P̂1, . . . , P̂n in the sense of [17] where

(a) P̂i is a D-invariant pi-subgroup, pi is a prime, pi 6= pi+1, for i =
1, . . . , n − 1;

(b) P̂i 6 NG(P̂j) whenever i 6 j;
(c) Pn = P̂n and Pi = P̂i/C

P̂i

(Pi+1) for i = 1, . . . , n − 1 and Pi 6= 1 for
i = 1, . . . , n;

(d) Φ(Φ(Pi)) = 1, Φ(Pi) 6 Z(Pi), and exp(Pi) = pi when pi is odd for
i = 1, . . . , n;

(e) [Φ(Pi+1), Pi] = 1 and [Pi+1, Pi] = Pi+1 for i = 1, . . . , n − 1;
(f) (Πj<iP̂j)FH acts irreducibly on Pi/Φ(Pi) for i = 1, . . . , n;
(g) P1 = [P1, F ].

Set now X =
∏n

i=1 P̂i. As P1 = [P1, D] by (g), we observe that
X = [X, D]. If X is proper in G, by induction we have n = f(X) =
f(CX(H)) and so the theorem follows. Hence X = G. Notice that G
is nonabelian and hence CG(H) 6= 1, that is f(CG(H) > 1. Therefore
the theorem is true if G = F (G). We set next G = G/F (G). As G is

a nontrivial group such that G =
[
G, F

]
, it follows by induction that

f(G) = n − 1 = f(CG(H)). This yields that [C
P̂n−1

(H), . . . , C
P̂1

(H)] is

nontrivial. Since C
P̂i

(H) = C
P̂i

(H) for each i by Lemma (ii), we have

Y = [C
P̂n−1

(H), . . . , C
P̂1

(H)] � F (G) ∩ P̂n−1 = C
P̂n−1

(P̂n).

By the Proposition applied to the action of the group P̂n−1FH on
the module P̂n/Φ(P̂n) we get

Ker(C
P̂n−1

(H) on C
P̂n/Φ(P̂n)

(H)) = Ker(C
P̂n−1

(H) on P̂n/Φ(P̂n)).

It follows now that Y does not centralize C
P̂n

(H) and hence f(CG(H) =

n = f(G). This completes the proof.
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