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Further combinatorial results for the symmetric

inverse monoid∗

A. Laradji and A. Umar

Communicated by V. Mazorchuk

Abstract. Let In be the set of partial one-to-one transfor-

mations on the chain Xn = {1, 2, . . . , n} and, for each α in In, let

h(α) = |Imα|, f(α) = |{x ∈ Xn : xα = x}| and w(α) = max(Imα).
In this note, we obtain formulae involving binomial coefficients of

F (n; p,m, k) = |{α ∈ In : h(α) = p ∧ f(α) = m ∧ w(α) = k}| and

F (n; ·,m, k) = |{α ∈ In : f(α) = m ∧ w(α) = k}| and analogous

results on the set of partial derangements of In.

Introduction and preliminaries

As remarked by Gomes and Howie [10], inverse semigroups (see [11,
Chapter V]) are of interest not only as a naturally occurring special
case of semigroups but also for their role in describing partial symmetries.
Mathematically this property is expressed by the Vagner-Preston Theorem
[11, Theorem 5.1.7], by which every (finite) inverse semigroup is embedded
in an appropriate (finite) symmetric inverse semigroup IX , consisting of
all partial one-to-one maps (equivalently subpermutations) of X.

Let Xn = {1, 2, . . . , n}. A (partial) transformation α : Domα ⊆ Xn →
Imα ⊆ Xn is said to be full or total if Domα = Xn; otherwise it is called
strictly partial. Let In be the set of partial one-one transformations on
Xn. Then In is the (inverse) semigroup of partial one-one maps more
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commonly known as the symmetric inverse monoid. Enumerative problems
of an essentially combinatorial nature arise naturally in the study of
semigroups of transformations. In particular, for the semigroup In and
some of its subsemigroups many interesting and delightful combinatorial
results were obtained in [1ś3,7ś9,12ś18,22,24,25]. See also the remark by
Cameron in [5, ğ 4.7]. One of the authors in [23] attempted to give a unified
and coherent account of these and other results and also proposed some
combinatorial questions that need further investigation. Observe that in
the special case of permutations, Cameron [4, 5], Comtet [6] and Riordan
[19] are replete with many interesting results. This paper is concerned
with investigating some of the questions proposed by Umar [23] on In,
where we provide some answers in this section (ğ 1) while in ğ 2 we obtain
analogous results about partial one-to-one derangements in In. As in [17],
recurrence relations and (exponential) generating functions play a pivotal
role in the approach used in this paper.

On a partial one-one mapping of Xn the following parameters are
defined: the height of α is h(α) = |Imα|, the fix of α is f(α) = |F (α)|,
where F (α) is the set {x ∈ Xn : xα = x} of fixed points of α, and the
right waist (or waist, for brevity) of α is w(α) = max(Imα) (the left waist
is defined as min(Imα)). We recall the dual of [15, Proposition 2.1], which
says that c(n, p), defined as the number of surjective partial derangements
α : Xn −→ Yp = {y1, y2, . . . , yp} ⊆ Xn, satisfies

c(n, p) = p!

p
∑

j=0

(

n− j

p− j

)

(−1)j

j!
. (1)

Lemma 1. Let c(n, p) be as defined in (1). Then

p
∑

m=0

(

p

m

)

c(n−m, p−m) =

(

n

p

)

p! .

Proof. Let α ∈ In be such that Imα = Yp = {y1, y2, . . . , yp} ⊆ Xn. Then
the expression

(

p
m

)

c(n−m, p−m) is the number of such α with exactly
m fixed points. Thus, taking the sum over m from 0 to p gives the number
of all such maps. However, the expression

(

n
p

)

p! clearly represents the
number of all such maps. Hence the result follows. □
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Next, as in Umar [23], define equivalences on In by equalities of all or
some of the three parameters defined above as

F (n; p,m, k) = |{α ∈ In : h(α) = p ∧ f(α) = m ∧ w(α) = k}|, (2)

F (n; p,m, ·) = |{α ∈ In : h(α) = p ∧ f(α) = m}|, (3)

F (n; p, ·, k) = |{α ∈ In : h(α) = p ∧ w(α) = k}|, (4)

F (n; ·,m, k) = |{α ∈ In : f(α) = m ∧ w(α) = k}|. (5)

The following lemma will be useful in what follows.

Lemma 2. [23, Lemma 2.1] Let Xn = {1, 2, . . . , n}. For a given α ∈ In,
we set p = h(α),m = f(α) and k = w(α). We also define F (n; p, ·, k) = 1
if k = p = 0. Then we have the following:

1) n ⩾ k ⩾ p ⩾ m ⩾ 0;
2) k = 1 =⇒ p = 1;
3) p = 0 ⇔ k = 0.

Observe that

F (n; p,m, ·) =

n
∑

k=p

F (n; p,m, k), F (n; p, ·, k) =

p
∑

m=0

F (n; p,m, k), . . .

and any two-variable function can be expressed as a sum of appropriate
three-variable functions and so on.

We now have the following theorem.

Theorem 1. Let c(n, p) and F (n; p,m, k) be as defined in (1) and (2),
respectively. Then

F (n; p,m, k) =

(

k − 1

p− 1

)(

p

m

)

c(n−m, p−m).

Proof. Let α ∈ In be such that h(α) = p, f(α) = m and w(α) = k. First,
we fix our image set to be Yp. The p images which must include k, can be

chosen in
(

k−1
p−1

)

ways, since k is the maximum element in Imα. Next, the

m fixed points can be chosen from the already chosen p images in
(

p
m

)

ways. Now from the remaining n−m unused elements for the domain and
p −m elements for the images, there are c(n −m, p −m) ways to map
these elements surjectively and injectively without fixed points. Hence the
result follows. □

From the above result we recover the following results which can be found
in [23, Table 3, p. 119]:
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Lemma 3. Let c(n, p) and F (n; p,m, ·) be as defined in (1) and (3),
respectively. Then

F (n; p,m, ·) =
n!

m!(n− p)!

p−m
∑

j=0

(

n−m− j

p−m− j

)

(−1)j

j!
.

Lemma 4. Let c(n, p) and F (n; p, ·, k) be as defined in (1) and (4),
respectively. Then

F (n; p, ·, k) =

(

n

p

)(

k − 1

p− 1

)

p!.

Proof. This follows directly from Lemmas 1, 2 and Theorem 1. □

However, we also get the following new result, thereby completing [23, Table
3, p. 119].

Theorem 2. Let c(n, p) and F (n; ·,m, k) be as defined in (1) and (5),
respectively. Then

F (n; ·,m, k) =

k
∑

p=0

(

k − 1

p− 1

)(

p

m

)

c(n−m, p−m).

An alternative expression for F (n; ·,m, k) is given in the proposition below.

Proposition 1. For 1 ⩽ k ⩽ n,

F (n; ·,m, k) =

(

k − 1

m

)

F (n−m; ·, 0, k−m)+

k−1
∑

j=m−1

F (n−1; ·,m−1, j).

Proof. Let Fm(n, k) be the set of all partial one-one maps on Xn with
waist k and m fixed points. Let x be the largest fixed point of a map α in
F1(n, k) and β be the restriction of α to Xn\ {x}. If x < k, then β can be
considered as an element of F0(n−m, k−m) (remove all fixed points and
their images) and there are

(

k−1
m

)

choices of x. Hence the number of maps in

Fm(n, k) with all fixed points less than k is
(

k−1
m

)

F (n−m; ·, 0, k−m). If k
is the largest fixed point of α, then max(Imβ) < k and β can be considered

as an element of
k−1
⋃

j=1
Fm−1(n−m, j), so there are

∑k−1
j=0 F (n−1; ·,m−1, j)

maps in Fm(n, k) with fixed point k. □

Remark 1. The triangular array of numbers F (n; ·, 1, k) , F (n; ·, 2, k) and
sequences ΣF (n; ·, 1, k) and ΣF (n; ·, 2, k) are as at the time of submitting
this paper not in Sloane [20]. For computed values of F (n; ·, 1, k) and
F (n; ·, 2, k) (for 1 ⩽ k ⩽ n ⩽ 6) see Tables 1 and 2, respectively.
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n\k 1 2 3 4 5 6 ΣF (n; ·, 1, k)

0 0 0

1 1 0 1

2 1 1 0 2

3 1 3 8 0 12

4 1 5 18 48 0 72

5 1 7 34 126 372 0 540

6 1 9 56 270 1044 3300 4680

Table 1.

n\k 1 2 3 4 5 6 ΣF (n; ·, 2, k)

0 0 0

1 0 0 0

2 0 1 0 1

3 0 1 2 0 3

4 0 1 5 18 0 24

5 0 1 8 39 132 0 180

6 0 1 11 72 336 1410 1830

Table 2.

1. Partial derangements

The number of derangements (and its various generalizations) of an
n-set have attracted the attention of mathematicians as far back as the
18th century [21]. Thus, we were very surprised that the number of partial
derangements defined as α ∈ In having no fixed points was not known
and so we computed it in 2007, see [15] and [20, A144085]. In this section
we will find formulas for partial derangements of fixed waist. Note that in
this case the number of partial derangements of fixed left waist must be
equal to those of corresponding fixed waist.

From Theorems 1, 2 and Lemma 3, respectively, we deduce the following
results.

Proposition 2. Let c(n, p) and F (n; p,m, k) be as defined in (1) and (2),
respectively. Then the number of partial derangements (of an n-set) of
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height p and waist k is given by

F (n; p, 0, k) =

(

k − 1

p− 1

)

c(n, p).

Proposition 3. Let c(n, p) and F (n; p,m, ·) be as defined in (1), and (3),
respectively. Then the number of partial derangements (of an n-set) of
height p is given by

F (n; p, 0, ·) =
n!

(n− p)!

p
∑

j=0

(

n− j

p− j

)

(−1)j

j!
=

(

n

p

)

c(n, p).

Proposition 4. Let c(n, p) and F (n; ·,m, k) be as defined in (1) and (5),
respectively. Then the number of partial derangements (of an n-set) of
right waist k is given by

F (n; ·, 0, k) =

n
∑

p=0

(

k − 1

p− 1

)

c(n, p).

Remark 2. The triangular array of numbers F (n; ·, 0, k) and sequence
ΣF (n; ·, 0, k), are as at the time of submitting this paper not in Sloane
[20]. For computed values of F (n; ·, 0, k) for 1 ⩽ k ⩽ n ⩽ 6 see Table 3.

n\k 0 1 2 3 4 5 6 ΣF (n; ·, 0, k)

0 1 1

1 1 0 1

2 1 1 2 4

3 1 2 5 10 18

4 1 3 10 28 66 108

5 1 4 17 62 192 504 780

6 1 5 26 118 462 1548 4440 6600

Table 3.

It is clear that F (n; ·, 0, 0) = 1 and F (n; ·, 0, 1) = n − 1. Moreover, we
have

F (n; ·, 0, 2) = n2 − 2n+ 2;
F (n; ·, 0, 3) = n3 − 4n2 + 9n− 8;
F (n; ·, 0, 4) = n4 − 7n3 + 26n2 − 50n+ 42;
F (n; ·, 0, 5) = n5 − 11n4 + 61n3 − 193n2 + 346n− 276;
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F (n; ·, 0, 6) = n6 − 16n5 + 125n4 − 580n3 + 1674n2 − 2824n+ 2160.

We next obtain a recurrence relation and a generating function for
F (n; ·, 0, k). However, for notational brevity, we will denote from here
on F (n; ·,m, k) by Fm(n, k).

Proposition 5. Let Fm(n, k) = F (n; ·,m, k) be as defined in (5). Then
for 1 ⩽ k < n, we have

F0(n, k)− F0(n, k − 1) = (k − 1)F0(n− 1, k − 1)

−(k − 2)F0(n− 1, k − 2) + F0(n− 1, k).

Proof. First observe that since
∑i−k+2

j=2

(

k−j
i−2

)

=
(

k−1
i−1

)

, it follows that

n
∑

i=1

(

k − 1

i− 1

)

c(n− 1, i− 1) =

k−1
∑

i=1

F0(n− 1, i).

Next we show that

(6) F0(n, k) = kF0(n− 1, k − 1) +

k−2
∑

i=0

F0(n− 1, i) + F0(n− 1, k).

We have

F0(n, k) =

n
∑

i=0

(

k − 1

i− 1

)

c(n, i)

=

n
∑

i=0

(

k − 1

i− 1

)

[ic(n− 1, i− 1) + c(n− 1, i)]

=
n
∑

i=0

(

k − 1

i− 1

)

[(i− 1)c(n− 1, i− 1) + c(n− 1, i− 1) + c(n− 1, i)]

= (k − 1)F0(n− 1, k − 1) +
k−1
∑

i=0

F0(n− 1, i) + F0(n− 1, k)

= kF0(n− 1, k − 1) +
k−2
∑

i=0

F0(n− 1, i) + F0(n− 1, k).

Finally, note that substituting (6) into F0(n, k)− F0(n, k − 1) and simpli-
fying we get the required result. □
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Theorem 3. Let Fm(n, k) = F (n; ·,m, k) be as defined in (5). Then, for
n ⩾ 2, we have

∑

k⩾0

F0(n, k + 1)

k!
xk = e

x2

1+x (n(1 + x)n−1 − (1 + x)n−2).

Proof. We have

F0(n, k) =

k
∑

j=0

(k − 1)!
(−1)j

j!

k−j
∑

r=0

(

n− j

r

)

r + j

(k − j − r)!
.

Let a = k − j and let g(x) =
∑

a⩾0

∑a
r=0

(

n−j
r

) r+j
(a−r)!x

a. Then

g(x) =
∑

a⩾0

a
∑

r=0

(

n− j

r

)

xr(r + j)
xa−r

(a− r)!

=
∑

r⩾0

(

n− j

r

)

xr(r + j)
∑

a⩾r

xa−r

(a− r)!
= ex

∑

r⩾0

(

n− j

r

)

xr(r + j)

=ex(j(1 + x)n−j + (n− j)(1 + x)n−j−1) = ex(1 + x)n−j−1(j + nx),

using the fact that
(

n−j
r

)

= 0, if r > n− j. We now obtain

∑

k⩾0

kF0(n, k)

k!
xk =

∑

k⩾0

k
∑

j=0

(−x)j

j!

k−j
∑

r=0

(

n− j

r

)

r + j

(k − j − r)!
xk−j

=
∑

j⩾0

(−x)j

j!

∑

α⩾0

α
∑

r=0

(

n− j

r

)

r + j

(a− r)!
xa

= ex(1 + x)n−1
∑

j⩾0

(−x/(1 + x))j

j!
(j + nx)

= ex(1 + x)n−1







nxe−x/(1+x) +
∑

j⩾0

j(−x/(1 + x))j

j!
(j + nx)







= ex(1 + x)n−1

(

nxe−x/(1+x) −
x

1 + x
e−x/(1+x)

)

= xex
2/(1+x)(1 + x)n−1(n− 1/(1 + x)).

This implies
∑

k⩾0
F0(n,k+1)

k! xk = ex
2/(1+x)(1 + x)n−1(n − 1/(1 + x)), as

required. □
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Remark 3. A straightforward expansion of the power series above gives

∑

k⩾0

F0(n, k + 1)

k!
xk = (n− 1) + x(n2 − 2n+ 2) +

x2

2!
(n3 − 4n2 + 9n− 8)

+
x3

3!
(n4 − 7n3 + 26n2 − 50n+ 42)

+
x4

4!
(n5 − 11n4 + 61n3 − 193n2 + 346n− 276)

+
x5

5!
(n6 − 16n5 + 125n4 − 580n3 + 1674n2 − 2824n+ 2160)+O(x6).

We thus recover the polynomials listed after Remark 2.4.

The following result relates the number Fm(n, n) of partial one-one
maps with m fixed points and waist n to the number of partial derange-
ments.

Proposition 6. Let an be the number of partial derangements of In and
let Fm(n, k) = F (n; ·,m, k) be as defined in (5). Then, for n−m ⩾ 2,

Fm(n, n) = (n−m− 1)

(

n− 1

m

)

(an−m−1 + an−m−2) +

(

n− 1

m− 1

)

an−m.

In particular, for n ⩾ 2,

F0(n, n) = (n− 1)(an−1 + an−2).

Proof. Let n ⩾ 2 and let bn = F0(n, n) be the number of partial derange-
ments of In with waist n, i.e., with max(Imα) = n. We first prove that
bn = (n−1)(an−1+an−2). By [15, Proposition 3.1], the exponential gener-
ating function (e.g.f.) of an is a(x) = ex

2/(1−x)/(1−x). For computational
convenience, let b(x) be the e.g.f. of bn+1 rather than that of bn. We have

b(x) =
∑

n⩾0

bn+1
xn

n!

=
∑

n⩾0

1

n!

n
∑

p=0

xn−p

(

n

p

) p
∑

j=0

xp−j (−x)j

j!
(p+ 1)!

(

n+ 1− j

p+ 1− j

)

(−1)j

j!

=
∑

n⩾0

n
∑

p=0

xn−p

(n− p)!
(p+ 1)

p
∑

j=0

xp−j (−x)j

j!

(

n+ 1− j

p+ 1− j

)

.
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Let u = n− p, v = p− j. Then

b(x) =
∑

j⩾0

(−x)j

j!

∑

u⩾0

xu

u!
g(x, j, u)

where

g(x, j, u) =
∑

v⩾0

(v + j + 1)

(

u+ v + 1

v + 1

)

xv

=
j

x

∑

v⩾0

xv+1

(

u+ v + 1

v + 1

)

+
∑

v⩾0

(v + 1)

(

u+ v + 1

v + 1

)

xv

=
j

x

(

1

(1− x)u+1
− 1

)

+
d

dx

∑

t⩾1

txt−1

(

u+ t

t

)

=
j

x

(

1

(1− x)u+1
− 1

)

+
u+ 1

(1− x)u+2
.

Hence, by algebraic manipulations we see that

b(x) =
∑

j⩾0

(−x)j

j!

∑

u⩾0

xu

u!

(

j

x

(

1

(1− x)u+1
− 1

)

+
u+ 1

(1− x)u+2

)

=
∑

j⩾0

(−x)j

j!

{

jex/(1−x)

x(1− x)
−

jex

x

+
x

(1− x)3

∑

u⩾0

xu−1

(u− 1)!(1− x)u−1
+

ex/(1−x)

(1− x)2

}

= ex/(1−x)

{

1

x(1− x)

∑

j⩾0

j(−x)j

j!

+

(

x

(1− x)3
+

1

(1− x)2

)

∑

j⩾0

(−x)j

j!

}

+ 1

=
2x− x2

(1− x)3
ex

2/(1−x) + 1.

Thus we obtain

∑

n⩾0

bn+2
xn

n!
= b′(x) =

2 + x2 − 3x3 + x4

(1− x)5
ex

2/(1−x).
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On the other hand,

∑

n⩾0

(n+ 1)(an+1 + an)
xn

n!

= x
∑

n⩾1

an+1x
n−1

(n− 1)!
+
∑

n⩾0

an+1x
n

n!
+ x

∑

n⩾1

anx
n−1

(n− 1)!
+

∑

n⩾0

anx
n

n!

= xa′′(x) + (1 + x)a′(x) + a(x)

=
2 + x2 − 3x3 + x4

(1− x)5
ex

2/(1−x) =
∑

n⩾0

bn+2
xn

n!
.

This completes the proof that for all n ⩾ 0, bn+2 = (n+ 1)(an+1 + an).
We next turn to the case when m ⩾ 1. By Proposition 1.7 and the above
part,

Fm(n, n) =

(

n− 1

m

)

F0(n−m,n−m) +

n−1
∑

j=0

Fm−1(n− 1, j)

= (n−m− 1)

(

n− 1

m

)

(an−m−1 + an−m−2) + an−1,m−1

where ar,t is the number of partial one-one maps on {1, . . . , r} with exactly
t fixed points. By [15, (2.5a)] ar,t =

(

r
t

)

ar−t, so we obtain

Fm(n, n) = (n−m−1)

(

n− 1

m

)

(an−m−1+an−m−2)+

(

n− 1

m− 1

)

an−m.

Remark 4. From Proposition 1.7 and (6), we easily deduce that for
1 ⩽ k < n

F1(n, k) = F0(n, k)− F0(n− 1, k).

We conclude this article with the following divisibility properties. In
particular, we obtain the curious fact that lcm(1, . . . , k−1) divides F0(n, k)
and F1(n, k) if k ⩾ 3.

Theorem 4. (i) For k −m ⩾ 2, lcm(1, . . . , k − 1)|m!Fm(n, k).
(ii) If k −m ⩾ 4, then Fm(n, k) is divisible by 3.
(iii) lcm(1, 2, . . . , n−m− 1)|Fm(n, n).

Proof. (i) We use induction on m. For each r ∈ N, let µr = lcm(1, . . . , r).
Since the sequence (ak) of partial derangements of Ik has e.g.f.
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∑

k⩾0
ak
k! x

k = ex
2/(1−x)/(1− x), Theorem 2.6 implies

∑

k⩾0

F0(n, k + 1)
xk

k!
= (1 + x)n−1(n(1 + x)− 1)

∑

k⩾0

ak
(−x)k

k!
.

This means F0(n,k+1)
k! is a Z-linear combination of terms of the form

aj
j!

(0 ⩽ j ⩽ k) and so F0(n, k + 1) =
∑k

j=0 αjaj
k!
j! for some αj ∈ Z. By

[15, Proposition 2.11], µj |aj and hence each term aj
k!
j! is divisible by µk.

We thus obtain µk−1|F0(n, k) for k ⩾ 2.

Now assume that for some nonnegative integer M , µk−1|M !FM (n, k) when-
ever k −M ⩾ 2. By Proposition 1.7

FM+1(n, k) = A1 +A2 −A3

where

A1 =

(

k − 1

M + 1

)

F0(n−M − 1, k −M − 1)

A2 =

(

n− 1

M

)

an−M−1

A3 =
n−1
∑

j=k

FM (n− 1, j).

Hence, to prove that µk−1|(M + 1)!FM+1(n, k) for k −M ⩾ 3, it suffices
to show that µk−1|(M + 1)!Ai (1 ⩽ i ⩽ 3).

Clearly µk−1|(M + 1)!
(

k−1
M+1

)

µk−M−2. Since µk−M−2|F0(n − M − 1, k −
M − 1), we deduce that µk−1 divides (M + 1)!A1. Also, (M + 1)!an−M−1

is divisible by (n − 1)(n − 2) · · · (n − M)µn−M−1, so µk−1|(M + 1)!A2.
Finally, by the induction hypothesis, µk−1|M !FM (n, k), hence µk−1|(M +
1)!FM (n− 1, j) for j ⩾ k and therefore µk−1|(M + 1)!A3.

(ii) This follows by an argument similar to the one above.

(iii) This follows from Proposition 2.8 and the fact that µn|an. □
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