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ABSTRACT. Let A denote an extended Dynkin diagram with
vertex set Ag = {0,1,...,n}. For a vertex i, denote by S(i) the set
of vertices j such that there is an edge joining 7 and j; one assumes
the diagram has a unique vertex p, say p = 0, with |S(p)| = 3.
Further, denote by A\ 0 the full subgraph of A with vertex set
Ao\ {0}. Let A = (6;|i € Ag) € Z!*! be an imaginary root of A,
and let k be a field of arbitrary characteristic (with unit element
1). We prove that if A is an extended Dynkin diagram of type
Dy, Eg or Ey, then the k-algebra Qr(A,A) with generators e;,
i € Ap \ {0}, and relations €7 = e;, e;e; = 0 if i and j # i belong to
the same connected component of A \ 0, and ELI d;e; = 0ol has
wild representation type.

1. Formulation of the main result

Throughout the paper, we keep the right-side notation. By k we will
denote a fixed field of arbitrary characteristic; for a natural number n
and 1 € k, we identify nl with n.

Let A be an nonoriented graph without loops and multiple edges,
and let i be a vertex of A. Denote by S(i) the set of vertices j such
that there is an edge joining ¢ and j. The vertex 7 is said to be outer
if [S(i)] <1, inner if |S(7)| > 1, weakly inner if |S(i)| = 2 and strongly
inner if [S(3)| > 2.
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Now let A be a finite connected tree with vertex set Ag = {0,1,...,n}.
We assume that 0 is the unique strongly inner vertex, and denote by
A\ 0 the full subgraph of A with vertex set Ag \ {0}. Given a vector
P = (po,p1---,pn) € Z'™, we denote by Qi (A, P) the k-algebra with
generators e;, 1 < i < n, and relations

)e?=¢; (1<i<n);

2) e;ej = 0 if ¢ and j # i belong to the same connected component of
A\ O;

3) i1 Pi€i = Po-

In this paper we study finite-dimensional representations of the al-
gebra Qi (A, P) with A being an extended Dynkin diagram. What we
consider here is concerned with Yu. S. Samoilenko’s investigations [1].

Before we formulate the main results of this paper, we recall some
definitions.

Let A and T be algebras over a field k. A matrix representation of
A over T' is a homomorphism ¢ : A — T'*%% of algebras, where s is a
natural number and I'**¢ the set of all s x s-matrices with entries in I")
s is called degree of ¢ and is denoted by deg . Two representations ¢
and 1 of A over I are called equivalent if deg = deg and there exists
an invertible matrix «, with entries in I', such that p(A)a = a(N) for
every A € A. The indecomposability and direct sum of representations
are defined in a natural way.

Let A be a k-algebra, and ¥ = k(z, y) be the free associative k-algebra
in two noncommuting variables x and y. A representation v of A over X
is said to be strict if it satisfies the following conditions:

1) the representation v ® ¢ of A over k is indecomposable if a repre-
sentation ¢ of ¥ over k is indecomposable;

2) the representations v ® ¢ and v ® ¢’ of A over k are nonequivalent
if representations ¢ and ¢’ of 3 over k are nonequivalent.

Following [2] a k-algebra A is called wild (or of wild representation
type) if it has a strict representation over 3.

Note that the matrix (7 ® ¢)(\) is obtained from the matrix v(\) by
change x and y, respectively, on the matrices p(z) and ¢(y) (and a € k
on the scalar matrix aFs, where E; is the identity matrix of dimension
s = deg ).

We now formulate the main result of the paper.

Theorem. Let A be an extended Dynkin diagram of type Dy, Eg or E;
and A € ZMl an imaginary root of A. Then the algebra Qi(A,A) is
wild.
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In proving the theorem we can obviously take A to be minimal posi-
tive, which we denote by Ay.

2. Proof of the theorem for A = 154

In this case the diagram A and vector A, are

By the convention indicated above 0 denotes the strongly inner vertex,
and 1,2,3 and 4 the outer vertices. Then the algebra Q(A, Ag), with
generators eq, e, €3, €4, has the relations

U)e?=¢; (1<i<4);
2') e1 +ea+e3+eq=2.

Consider the following representation -~ of Qr(A,Ap) over
Y=k<z,y>:

1000 0 0 0
0100 0 0 O
0000 -1 0 0
ye)=| 0000 0 -1 0 [,
0000 1 0 O
0000 O 1 0
0000 O 0 O
00 -1 0 000
00 0 —-1000
00 1 0 000
vez)=| 00 0 1 0 0 0 [,
00 0 0 00O
00 0 0 000
00 0 0 001
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2

1 0 2y z22—z4+y zy—y 1
01 10 z—1 Y 0
0000 —2x+1 -y 0
v(es)=1 0 0 0 0 -1 1 0 1,
00 00 1 0 0
00 0 0 0 1 0
00 00 0 0 0
00 —z+1 —y —2’4z—y —ay+y —1
0 0 -1 1 —x+1 —y 0
0 0 1 0 T Y 0
v(es))=1] 0 O 0 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

In [3]| the author has proved that this representation is strict.

3. Proof of the theorem for A = Ej

In this case the diagram A and vector Ay are

WD

We assume that the vertices 1, 3, 5 are outer, the vertices 2, 4, 6 are weakly
inner (the vertex 0 is strongly inner), and the edges join the vertices 1
and 2, 3 and 4, 5 and 6, and consequently 0 with 2,4, 6. Then the algebra
Qr(A, Ap), with generators eq, ea, ..., eq, has the relations

1) e? =¢; (1 <i<6);

2/) €1€9 = €9€1 = 0, €364 — €4€3 — O, €566 — €€y — O;

3) e +es+es+2(ex +eq+eg) = 3.

Consider the following representation ~ of Qk(A,Ay) over
Y=k<ax,y>:
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1020000
000 O0O0O0O O
000 0O0OO0OO
000 O0O0Z20O0
000 0O0O0 2
0 00 O0O0T1FPO
0 00 0O0O01

9

v(e1) =

9

-2 0 0 00

00

0 0 0 00

1
0
0
0
0
0

0
0
0
0
0
0

0 000
0 0 00O
0 00 00
0 00 0O
0 00 00O

1

v(e2) =

1

-1

0 00

-y
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1011 -2 -1 1
0000 0 2—1 y
o000 0 1 -1

veg)=] 0000 0 0 0
0000 0 0 0
0000 0 1 0
0000 0 0 1

We will prove that the representation +y is strict.

Let ¢ and ¢’ be representations of 3 over k having the same de-
gree: degyp = degy’ = d. The representation v ® ¢ (respectively,
v ® ¢') is uniquely defined by the matrices As = (v ® ¢)(es) (respec-
tively, AL = (v @ ¢')(es)), where s = 1,2,...,6. It is natural to consider
these matrices as block matrices with blocks (As)s; and (A});; of degree
d(i,7 =1,2,...,7). Then Hom(y ® p,v ® ¢') = {T € k™™™ | A, T =
TA for each s = 1,2,...,6}.

Lemma 1. Let T' = (T3j), 1,5 = 1,2,...,7, be a block matriz (over k)
with blocks T;j of degree d, belonging to Hom(y® ¢, y®¢'"). Then Tj; =0
Zf’L 75] and (’L,j) 75 (1,6), (1,7), and T11 = T22 =...= T77.

Proof. Denote by I,11,..., VI the matrix equalities A1T = T A, AT =
TA,,...,A¢T = TAj, respectively. The (matrix) equality (AsT);; =
(TA)ij, 4,5 € {1,2,...,7}, induced by an equality AT = T A, is de-
noted by (7, j) for s = 1, I1(4, j) for s =2, ..., VI(i, ) for s = 6.

It is easy to see that I(2,1) implies T5; = 0; I(3,1) implies T3; = 0;
[(6,4) implies Tg4 = 0; 1(6,5) implies Tgs = 0; 1(7,4) implies T74 = 0;
[(7,5) implies Tv5 = 0; 11(2,4) implies To4 = 0; II(2,5) implies Th5 = 0;
I1(2, 6) implies Tog = 0; 11(2,7) implies To7 = 0; 11(3,4) implies T34 = 0;
I1(3,5) implies T35 = 0; 11(3,6) implies T35 = 0; 1I(3,7) implies T37 = 0;
I1I(1,2) implies Tho = 0; 11I(1, 3) implies T13 = 0; I11(4, 2) implies Tyo =
0; I11(4, 3) implies Ty3 = 0; II1(5,2) implies T5o = 0; III(5,3) implies
Ts3 = 0; I11(6,2) implies Tgo = 0; III(6,3) implies Tg3 = 0; II1(7,2)
implies T7o = 0; I111(7, 3) implies T73 = 0; V(4,6) implies Ty = 0; V(4,7)
implies Ty7 = 0; V(5,6) implies T5¢ = 0; V(5,7) implies T57 = 0; 1(1,4)
and T34 =0 imply T14 ~ 0; I(l, 5) and T35 =0 imply T15 = 0; IV(G, 4),
Tz = 0, Toz = 0 and Teg = 0 imply Ter = 0; IV(7,4), Tyg = 0, Tr = 0
and T74 =0 imply T71 4 0; IV(4, 1) and T61 =0 imply T41 = 0; IV(5, 1)
and T71 =0 imply T51 = 0; VI(1,2), T12 = O, T42 = O, T52 = O, T62 =0
and T72 =0 imply T32 = 0; V(3,5), T31 = O, T32 = 0 and T35 =0
imply T45 = 0; IV(3,7), T31 = 0, T32 = 0, T35 = 0 and T47 =0 imply
Ter = 0; IV(1,4), VI(1,4), Tia = 0, Ti3 = 0, Tra = 0, Tys = 0, Tga = 0
and T74 =0 imply T54 = 0; IV(5,6), T51 = O, T52 = 0, T53 = 0, T54 =0
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and Ts6 = 0 imply T7 = 0; IV(2,5),IV(5,7), VI(2,7), Ta1 = 0, Tes = 0,
T27 = 0, T45 = 07 T51 = 0, T52 = 0, T57 = 0, T65 = 0, T67 = 0and T75 =0
imply 753 = 0.

So T;j = 0 when i # j and (4, j) # (1,6),(1,7). Then it follows from
IV(1,4),IV(1,5), IV(1,6), IV(1,7), III(3,4), I11(2,4) and VI(2,6) that
TiH=To =...=Tr;. ]

It follows from the lemma that a matrix 7' = (7j;) belonging to
Hom(y ® ¢,y ® ¢') satisfies the following conditions:

a) T is invertible if and only if Ty = Ty3 = Thy = ... = Tr7 is
invertible;

b) p(x)Th = Toy'(z) and ¢(y)To = To¥' (y)-

(In fact it follows from the lemma that the equalities I-VI are equiv-
alent to the equalities b)).

Therefore the representation v satisfies the condition 2) (of the defi-
nition of a strict representation).

It remains to prove that 7 satisfies the condition 1) or, in other words,
© is decomposable if so is v ® ¢. We will denote by 05 and E, the s x s
zero and identity matrices, respectively.

Denote by Hom(y, ) the algebra of endomorphisms of ¢, i.e.

Hom(p, @) = {S € k™| p(x)S = Sp(x), ¢(y)S = Se(y)}.

Decomposability of y®¢ implies that the k-algebra Hom(y® ¢, 7®¢) (of
endomorphisms of v ® ¢) contains an idempotent T' # 074, E7q4 (see, for
example, [4, ch.V]). Then, by the lemma, the matrix Ty = T} = The =

. = T%7 is an idempotent; moreover, Ty # 04, F4, because otherwise
it would follow from the equality 72 = T that T =Ty @ To & ... & Ty,
where Ty occurs 7 times, or in other words 1" = 074 or T' = FEr4, respec-
tively. Since Tj belong to the algebra Hom(p, ¢) = {S € k44| o(x)S =
Se(x),p(y)S = Se(y)} (see the condition b)), the representation ¢ is
decomposable (see again |4, ch.V]).

4. Proof of the theorem for A = E7

In this case the diagram A and vector Ay are

We assume that the vertices 1,4, 7 are outer, the vertices 2,3,5,6 are
weakly inner (the vertex 0 is strongly inner), and the edges join the
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vertices 1 and 2, 2 and 3, 4 and 5, 5 and 6, and consequently 0 with
3,6,7. Then the algebra Qp(A,Ap), with generators ey, e, ..., e7, has
the relations

V)e?=re (1<i<T7);

2/) €19 = €e9€1 = 0, €9€3 — €369 — 0, €1e3 — €361 — 0, €45 = €564 —
0, eseg = eges = 0, egeg = egeq = 0;

3) e1+es+2(ex +es5+e7) +3(e3+ es) = 4.

Consider the following representation ~ of Qk(A,Ay) over
Y=k<ax,y>:

001 0 -300 30
010 -3 0200azy
001 0 -300 30
000 0 0 00 00

ve)=|000 0 0 000 0|,
000 0 0 0000
000 0 0 0000
000 0 0 0000
000 0 0 0000
00000 0 0 00
00030 -3 0 00
00003 0 —300
00010 -1 0 00

ve)=| 00001 0 -1 0 0|,
00000 0 0 00
00000 0 0 00
00000 0 0 00
00000 0 0 00
000001010
000003030
00000030 3
000001010

ves)=| 00000010 1],
000001010
000000T10 1
0000O00O0GO0OO
0000O00GO0O0O
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3

3
0

0
-1

00 00O
0 00O0GO
00 00O
0 00O0O
00 00O
0 00O0O
0 00O0O
0 00O0O
0 00O0O

0

0
1
0
0
0

v(es) =

-3 =12 -9

-3
0
0
0
0
0
0
0
0

10100
0 00 0O
000 0O
0 00 0O
0 00 0O
00000
000 0O
00000
0 00 0O

0

0

v(es) =

-1

0 0

-y

—x—3

0

0

v(es) =

100 00O0O0O0O
000 0O0OO0OO0OO OO O
000 O0O0OO0OO0OTODQO
0001 0O0O0O0OTFO
000 01O0O0O0OO
000 0O0OO0O0OO 0O
000 0O0OO0OO0OO0® O
000 0O0OO0O0OT1FPO
000 O0O0O0O0O01

v(er) =
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We will prove that the representation +y is strict.

Let ¢ and ¢’ be representations of 3 over k having the same de-
gree: degyp = degy’ = d. The representation v ® ¢ (respectively,
v ® ¢') is uniquely defined by the matrices As = (v ® ¢)(es) (respec-
tively, A, = (y® ¢')(es)), where s =1,2,...,7. It is natural to consider
these matrices as block matrices with blocks (Ay);; and (A});; of degree
d(i,7 =1,2,...,9). Then Hom(y ® p,y ® ¢') = {T € k%% | A, T =
TA. for each s =1,2,...,7}.

Lemma 2. Let T' = (T3j), 1,5 = 1,2,...,9, be a block matriz (over k)
with blocks T;j of degree d, belonging to Hom(y® ¢, y®¢'). Then Tj; =0
ifi#j and (i,7) # (1,8),(1,9), and Ty = Tog = ... = To.

Proof. Denote by 1,11, ..., VII the matrix equalities AyT = T A}, AT =
TA,, ..., A7T = TA, respectively. The (matrix) equality (AsT);; =
(TAY)ij, 4,5 € {1,2,...,9}, induced by an equality A7 = T A, is de-
noted by (7, 5) for s = 1, I1(4, j) for s =2, ..., VII(i,j) for s = 7.

It is easy to see that VII(7,j) implies T;; = 0 for each (4,j) €
{1,4,5,8,9} x {2,3,6,7} and each (i,§) € {2,3,6,7} x {1,4,5,8,9);
II(l 4) and Tho = 0 imply T74 = 0; 1I(1,5) and T13 = 0 imply T35 = 0;
and T61 =0 imply T41 = 0; 11 4, 8)
and Tg9 = 0 imply Ty9 = 0; 11(5, 1)

,9) and T7g =0 imply T59 = 0;
5)
5)

)

11(4,1) (

11(4,9) (

( ,8) and T78 =0 imply T58 = 0; II(5

I1(8,4) and Tgo = 0 imply T4 = 0; II(8,5) and Ts3 = 0 imply T35 = 0;

I1(9,4) and Ty = 0 imply Tys = 0; 11(9,5) and Ty3 = 0 imply Ty = 0;
IH(G, ) and ng =0 imply T62 ~ 0; HI( ,3) and ng =0 imply T@g = 0;
IT11(7,2) and Tge = 0 imply T7e = 0; 11(7,3) and Ty = 0 imply Tr3 = 0;

HI(G, 1) and T61 =0 imply Tgl = O; IH(1,9), T13 = 0, T15 = 0, T17 =0
and T69 =0 imply ng == 0; 111(6,9), T63 == 0, T65 == 0, T69 = 0 and
Tg =0 imply T67 = 0; IH(7, 1) and T71 =0 imply T91 = 0; IV(2,6>,
T51 = 0 and Ty = 0 imply The = 0; IV(2,7), To1 = 0 and Th5 = 0 imply
T27 = 0; IV(3,6), T31 = 0 and T34 =0 imply T36 = O; IV(?), 7), T31 =0
and T35 =0 imply T37 =2 0; VI(1,2), T12 = O, T52 = O, T72 = O, ng =0
and TQQ =0 imply T32 T 0; VI(2, 7), T21 = O7 T27 = 0, T47 = 0, T67 = 0,
Tg7 =0 and T97 =0 imply T23 = O; VI(Q, 5), T21 = 07 T23 = 0, T25 = 0,
T65 = O, T85 =0 and T95 =0 imply T45 = O; VI(1,4), T12 = 07 T34 = 0,
T74 = 0, T84 =0 and T94 =0 imply T54 = 0; 11(5,6), T52 = 0, T54 =0
and Tsg = 0 imply T7¢ = 0; 111(5,8), T51 = 0, T2 = 0, T54 = 0, T56 = 0
and T78 =0 imply ng =0.

So Tj; = 0 when ¢ # j and (4,7) # (1,8),(1 9). Then it follows
from III(1, 6), I11(1,8), III(5, 7), I11(5,9), VI(1,3), VI(1,5) VI(2,4) and
VI(Q, 6). that T11 = T22 =...= ng. O
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The final part of the proof is analogous to that in the case A = Fjg
(see Section 3).
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