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Abstract. We consider lattice PartM of partitions of a count-
able set M , ordered by inclusion. It forms a semigroup with respect
to the operation ∧ mapping two elements to their greatest lower
bound. We obtain necessary and sufficient conditions for isomor-
phism of two variants of PartM .

Introduction

Let S be a semigroup and a ∈ S be fixed. For arbitrary x, y ∈ S we
define x ∗a y = xay. This binary operation ∗a on S is associative, which
is clearly, is called a sandwich-operation, and semigroup (S, ∗a) is called
a variant of the semigroup S or a sandwich-semigroup of the semigroup
S with the sandwich-element a.

The study of variants was initiated in the acclaimed Lyapin’s mono-
graph [1]. Although Lyapin formulated this notion for transformation
semigroups, later on various authors studied variants of other classes of
semigroups (see, for example, [2], [3], [4], [5], chapter 13 of monograph
[6], and references therein).

In this paper we consider variants of an ordered by inclusion lattice
PartM of partitions of a countable set M , which is a semigroup under
the operation ∧ of taking the greatest lower bound of two elements.

Note that for partitions ρ and τ the relation ρ ≤ τ holds if and only
if ρ ∧ τ = ρ.
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The main result of the paper is Theorem 2, which gives an isomor-
phism criterion for variants of a lattice PartM .

1. Auxiliary results

Recall that the height of a partially ordered set L is defined as the least
upper bound of lengths of chains of L. In a partially ordered set with
zero 0 the height of interval [0, a] is called a rank rank (a) of element a.
An element b is called an atom if rank (b) = 1. For the partition ρ ∈
PartM the number of atoms in the interval [0, ρ] will be denoted by a(ρ).
By Partk we denote a lattice of partition of a set of cardinality k.

The partition ρ ∈ PartM has the type 〈l2, . . . , lk, . . . , l∞〉 if it contains
l2 blocks of cardinality 2, . . . , lk blocks of cardinality k, . . . , l∞ blocks of
countable cardinality; the number of blocks of cardinality 1 is irrelevant.
The partition, where one block has cardinality k > 1 and the remaining
blocks are one-element, has the type 〈. . . , 0, 1k, 0, . . . , 0〉. Thus, atoms of
the lattice PartM have the type 〈12, 0, . . . , 0〉.

The partition σ is a covering partition of ρ if σ > ρ and there exists
no partition χ such that σ > χ > ρ.

The following Lemma is obvious.

Lemma 1. Let ρ be a partition of the set M such that M =
⋃
i∈I

Mi.

Then an interval [0, ρ] of the lattice PartM is isomorphic to the Cartesian
product

∏
i∈I

PartMi of lattices of partitions of blocks Mi, i ∈ I.

The next lemma follows straightforwardly from Lemma 1 and the fact
that for any natural number k, the height of the lattice Partk is equal to
k − 1.

Lemma 2. Let ρ be a partition of n-element set A. Then the height of
the interval [0, ρ] of lattice PartA is equal to n−m, where m is a number
of blocks in partition ρ.

Lemma 3. Let ρ be a partition of rank k− 1, which contains more than
one block of cardinality greater than 1. Then the interval [0, ρ] and the
lattice Partk have different number of atoms. In particular, the interval
[0, ρ] and the lattice Partk are non-isomorphic.

Proof. Let M1, M2, . . . , Mn be all non-singleton blocks of a partition ρ,
of cardinalities m1, m2, . . . , mn respectively. Then by Lemma 2

m1 +m2 + · · ·+mn = n+ k − 1. (1)
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Assume that the number of atoms of the interval [0, ρ] and the lattice
Partk is the same. Then(

m1

2

)
+

(
m2

2

)
+ · · ·+

(
mn

2

)
=

(
k

2

)
. (2)

Using equation (1), we can rewrite equation (2) as follows:

n∑
i=1

m2
i = k2 − k +

n∑
i=1

mi = k2 + n− 1. (3)

On the other hand, squaring both sides of (1), we get

n∑
i=1

m2
i +

∑
i 6=j

mimj = n2 + k2 + 1 + 2nk − 2n− 2k. (4)

It follows from (3) and (4) that∑
i 6=j

mimj = n2 + 2nk − 3n− 2k + 2. (5)

Assume that mi = 1 + ai. Then

∑
i 6=j

mimj =
∑
i 6=j

(1 + ai)(1 + aj) = n2 − n+ 2(n− 1)
n∑
i=1

ai +
∑
i 6=j

aiaj =

= n2 − n+ 2(n− 1)(k − 1) +
∑
i 6=j

aiaj .

Hence, considering (5) we obtain:∑
i 6=j

aiaj = (n2 + 2nk − 3n− 2k + 2)− (n2 − n+ 2(n− 1)(k − 1)) = 0.

However, the sum
∑
i 6=j

aiaj must be positive by assumption. This contra-

diction proves the lemma.

Lemma 4. Let partitions µ and σ be covering partitions of a partition ρ,
which has the type 〈. . . , 0, 1k, 0, . . . , 0〉. If µ and σ have different types,
then intervals [0, µ] and [0, σ] contain different number of partitions of
rank k.

Proof. The type of a covering partition of ρ is either 〈. . . , 0, 1k+1, 0, . . . , 0〉
or 〈12, 0, . . . , 0, 1k, 0, . . . , 0〉. Without loss of generality we may assume
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that µ is a partition of the first type and σ is a partition of the second
type.

The partition µ has a unique non-singleton block A of cardinality
k + 2.

Every partition of the interval [0, µ] of rank k can be obtained by
partitioning the block A into two smaller blocks. Obviously, this can be
done in 2k+1 − 1 ways.

Partition σ has two non-singleton blocks, namely a two-element block
B and a block C of cardinality k + 1. Partition of rank k of the interval
[0, σ] can be obtained by partitioning one of these blocks into two smaller
blocks. The block B can be partitioned uniquely, and the block C can
be partitioned in 2k − 1 ways. Hence, in this case we get 2k partitions of
rank k.

Since for every natural number k the inequality 2k+1 − 1 > 2k holds,
the lemma is proved.

Lemma 5. Let partitions µ and σ be the partitions of types 〈l2, l3, . . . , l∞〉
and 〈t2, t3, . . . , t∞〉 respectively. If the intervals [0, µ] and [0, σ] are iso-
morphic, then lk = tk for each k ∈ N.

Proof. Let the partition µ have the form M =
⋃
i∈I

Ai, and the partition

σ, the form M =
⋃
j∈J

Bj . Let ϕ : [0, µ]→ [0, σ] be an isomorphism.

Note that ϕ maps atoms to atoms, a covering of partition τ ∈ [0, µ]
to a covering of partition ϕ(τ). Also ϕ preserves ranks of elements.

For each k-element block Ai of the partition µ, there is a partition
µAi ∈ [0, µ] of the type 〈. . . , 0, 1k−1, 0, . . . , 0〉; its blocks are Ai and single-
tons. Similarly, we define partitions σBj for blocks of partition σ. Note
that all covering partitions for µAi have the type 〈12, 0, ..., 0, 1k−1, 0, ..., 0〉.

By Lemma 3, the partition ϕ(µAi) has the type 〈. . . , 0, 1k−1, 0, . . . , 0〉;
by Lemma 4, all covering partitions for ϕ(µAi) have the type 〈12, 0, . . . , 0,
1k−1, 0, . . . , 0〉. Hence the image ϕ(µAi) of partition µAi is a partition σBj

for some block Bj of cardinality k.
Since the inverse mapping ϕ−1 is an isomorphism, there is a one-to-

one between k-element blocks of partition µ and those of partition σ.

Lemma 6. A partition µ contains an infinite block if and only if the
interval [0, µ] is an infinite increasing chain

0 < τ1 < τ2 < τ3 < · · · , (6)

where for every k the partition τk has rank k and the interval [0, τ ] con-
tains

(
k+1
2

)
atoms.
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Proof. Let A be an infinite block of partition µ. We consider an infinite
increasing chain

{a0, a1} ⊂ {a0, a1, a2} ⊂ {a0, a1, a2, a3} ⊂

of subsets Ak = {a0, a1, a2, . . . , ak} of the set A. For each subset Ak con-
sider a partition µAk

∈ [0, µ] such that its blocks are Ak and singletons.
Then the chain of partitions

0 < µA1 < µA2 < µA3 < · · ·

is as required.

Conversely, let the interval [0, µ] be an infinite increasing chain (6)
satisfying the statement of lemma. By Lemma 3, every partition τk has
only one non-singleton block Ak. Since the partition τk is a chain, then
the blocks Ak form a chain by inclusion. Hence the set A =

⋃
k≥1

Ak is an

infinite block of partition µ.

Lemma 7. Let the types of partitions µ and σ be 〈l2, l3, . . . , l∞〉 and
〈t2, t3, . . . , t∞〉 respectively. If the intervals [0, µ] and [0, σ] are isomor-
phic, then l∞ = t∞.

Proof. It follows from Lemma 3 that the partial order relation in the
lattice PartM is sufficient to identify the partitions of finite rank, which
have unique non-singleton block. Hence it is enough to show that l∞ =
k ∈ N if and only if in [0, µ] there are k chains L1, . . . , Lk such that

(i) every chain Li satisfies the conditions of Lemma 6;

(ii) if partitions τ ′ 6= 0 and τ ′′ 6= 0 belong to different chains and ν > τ ′,
ν > τ ′′, then ν contains at least two non-singleton blocks;

but there is no k + 1 chains satisfying these conditions.

Let l∞ = k and N1, . . . , Nk be all infinite blocks of partition µ.
According to the proof of Lemma 6, for every infinite block Ni we can
construct a chain Li in [0, µ] satisfying the conditions of Lemma 6. More-
over, the chains corresponding to different blocks satisfy condition (ii).
Therefore, if l∞ = k, then in [0, µ] there exist k chains satisfying condi-
tions (i) and (ii).

Suppose that in [0, µ] there exist k + 1 chains L1, . . . , Lk+1, which
satisfy conditions (i) and (ii). The proof of Lemma 6 implies that every
chain of this kind

0 < τ i1 < τ i2 < τ i3 < · · ·
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is formed by partitions of finite rank having only one non-singleton block,
and all the non-singleton blocks are subsets of some infinite block. Since
there are only k infinite blocks and there are k + 1 chains, then there
exist two chains which correspond to the same infinite block. Without
loss of generality we assume that chains L1 and L2 correspond to the
same block N1. We can choose arbitrary non-zero elements τ1i ∈ L1 and
τ2j ∈ L2.

Let C1 and C2 be non-singleton blocks of partitions τ1i and τ2j re-
spectively. Since C1 ⊂ N1 and C2 ⊂ N1, then C1 ∪ C2 ⊂ N1. Hence the
interval [0, µ] contains the partition ν with only one non-singleton block
C1 ∪ C2. But ν > τ1i and ν > τ2j , which contradicts to (ii).

Let a be a fixed element of a commutative band S with zero. Let
S[a,b] = {x ∈ S|x ·a = a, b ·x = x}. For every element x ∈ S[a,b] we define
the set Ω(x) = {y ∈ S|a · y = x}, and the weight ω(x) of the element x
by ω(x) = |Ω(x)|.

Theorem 1 ([7]). Two variants (S, ∗a) and (S, ∗b) of a commutative
band S with zero are isomorphic if and only if there exists a weight-
preserving isomorphism of intervals S[0,a] and S[0,b].

2. Main result

Proposition 1. Intervals [0, µ] and [0, σ] of a lattice PartM of partitions
of a countable set M are isomorphic if and only if partitions µ and σ have
the same type.

Proof. It follows from Lemmas 5, 7 and 1.

Lemma 8. If partitions µ and τ have the same type and the same number
of one-element blocks, then there exists an isomorphism of intervals [0, µ]
and [0, σ] induced by the permutation of the set M .

Proof. Let partitions µ and τ be of the same type and have the same
number of one-element blocks. In this case blocks of both partitions can
be indexed by the same set of indexes I ((Ai)i∈I for partition µ and
(Bi)i∈I for partition τ). Moreover, for every i ∈ I blocks Ai and Bi
have the same cardinality. Let ϕi be a bijection from Ai to Bi. Since
M =

⋃
i∈I Ai =

⋃
i∈I Bi, then ϕ =

⋃
i∈I ϕi is a permutation of the set

M , which maps the blocks of partition µ to the blocks of partition τ .
Since by Lemma 1 intervals [0, µ] and [0, τ ] are isomorphic to the Carte-
sian products

∏
i∈I

PartAi and
∏
i∈I

PartBi respectively, then permutation ϕ

induces an isomorphism of this intervals.
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Note that semigroup PartM is a commutative band with zero. Thus,
we can consider the weight ω(χ) of the element χ ∈ [0, ρ]. By definition
it equals the cardinality of the set Ω(χ) = {ξ ∈ PartM | ρ ∧ ξ = χ}.

Proposition 2 (On the weight of partitions). a) If the partition ρ con-
tains an infinite number of blocks, then the weight ω(χ) of every element
χ ∈ [0, ρ] is continuum.

b) If the partition ρ contains a finite number n of blocks, then in the
interval [0, ρ] the weight ω(ρ) of the element ρ is equal to the n-th Bell
number Bn.

Proof. a) Let partition ρ of the set M be of the form M =
⋃
i∈I

Mi,

where I is infinite, and partition χ from the interval [0, ρ] be of the form
M =

⋃
i∈I

⋃
j∈Ji

Nij , where Mi =
⋃
j∈Ji

Nij is a partition of the block Mi.

Consider a partition ξ such that its blocks have the form of union of
blocks Nij and none block of a partition ξ contains two blocks Nij with
the same first index. Since the set I is countable, the number of such
partitions is continuum. On the other hand, the intersection of a block
of partition ξ and a block of partition ρ is either empty or a block of the
form Nij , i.e. it is a block of a partition χ. Hence ρ∧ξ = χ. Thus, the set
Ω(χ) contains continuum elements, hence the weight ω(χ) is continuum.

b) In this case the set Ω(ρ) is a set of ξ ∈ PartM such that the
condition ρ∧ ξ = ρ holds, in other words, of such ξ which belongs to the
interval [ρ, 1]. Since the partition ρ consists of n blocks, then the interval
[ρ, 1] is isomorphic to the lattice Partn and its cardinality is equal to Bn.

We get an immediate corollary from the Proposition 1 and 2.

Corollary 1. Let intervals [0, µ] and [0, σ] be isomorphic. If partitions
µ and σ have the same weight, then one of the following two statements
holds:

(1) both partitions µ and σ have countable number of blocks;

(2) partitions µ and σ have the same finite number of blocks and the
same type. In particular, they have the same number of one-element
blocks.

Theorem 2 (Isomorphism criterion for variants of the lattice of par-
titions). Let PartM be the lattice of partitions of a countable set M .
Variants (PartM , ∗µ) and (PartM , ∗σ) of PartM are isomorphic if and
only if partitions µ and σ have the same type and the same number of
blocks.
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Proof. By Theorem 1, variants (PartM , ∗µ) and (PartM , ∗σ) are isomor-
phic if and only if there exists a weight-preserving isomorphism between
[0, µ] and [0, σ]. Since partitions µ and σ are the greatest elements in
intervals [0, µ] and [0, σ] respectively, then the isomorphism maps µ to
σ. In particular, µ and σ have the same weight.

By Proposition 2, the variants (PartM , ∗µ) and (PartM , ∗σ) are iso-
morphic if both partitions µ and σ have either a countable number of
blocks or the same finite number of blocks. Consider each of these cases.

(1) Partitions µ and σ have the countable number of blocks. By
Proposition 1, the intervals [0, µ] and [0, σ] are isomorphic if and only
if partition µ and σ have the same type. Furthermore, by Proposition
2, all elements in this intervals have continual weights. Hence any iso-
morphism from [0, µ] on [0, σ] is weight-preserving. Consequently, the
variants (PartM , ∗µ) and (PartM , ∗σ) are isomorphic if and only if parti-
tions µ and σ have the same type.

(2) Partitions µ and σ have the same finite number of blocks. Since
these partitions have the same type, they have the same number of one-
element blocks. Hence, by Lemma 8, there exists an isomorphism be-
tween the intervals [0, µ] and [0, σ], induced by a permutation of the set
M . Obviously, this isomorphism is weight-preserving. Therefore, the
variants (PartM , ∗µ) and (PartM , ∗σ) are isomorphic if and only if parti-
tions µ and σ have the same type and the same number of blocks.

References

[1] Evgeniy S. Liapin Polugruppy, Fizmatgiz, 1960.

[2] K. Chase, Sandwich semigroups of binary relations, Discrete Math., V.28(3), 1979.
pp. 231-236.

[3] J. Hickey, Semigroups under a sandwich operation, Proc. Edinburg Math. Soc., (2)
V.26(3), 1983, pp. 371-382.

[4] T. Khan , M. Lawson Variants of regular semigroups, Semigroup Forum., V.62(3),
2001, pp. 358-374.

[5] V. Mazorchuk , G. Tsyaputa, Isolated subsemigroups in the variants of Yn, Acta
Math. Univ. Com., V. LXXVII, 1, 2008, pp. 63-84.

[6] Olexandr Ganyushkin, Volodymyr Mazorchuk Classical Finite Transformation
Semirgoups. An Introduction. Algebra and Applications, 9, Springer–Verlag, Lon-
don, 2009.

[7] O. Desiateryk, Variants of commutative bands with zero, Bulletin of Taras
Shevchenko National University of Kyiv, Series: Phisics & Mathematics, V.4,
2015, pp. 15-20.

Contact information



O. Ganyushkin, O. Desiateryk 9

O. Ganyushkin Department of Mathematics Kyiv Univer-
sity 64, Volodymyrska st. UA-01033, Kyiv
E-Mail: ganiyshk@univ.kiev.ua

URL:

O. Desiateryk Department of Mathematics Kyiv Univer-
sity 64, Volodymyrska st. UA-01033, Kyiv
E-Mail: sasha.desyaterik@gmail.com

URL:


