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Abstract. Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair

(G,Γ) is defined to be the maximum distance we can guarantee that an arbitrary unit vector in an

arbitrary nontrivial irreducible unitary representation space of G can be moved by some element

of Γ. The Kazhdan constant relates to the expansion properties of the Cayley graph generated by

G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may

give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To what extent

is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley

graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we construct

an infinite family of such pairs where the Kazhdan constants are unequal. Other relevant results

are presented as well.

1. Introduction

Let G be a finite group, and let Γ be a subset of G. Let ρ be a unitary representation of G, that

is, a homomorphism from G to GL(V ), where V is a complex vector space with a Hermitian inner

product 〈·, ·〉, such that 〈v, w〉 = 〈ρ(g)v, ρ(g)w〉 for all g ∈ G, v, w ∈ V . We define κ(G,Γ, ρ) by

κ(G,Γ, ρ) = min
v∈S1(V )

max
γ∈Γ
||ρ(γ)v − v||.

Here S1(V ) denotes the set of all unit vectors in V . We then define the Kazhdan constant of the

pair (G,Γ) by

κ(G,Γ) = min
ρ∈NI(G)

κ(G,Γ, ρ),

where NI(G) denotes the set of nontrivial irreducible unitary representations of G. We can think

of the Kazhdan constant intuitively as follows: it is the maximum distance we can guarantee that

an arbitrary unit vector in an arbitrary nontrivial irreducible unitary representation space of G can

be moved by some element of Γ. As discussed in [5], for finite groups this version of the Kazhdan

constant is well-defined, e.g., the various minima and maxima are achieved.
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The pair (G,Γ) gives rise also to a directed graph via the Cayley graph construction. We define

the Cayley graph Cay(G,Γ) to be the graph whose vertex set is G, where there is an edge from x

to y iff y = xγ for some γ ∈ Γ. We say that Γ is symmetric if γ−1 ∈ Γ whenever γ ∈ Γ. We have

that Cay(G,Γ) is an undirected graph if and only if Γ is symmetric. We will deal exclusively with

undirected graphs in this paper.

The Kazhdan constant relates to the expansion properties of the Cayley graph generated by G

and Γ and has been much studied in this context—see, for example, [4] for more on this. Explicitly

computing the Kazhdan constant can be quite difficult; generally, lower bounds suffice. See [1] and

[2] for some of the few cases in which exact values are known.

It may happen that for two different pairs (G1,Γ1) and (G2,Γ2), the corresponding Cayley graphs

Cay(G1,Γ1) and Cay(G2,Γ2) are isomorphic, which we denote by Cay(G1,Γ1) ∼= Cay(G2,Γ2). We

may well ask, is the following statement always true?

(1) If Cay(G1,Γ1) ∼= Cay(G2,Γ2), then κ(G1,Γ1) = κ(G2,Γ2).

A simple example shows that in full generality, (1) fails. Namely, let G1 = Z4, the group of integers

modulo 4, and let Γ1 = {1,−1}. Let G2 be the Klein four-group Z2×Z2, and let Γ2 = {(1, 0), (0, 1)}.

Then Cay(G1,Γ1) and Cay(G2,Γ2) are both 4-cycles. However, a straightforward computation

shows that κ(G1,Γ1) =
√

2 but κ(G2,Γ2) = 2.

Finding other examples where (1) fails requires some effort, however. There is a trivial way to

produce two pairs (G1,Γ1) and (G2,Γ2) such that Cay(G1,Γ1) and Cay(G2,Γ2) are isomorphic:

Take G1 and G2 to be isomorphic groups with an isomorphism φ : G1 → G2, and let Γ2 = φ(Γ1). In

this case we say that (G1,Γ1) and (G2,Γ2) are Cayley isomorphic. Such pairs produce isomorphic

Cayley graphs; moreover, using standard facts from representation theory, one can show that (1)

holds whenever (G1,Γ1) and (G2,Γ2) are Cayley isomorphic. But (1) holds in many non-trivial

instances as well. For example, one can produce a cycle graph of even length ≥ 6 as a Cayley graph

either on a cyclic or on a dihedral group, but the corresponding Kazhdan constant is the same either

way, as shown by Bacher and de la Harpe. (In Section 3, we provide an alternative proof of this

fact.) A construction due to Elspas and Turner (disproving a conjecture of Àdàm) demonstrates the

existence of isomorphic Cayley graphs on cyclic groups arising from Cayley non-isomorphic pairs.

In Section 3, we show that for a natural generalization of this construction, again the Kazhdan

constants are equal.
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In Section 2, we state and prove our main theorem, in which we demonstrate that infinitely many

pairs with isomorphic Cayley graphs but unequal Kazhdan constants exist. The main idea behind

this construction is to suitably modify the Elspas-Turner graphs.

In Section 3, in addition to the other items mentioned above, we also remark that in cases where

the two Cayley graphs are isomorphic, the corresponding Kazhdan constants cannot be too far apart

from one another. Explicit upper and lower bounds are given.

2. Examples where the Kazhdan constants are not equal

In this section, we present our main result: an exhibition of an infinite family of pairs with

isomorphic Cayley graphs but unequal Kazhdan constants.

Theorem 2.1. Let t be an even integer with t ≥ 6. Let

Γ1 = {±1,±(2t− 1)} ∪ {±2,±4,±6, . . . ,±t}, and

Γ2 = {±(t− 1),±(t+ 1)} ∪ {±2,±4,±6, . . . ,±t}.

Let n = 4t. Then Cay(Zn,Γ1) ∼= Cay(Zn,Γ2) but κ(Zn,Γ1) 6= κ(Zn,Γ2).

Proof. The function f : Zn → Zn given by

f(a) =


a if a is even

a+ n
4 if a is odd

defines a graph isomorphism from Cay(Zn,Γ1) to Cay(Zn,Γ2). The key point is that f maps odd

elements of Γ1 to odd elements of Γ2, while it fixes the even elements.

For any k ∈ Z, define |k|n to be the unique element of {0, 1, 2, . . . , n/2} congruent to either k or

−k modulo n. For any symmetric subset Γ of Zn, we define

α(Zn,Γ) := min
1≤j≤n/2

max
γ∈Γ
|γj|n.

It follows that

κ(Zn,Γ2) = 2 sin

(
πα(Zn,Γ2)

n

)
.

To establish that the Kazhdan constants are not equal, we first show that α(Zn,Γ2) = t+ 1.

When j = 1, we have that max
γ∈Γ2

|γj|n = t+1. The maximum is achieved when γ = t+1 = −(3t−1).

We now show that for all j with 1 ≤ j ≤ 2t, we have max
γ∈Γ2

|γj|n ≥ t+ 1 by producing, for each j,

an element γ ∈ Γ2 such that |jγ|n ≥ t+ 1.

For j ≡ 1 (mod 4) and j ≤ t, we have |j(t+ 1)|n = t+ j ≥ t+ 1.
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For j ≡ 1 (mod 4) with t ≤ j < 2t, we have |j(−t− 1)|n = 3t− j ≥ t+ 1.

For j ≡ 2 (mod 4), we have |j(2t)|n = 2t ≥ t+ 1.

For j ≡ 3 (mod 4) and j ≤ t, we have that |j(−t+ 1)|n = t+ j ≥ t+ 1.

For j ≡ 3 (mod 4) with t ≤ j < 2t, we have |j(t− 1)|n = 3t− j ≥ t+ 1.

For j ≡ 0 (mod 4) with 2 ≤ j ≤ t/2, let γ = 2d t+1
2j e. Here dxe denotes the ceiling function of

x, that is, the smallest integer greater than or equal to x. Because j ≥ 2 and t ≥ 6, it follows that

γ ≤ t, so γ ∈ Γ2. Moreover, jγ ≤ 2t, so |jγ|n = jγ ≥ t+ 1.

For j ≡ 0 (mod 4) with t/2 < j < 3t/2, we have that |j(2)|n = 2j if j ≤ t and |j(2)|n = 4t− 2j if

j ≥ 2t. In either case, we have |j(2)|n ≥ t+ 1.

For j ≡ 0 (mod 4) with 3t/2 < j ≤ 2t, we have that |j(t+ 1)|n = j ≥ t+ 1.

We now show that α(Zn,Γ1) > t+ 1. To do so, for all j with 1 ≤ j ≤ 2t, we produce, for each j,

an element γ ∈ Γ1 such that |jγ|n > t+ 1.

When j = 1, take γ = 2t− 1.

When 2 ≤ j < t/2, take γ = 2b tj c, where bxc denotes the floor function of x, that is, the largest

integer less than or equal to x.

When j = t/2, take γ = 4.

When t/2 < j ≤ t, take γ = 2.

When j = t+ 1, take γ = 2.

When j > t+ 2, take γ = 1. �

As a consequence of Theorem 2.1, it follows that (Zn,Γ1) and (Zn,Γ2) are not Cayley isomorphic;

for if they were, then their Kazhdan constants would be equal.

It would be interesting to use examples such as those in Theorem 2.1 to investigate how sharp

the inequalities in Theorem 3.3 are.

3. Miscellaneous results

When two Cayley graphs are isomorphic, the two corresponding Kazhdan constants cannot be

that far apart from one another. In Subsection 3.1, we make this precise by proving an inequality

relating one of the Kazhdan constants to the other. This inequality follows more or less immediately

from known bounds for the Kazhdan constant in terms of the isoperimetric constant and the second-

largest eigenvalue of the adjacency matrix, both of which are graph invariants.

In Subsection 3.2, we consider instances in which (1) holds nontrivially. First, we take the case

of even cycle graphs of length ≥ 6. Up to Cayley isomorphism, these can be realized in exactly two
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ways: as Cay(Z2n, {±1}) or as Cay(Dn, {s, sr}). Here Dn denotes the dihedral group of order 2n

with presentation 〈r, s | rn = s2 = 1, sr = r−1s〉. In Theorem 3.4, we show that κ(Z2n, {±1}) =

κ(Dn, {s, sr}), thereby establishing (1) for these pairs. The computation of κ(Dn, {s, sr}) is due to

Bacher and de la Harpe [1, Proposition 4]; we recover their result with a new proof.

Later in Subsection 3.2, we give an example where G1 and G2 are both cyclic groups of the same

order; the pairs are not Cayley isomorphic; but (1) holds anyway. It is far from obvious that one

can find symmetric subsets Γ1,Γ2 ⊂ Zn such that Cay(Zn,Γ1) and Cay(Zn,Γ2) are isomorphic

but (Zn,Γ1) and (Zn,Γ2) are not Cayley isomorphic. Indeed, Àdàm had conjectured that no such

examples exist. Elspas and Turner [3] disproved Àdàm’s conjecture by finding just such an example.

We generalize the construction of Elspas and Turner to produce an infinite family of such examples.

We then compute the corresponding Kazhdan constants and find that (1) holds for all of them.

3.1. Bounds for Kazhdan constants when the corresponding Cayley graphs are isomor-

phic. The Kazhdan constant of (G1,Γ1) relates to various invariants of the corresponding Cayley

graph. For that reason, if two pairs (G1,Γ1) and (G2,Γ2) produce isomorphic Cayley graphs, we

can bound one Kazhdan constant in terms of the other, by relating both to graph invariants. We

now make this precise.

Let |B| denote the cardinality of a set B. Let X be a graph with vertex set V . For any subset

F ⊂ V , we define the boundary of F , denoted ∂F , to be the set of all edges with one endpoint in A

and one endpoint in V \F . For a finite graph X, we define the isoperimetric constant of X, denoted

h(X), to be the minimum, over all subsets F of V such that |F | ≤ |V |/2, of |∂F |/|F |.

Let A be the adjacency matrix of X. Then A is a symmetric matrix with real entries, hence all

of its eigenvalues are real. Let λ0, λ1, . . . , λn−1 be the eigenvalues of A, arranged so that

λ0 ≥ λ1 ≥ · · · ≥ λn−1.

The second-largest eigenvalue, which we denote λ1(X), plays a significant role in the theory.

We refer to [5] for more details about these graph invariants. The following theorem was proved

in [7]. It provides an upper bound for h(X) in terms of λ1(X). This bound is stronger than the one

stated in [5].

Theorem 3.1. Let X be a finite graph. Let ∆ be the maximum degree of any vertex in X. Then

h(X) ≤
√

∆2 − λ1(X)2.
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We also have inequalities relating the Kazhdan constant to h(X) and to λ1(X), respectively.

Proofs can be found in [5, Props. 8.17 and 8.18]; see also [6].

Theorem 3.2. Let G be a finite group, and Γ a symmetric subset of G. Let d = |Γ| and X =

Cay(G,Γ). Let h = h(X), λ1 = λ1(X), and κ = κ(G,Γ). Then:

h(X) ≥ κ2

4d
and κ ≥

√
2(d− λ1)

d
.

Stringing together the inequalities in Theorems 3.1 and 3.2, we immediately obtain the following

theorem.

Theorem 3.3. Let G1, G2 be finite groups, and let Γ1,Γ2 be symmetric subsets of G1, G2, respec-

tively, such that Cay(G1,Γ1) and Cay(G2,Γ2) are isomorphic graphs. Let κ1 = κ(G1,Γ1) and

κ2 = κ(G2,Γ2). Then:

κ2
1

4d2
≤ κ2 ≤ 2d

√
κ1.

Moreover, if κ1, κ2 ≤
√

2, then:√
2−

√
4− κ4

2

4d4
≤ κ1 ≤ d

√
2
(
4− (2− κ2

2)2
)1/4

.

3.2. Examples with equality of Kazhdan constants.

3.2.1. Cycle graphs. For n ≥ 3, we have that Cay(Z2n, {±1}) ∼= Cay(Dn, {s, sr}). Indeed, both

graphs are cycle graphs of length 2n. A straightforward computation shows that any pair (G,Γ) for

which Cay(G,Γ) is an even cycle graph of length ≥ 6 must be Cayley isomorphic to (Z2n, {±1})

or (Dn, {s, sr}). Our main theorem in this section shows that κ(Z2n, {±1}) = κ(Dn, {s, sr}) =

2 sin(π/2n). Indeed, then, this implies that κ(G,Γ) = 2 sin(π/2n) whenever Cay(G,Γ) is a cycle

graph of length 2n ≥ 6.

Theorem 3.4. We have that κ(Z2n, {±1}) = κ(Dn, {s, sr}) = 2 sin π
2n .

Remark 3.5. The fact that κ(Dn, {s, sr}) = 2 sin π
2n appears as Proposition 4 in [1]. Here we give

an independent proof of this result.

Proof. First we compute κ(Z2n, {±1}). Note that κ(Z2n, {±1}) = κ(Z2n, {1}), because adding or

deleting inverses has no effect on the Kazhdan constant. For Z2n, up to rescaling of the inner

product (which has no effect on κ), the nontrivial irreducible unitary representations are of the form

ρa(k) = ξk, where ξ = eπia/n and a = 1, . . . , 2n− 1. Here we identify the nonzero complex number
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ξk with its action by multiplication on the complex plane with the standard inner product, so that

ρa : Z2n → GL(1,C). It follows that κ(Z2n, {1}, ρa) = 2 sin(aπ/2n). This is minimized when a = 1,

so

κ(Z2n, {±1}) = 2 sin
π

2n
.

Next we calculate κ(Dn, {s, sr}). We recall that the irreducible representations of the dihedral

group are as follows. Let ξ = e
2πi
n . For each integer j with 1 ≤ j < n/2, define

Rj =

ξj 0

0 ξ−j

 and S =

0 1

1 0

 .

Then define ρj : Dn → GL(2,C) by ρj(r
a) = Raj and ρj(s) = S. These give us representations

ρj of Dn for each j with 1 ≤ j < n/2. These maps ρj are unitary with respect to the usual inner

product on C2. Up to rescaling of the inner product, these are all of the two-dimensional irreducible

unitary representations of Dn.

We give the one-dimensional irreducible representation of Dn below. The first table gives the

nontrivial irreducible representations when n is even.

χ rk srk

χ2 1 −1

χ3 (−1)k (−1)k

χ4 (−1)k (−1)k+1

The next table gives the nontrivial irreducible representations when n is odd.

χ rk srk

χ1 1 −1

To find κ(Dn, {s, sr}), we first find the values κ(Dn, {s, sr}, ρj). We have:

ρj(s) =

0 1

1 0

 and ρj(sr) =

 0 ξ−j

ξj 0

 .

Let v = (a, b)T , |a|2 + |b|2 = 1, where a, b ∈ C. Then ||ρj(s)v− v‖ = ‖(b− a, a− b)‖ =
√

2|b− a| and

‖ρj(sr)v − v‖ = ‖(bξj − a, aξ−j − b)‖ =
√
|ξjb− a|2 + |ξ−ja− b|2 =

√
2|ξjb− a|.

The angle from a to aξ−j is 2jπ/n. We replace a with the image of a under a rotation of the

complex plane such that the positive imaginary axis bisects the angle formed by the rays from the

origin to a and from the origin to aξ−j . Therefore, the angle from the positive real axis to aξ−j
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is π/2 − jπ/n = (nπ − 2jπ)/2n. In other words, a = re[(nπ+2jπ)/2n]i, where 1 ≤ j < n/2 for some

positive real number r.

We can now see that if γ ∈ {s, sr}, then

max ‖ρ(γ)v − v‖ =


√

2|b− ξ−ja| when Re(b) ≤ 0,

√
2|b− a| when Re(b) ≥ 0.

Without loss of generality we may assume that Re(b) ≥ 0; if not, simply reflect about the

imaginary axis throughout the subsequent argument.

We know a = reiθ where θ = nπ+2jπ
2n and 1 ≤ j < n/2, for some r > 0. (We trust that there will

be no confusion between this real number r and the element r of Dn.) Let b = x+ iy where x, y ∈ R

and x2 + y2 + r2 = 1. We seek to minimize |a− b|2.

Let f(r, x, y) = |reiθ − (x+ iy)|2 = |a− b|2. Then

f(r, x, y) = |(r cos θ − x) + (r sin θ − y)i|2 = (r cos θ − x)2 + (r sin θ − y)2

= r2 cos2 θ − 2rx cos θ + x2 + r2 sin2 θ − 2ry sin θ + y2

= 1− 2rx cos θ − 2ry sin θ.

Let g(r, x, y) = r2 +x2 +y2−1. By invoking the Lagrange multiplier method we get the following

equations, for some real number λ:

x cos θ + y sin θ = −rλ(2)

r cos θ = −xλ(3)

r sin θ = −yλ(4)

Multiplying (2) by r, (3) by −x, and (4) by −y, then adding, we get:

0 = −r2λ+ x2λ+ y2λ.

Adding 2r2λ to both sides and using that g(r, x, y) = 0, we get that 2r2λ = λ. We now have two

cases to consider: λ = 0 or r =
√

2
2 .

Case λ = 0: If λ = 0 then r cos θ = 0, so r = 0 or cos θ = 0. Note that π
2 < θ < π, which means

cos θ is never zero. If r = 0 then a = 0 and |b− a|2 = 1.

Case r =
√

2
2 : Then from (3) and (4) we get that y = x tan θ. Using that g(r, x, y) = 0, we get

x =
√

2
2 | cos θ|. Then

f(

√
2

2
,

√
2

2
| cos θ|,

√
2

2
| cos θ| tan θ) = 1− | cos θ| cos θ − | cos θ| tan θ sin θ.
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We have that cos θ < 0. Therefore the right-hand side reduces to 2.

From the Lagrange multiplier technique, we now know that our minimum is at most 1. We now

find the minimum on the boundary, that is, when x = 0.

Let us consider the function f(r, 0, y) = 1− 2ry sin θ where r2 + y2 = 1. Let g(r, 0, y) = r2 + y2.

Then we get the following equations for some real number λ:

y sin θ = −rλ(5)

r sin θ = −yλ(6)

Multiplying (5) by r and (6) by y and then adding the two equations yields r =
√

2
2 . Solving for y

gives y = ±
√

2
2 . This shows that our minimum is min{1− sin θ, 1 + sin θ, 1, 2} = 1− sin θ. Therefore

|b− a| =
√

1− sin θ.

We now find the minimum amongst all j. Recall θ = π
2 + jπ

n . Since sin θ is decreasing on the

interval (π2 , π) therefore our minimum occurs when j = 1, that is, when θ = π
2 + π

n . Therefore, the

minimum Kazhdan constant for the two-dimensional representations is

κ(Dn, {s, sr}, ρ1) =

√
2(1− cos

π

n
).

A routine check shows that

κ(Dn, {s, sr}, χk) = 2

for any nontrivial one-dimensional representation χk.

Therefore, κ(Dn, {s, sr}) =
√

2(1− cos πn ) = 2 sin π
2n . �

3.2.2. Cyclic groups. In this section, we construct a family of examples for which (1) holds, where

both groups are finite cyclic groups.

Theorem 3.6. Let n be a positive multiple of 8 with n ≥ 16. Let Γ1 = {1, 2, n2 −1, n2 +1, n−2, n−1}

and Γ2 = {2, n4 − 1, n4 + 1, 3n
4 − 1, 3n

4 + 1, n− 2}. Then Cay(Zn,Γ1) ∼= Cay(Zn,Γ2) but (Zn,Γ1) is

not Cayley isomorphic to (Zn,Γ2). Moreover, κ(Zn,Γ1) = κ(Zn,Γ2).

We remark that the case n = 16 precisely gives us Elspas and Turner’s counterexample [3] to

Àdàm’s conjecture for undirected graphs. Also, note that when n = 8 we have that Γ1 = Γ2 and so

(Zn,Γ1) is Cayley isomorphic to (Zn,Γ2) under the identity mapping in that case; hence we impose

the condition n ≥ 16.
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Proof. The function f : Zn → Zn given by

f(a) =


a if a is even

a+ n
4 if a is odd

defines a graph isomorphism from Cay(Zn,Γ1) to Cay(Zn,Γ2).

To see that (Zn,Γ1) is not Cayley isomorphic to (Zn,Γ2), suppose otherwise. So there is a group

automorphism of Zn taking Γ1 to Γ2. This must be of the form a 7→ ca, where c is a fixed integer

relatively prime to n. Because n is even, we have that c is odd, and therefore the even element

2 ∈ Γ1 must map either to 2 or to n−2. First take the case where 2 7→ 2. Then c = 1 or c = n/2+1.

First take the subcase c = 1. Because 1 ∈ Γ1 and Γ1 maps to Γ2, therefore 1 = c · 1 ∈ Γ2. Because

1 is odd, therefore 1 = n
4 − 1 or 1 = n

4 + 1 or 1 = 3n
4 − 1 or 1 = 3n

4 + 1. However, because n is a

positive multiple of 8 with n ≥ 16, none of those are possible. One finds similarly that every other

case also leads to a contradiction.

Finally, we compute the Kazhdan constants. We begin with Γ1. Note that

κ(Zn,Γ1) = κ
(
Zn, {1, 2,

n

2
− 1}

)
,

because adding or deleting inverses has no effect on the Kazhdan constant. As we noted earlier, for

Zn, up to rescaling of the inner product (which has no effect on κ), the nontrivial irreducible unitary

representations are of the form ρj(k) = ξk, where ξ = e2πij/n and j = 1, . . . , n − 1. As before, we

identify the nonzero complex number ξk with its action by multiplication on the complex plane with

the standard inner product, so that ρj : Zn → GL(1,C). So

κ
(
Z2n, {1, 2,

n

2
− 1}, ρj

)
= min

θ∈R
max

γ∈{1,2,n2−1}
||ξγe2πiθ/n − e2πiθ/n||

= max
γ∈{1,2,n2−1}

||ξγ − 1||

= max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ ,

from which it follows that

κ(Zn,Γ1) = min
1≤j≤n

max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ = min

1≤j≤n/2
max

γ∈{1,2,n2−1}
2

∣∣∣∣sin(γjπn
)∣∣∣∣ .

When j = 1, by taking γ = n
2 − 1 we have that

max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ ≥ 2 sin

(
4π

n

)
.
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When j = 2, we find that

max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ = 2 sin

(
4π

n

)
.

When 3 ≤ j ≤ n/2− 2, by taking γ = 2 we have that

max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ ≥ 2 sin

(
4π

n

)
.

When j = n/2− 1 or j = n/2, by taking γ = 1 we have that

max
γ∈{1,2,n2−1}

2

∣∣∣∣sin(γjπn
)∣∣∣∣ ≥ 2 sin

(
4π

n

)
.

Therefore

κ(Zn,Γ1) = 2 sin

(
4π

n

)
.

A similar argument shows that

κ(Zn,Γ2) = 2 sin

(
4π

n

)
. �
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