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ABSTRACT. In this article we study structure of autotopies,
automorphisms, autotopy groups and automorphism groups of n-
ary linear quasigroups.

We find a connection between automorphism groups of some
special kinds of n-ary quasigroups (idempotent quasigroups, loops)
and some isotopes of these quasigroups. In binary case we find
more detailed connections between automorphism group of a loop
and automorphism group of some its isotope. We prove that every
finite medial n-ary quasigroup of order greater than 2 has a non-
identity automorphism group.

We apply obtained results to give some information on auto-
morphism groups of n-ary quasigroups that correspond to the ISSN
code, the EAN code and the UPC code.

1. Introduction

We shall use basic terms and concepts from books [1], [2], [3], [15], [6]. To
give some n-ary definitions we take into consideration articles [23], [22],
[12].

We recall some known facts. Let () be a nonempty set, let n be natural
number, n > 2. A map f that maps all n-tuples over @) into elements of
the set @ is called n-ary operation, i.e. f(x1,x2, ...,Tn) = Tp41 for all
(x1,22,...y2p) € Q" and x,41 € Q.
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A nonempty set () with n-ary operation f such that in the equation
f(x1, 2, ..., 2,) = xpy1 knowledge of any n elements of x1,x9, ..., xpn,
Zn+1 uniquely specifies the remaining one is called an n-ary quasigroup
(13)).

We say that n-ary quasigroup (Q, f) is an isotope of n-ary quasigroup
(Q, g) if there exist permutations 1, pia, . . ., fin, 4t of the set @ such that

f(xlax27~--7$n) :Nilg(ﬂlxlw--vﬂn@’n) (1)

for all z1,...,x, € Q. We can write this fact also in the form (Q, f) =
(Q, 9)T where T = (1, 42, - -« , fny f£)-

If in (1) f =g, then (n+ 1)-tuple (p1, p2, . . ., fin, 1) of permutations
of the set @ is called an autotopy of n-quasigroup (Q, f). The last com-
ponent of an autotopy of an n-quasigroup is called a quasiautomorphism
(by analogy with binary case).

A set of all autotopies of a quasigroup (Q, f) forms the group of
autotopies relatively the usually defined operation on this set: if T3 =
(1, b2y ooy fin, o) and Ty = (v1,v9,...,Up, ) are autotopies of quasi-
group (Q, f), then Ty o Ty = (i1, pola, . - ., inln, i) is an autotopy
of quasigroup (@, f).The autotopy group of a quasigroup (@, f) will be
denoted as T(Q, f).

Ifin (1) g = po = -+ = py = p, then quasigroups (Q, f) and (Q, g)
are isomorphic.

At last, if in (1) the n-ary operations f and g are equal and p; =
o = -+ = pup = p, then we obtain an automorphism of quasigroup
(Q, f), i.e. a permutation p of the set @ is called an automorphism of
an n-quasigroup (@, f) if for all z1,...,z, € @ the following relation is
fulfilled: pf(x1,...,20) = f(px1, ..., px,). We denote by Aut(Q, f) the
automorphism group of an n-ary quasigroup (Q, f).

A sequence Ty, Tma1,---,Tn, where m,n are natural numbers and
m < n, will be denoted by z}, a sequence z, ...,z (k times) will be de-
noted by Z¥. The expression 1,7 designates a set {1,2,...,n} of natural
numbers ([3]).

As usual, Ly, : Lyx =aox, R, : Rjx = x o a are respectively left and
right translations of binary quasigroup (@, o). We shall omit denotation
of a quasigroup operation by using of quasigroup translations, i.e. we shall
write L, R, instead of Ly, R, in cases when it will be clear from context
relatively which quasigroup operation we take quasigroup translations.

M(Q, ) denotes a group generated by all left and right translations
of a binary quasigroup (@,-) and it is called the multiplication group of
a quasigroup (Q,-).

We shall denote the identity permutation as €, the order of a set ()

as Q).
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We shall use the following theorem ([3]).

Theorem 1. If n-ary quasigroups (Q, f) and (Q, g) are isotopic with
isotopy T, i.e. (Q, f) = (Q,9)T, then T(Q, f) = T7'T(Q, )T

Remark 1. In algebra usually quasigroups are studied up to isomor-
phism. Thus, without loss of a generality, any isotopy 1T of an n-ary
quasigroup (Q, g) we can choose in such manner that its last component
is the identity map.

An n-ary quasigroup (Q, g) of the form vyg(x1,x9,...,2,) = Mx1 +
Yox2 4+ -+ + Ynxp, where (Q, —|—) is a group, Y,V1,- - - , Yn are some permu-
tations of the set @, is called an n-ary group isotope. This equality (as
well as analogous equalities that will appear later in this article) is true
for all z1,x9,...,2, € Q.

An n-quasigroup (@, g) of the form g(xy, xo, ..., x,) = a1x1 +aoxs +
c oy +a =Y oz + a, where (Q,+) is a group, ai,. .., o, are
some automorphisms of the group (Q,+), the element a is some fixed
element of the set @, will be called a linear n-ary quasigroup (over group
Q. +).

An n-ary linear quasigroup (@Q,g) over an abelian group (Q,+) is
called n-T-quasigroup ([23]). If n = 2, then a quasigroup from this
quasigroup class is called a T-quasigroup (|14, 11]).

The following identity of n-ary quasigroup (Q, g)

9(9(1611, 12, .- axln)mg(l?la 22, ... ’x2n)7 cee ,g(l‘m,xnz, cee ,l’nn)) =
g(g(l‘n, T21y - 71'711)79(517127 T2,y ... ,xn2), . ,g(mln, Tony -« - ,a:,m))

(2)
is called medial identity ([3]). An n-ary quasigroup with identity (2) is
called medial n-ary quasigroup.

In binary case from identity (2) we obtain usual medial identity: xy -
UY = TU - Yo.
In [3] V.D. Belousov proved the following theorem.

Theorem 2. Let (Q, f) be a medial n-quasigroup. Then there exist an
abelian group (Q,+), its commuting in pairs automorphisms i, ..., u,
and a fized element a of the set Q such that f(x1,22,...,2,) = @121 +
Qo+t opxn+a=y;  oxi+a foralxz; €Q,iecln.

In binary case from Belousov theorem it follows classical Toyoda the-
orem (T-theorem) ([24], [13], [4], [1], [2])-

Medial quasigroups, as well as the other classes of quasigroups isotopic
to groups, give us a possibility to construct quasigroups with preassigned
properties. Often it is possible to express these properties on the language
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of properties of groups and components of isotopy. Systematically this
approach was used by study of T-quasigroups in [8], [9], [14], [11].

Automorphisms and automorphism groups of some binary and n-ary
quasigroups were studied in many articles, see, for example, [13], [9], [8],
1161, (18], [5], [19], [22], [7], [12].

Our approach to study the automorphisms of n-ary linear quasigroups
is based on the very known fact that isotopic quasigroups have isomorphic
groups of autotopies (Theorem 1).

The main idea is that any automorphism is an autotopy with equal
components. So, if we know the structure of autotopies of an n-
quasigroup (@, f) and the form of isotopy 7', then we have a possibility
to obtain information on autotopies and automorphisms of n-quasigroup
(Q,9) = (Q, f)T. In binary case this observation was used by study of
the automorphisms of some quasigroup classes ([17]), [18], [19], [22], [7]).

2. On autotopies and automorphisms of n-ary
linear quasigroups

In this section we study structure of autotopies, automorphisms, autotopy
groups and automorphism groups of some classes of n-ary group isotopes.
We shall use the following elementary properties of quasigroups.

Lemma 1. (i) If (Q,-) is a binary quasigroup, L,, Ry are some its left
and right translations, ¢ € Aut(Q,-), then pLq = Loap, Ry = Ropep.
(i3) If (Q, +) is a group, then LyRy = RyLo, Lyt = L_o, Ry = R_,,.
(11i) If (Q,+) is a group, then Rq = Lglg, where I is the inner
automorphism of the group (Q,+), i.e. Iyx = —d+ x4+ d for all z € Q.
(v) Any quasiautomorphism of a group (Q,4+) has the form L[,
where a € Q, B € Aut(Q,+).

Proof. (i) We have oL,z = p(a-x) = pa-ox = Logpx, pRyx = p(x-b) =
0T - b = R ppx.

(ii) LaRyz = a+ (x +b) = (a+ ) + b = RyLax. Lt = L_, since
Li'Lyz=2=—-a+a+z=L_qL,x.

(iii) Rgr =x+d=d—d+x+d = Lglsx.

(iv) Any autotopy of a group (Q,+) has the form (L.0, R40, L.R40)
where 6 € Aut(Q,+), L. is a left and Ry is a right translation of the group
(Q,+) (|11], [2], [15]). Using (iii) further we have L.R46 = L.Lqls0 =
Loj. 0

We denote by Z(Q,+) the centre of a group (Q,+), i.e. Z(Q,+) =
{aeQla+xz=x+a Vre@}.
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Lemma 2. Let (Q, g) be an n-ary quasigroup of the form g(x}) = x1 +
xg + -+ + z, where (Q,+) is a group. A permutation 0 of the set Q is
an automorphism of the quasigroup (Q,g) if and only if 0 = Ly where
p € Aut(Q,+), k€ Z(Q,+), (n— 1)k =0.

Proof. Let 6 € Aut(Q,g). Then

0(x1+:c2+-~-+xn):0m1+93:2+-~-+9xn (3)
for all z; € Q,i € {1,2,...,n}. f we takein (3) z1 =293 ="--- =2, =0,
then we have nf0 = 60, (n — 1)00 = 0.

If we take in (3) x9 = x3 = -++ = x, = 0, then 0z; = 0z1 + 00 +
w4+ 00 = R—1)p0f1. If we substitute in (3) 71 = x3 = -+ =z, = 0,

then zy = 60 + 0o + 00 + - - - + 00 = Lgg R(—2)p00x2. If in the last two
equalities we rename x; and z9 by x and compare the right sides of these
equalities, then we obtain 8z + 00 + --- + 600 = 00 4+ 0x + 00 + - - - + 60,
Ox + 00 = 60 + Ox. Thus 60 € Z(Q,+).

If we take in (3) 3 = -+ = x, = 0, then O(x1 + x2) = 6z1 +
R(n—2)p00z2. Therefore the permutation 6 is a quasiautomorphism of
group (Q,+). Moreover, § = Lpyp where ¢ € Aut(Q,+). Indeed,
any group quasiautomorphism has form L,p. But a = 60 because
Lap0 = L,0=a=00.

Therefore we obtain that @ = Lgge, where (n—1)00 = 0, 0 € Z(Q, +)
and ¢ € Aut(Q,+).

Converse. Let § = Ly where ¢ € Aut(Q,+),k € Z(Q,+), (n—1)k =
0. Let us prove that 6§ € Aut(Q,g). We have O(x; +z2+ -+ + zp) =
Lyp(r1+ a9+ +xp) = k+ox1 +oro+ -+ pxy = nk+ @1 + pro +
oo, =k4+ori+k+pra+- -+ k+px, =021+ 094 -+ 0x,. O

Lemma 3. Let (Q,g) be an n-ary quasigroup of the form g(x}) = x1 +
xo+- - +xy,, where (Q,+) is a group. An (n+1)-tuple T = (a1,...,n,7)
of permutations of the set Q is an autotopy of the quasigroup (Q, g) if and
only if

T= (Lal Ia1 ) La21a1+a2a LaSIa1+a2+a37 ) Lanlta Rt)o (*)
(0, 0,054, 9),

where t = a1 +az +ag + -+ an, p € Aut(Q,+), a} € Q.
Proof. Let (aq,...,an,7) be an autotopy of a quasigroup (@, g). Then
V(X1 + ) = a1 4 F Q. (4)

If in (4) all ; = 0, then 40 = > | ;0. If in (4) only z; # 0 for any
fixed value 7, then vx; = Lo 04 ta;_10Ra;104++a,00:%;. Further, if we
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take into consideration Lemma 1 (ii), we have

QG = R—(oci+10+~--+an0)L—(a10+"'+0¢i—10)7 -
L*(a10+-~-+a¢710)R*(az‘+10+“'+o‘"0)7'

If in equality (4) we re-write all permutations «; in their last form, then
we have

Y@+, =
yr1 — ap0 = — a0+ yr2 — a0 — - — a0+ yx3 — o0 + yp.
(5)

Let d = (2104 - -+ ;,0). Then from equality (5) we have y(z1+---+
xn)—d =~yx1 —d+~yro—d+- -+ 72, —d. Therefore R_ (0,01 1an,007 =
R_gv € Aut(Q, g).

By Lemma 2 any automorphism of quasigroup (Q,¢g) has the form
Ly, where k € Z(Q,+), ¢ € Aut(Q,+). Then R_4v = Lip = Ryp,
v = RaRp = Riyap.

We remark that, if Iz = —b+ x + b is the inner automorphism of the
group (Q,+), then I, = L_y Ry or Ry = Lyl,. Further we have

o = L*(a10+---+ai710)Rf(a¢+10+---+an0)7 =
L—(a10+~~-+ai_10)Rfan074-~fai+10Ra10+--~+an0Rk<P =
L_ (0,04 +a;10) R0+ +a0 Rrp =
LaiOL—aiOLf(ozl0+---+o¢,~,10)Roq()-‘r"'-‘roéioRkSO =
LaiOLf(oz10+---+ai0)Roé10+"'+OéiORk§0 =

La;0loy04- 40,069 = LajoRilay0+- 40,00

We have used that if k& € Z(Q,+), then Ryl = I,Ri. Indeed,
-b+rx+b+k=-b+z+k+0b= I,Rx. Further we obtain «; =
Lo,04kLay0+-+a;04, since for every element k from the centre of the group

We denote o;0+k as a; and d+ k as t. Let us prove that Z?:l a; =t.
Indeed, we have a1 +as + -+ +a, = a10+k+ a0+ k+---4+a,0+k=
a10+a90+- - -+, 0+k = d+k = t. Therefore we obtain that (n+1)-tuple

T = (Laljal @, La21a1+a2(,0, La3[a1+a2+a3‘p? R LanIt(Pa Rt(/?)

is an autotopy of the quasigroup (@, g).

Converse. We shall prove that any (n + 1)-tuple of such form is an
autotopy of the quasigroup (@, g). Let n = 3. We have a1 — a1 + px1 +
a1 +as—as—ay+protal+az+az—az—az—a)+r3+a;+as+az =
Rip(x1 + z2 + x3). Further past cancellation in the left-hand side of the
last relation we obtain g1 +pr3+@rs+a;+as+as = Ryp(x1+x2+23).
For other values of arity n the proof is similar. O
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Corollary 1. Any autotopy of the quasigroup (Q,g) with the form
g(x}) = X, (x;) over a group (Q,+) has unique representation in the

form (x).
Proof. If we suppose that

(La1Ial P, La2[a1+a2907 La3[a1+a2+a3(pv cee LanIt(pa Rt(p) =
(Lbl-[blq;b; ng-[b1+b2¢7 Lb3Ib1+b2+b3wa ey Lbn-[dwa Rd¢)7

then we have Lo, 1,0 = Ly, Ip, Y, Loy 1o, 00 = Ly, Iy, 0, a1 = by, ¢ = .
Further we obtain Lg,14, 40, = Lty Lo, +bys Laslay+as0 = Ly Ip, +5,0, a2 =
bs and so on. Thus a; =b; for alli € 1,n, t =d, ¢ = 1. O

Remark 2. The change of distribution of brackets in equality (5) permits
us to obtain from one autotopy of the quasigroup (Q, g) other autotopies
of this quasigroup.

Proposition 1. Let (Q,g) be a finite n-ary quasigroup of order |Q| with
the form g(z%) = x1 + x2 + - - - + T, where (Q,+) is a group. Then

@, 9)l = Q" - [Aut(Q, +)].

Proof. From Lemma 3 it follows that any autotopy T of the quasigroup
(Q, g) has the form T' = Tj o Ty, where

Tl - (LallalaLagla;rFaQa La3[a1+a2+a3a LI 7LanIt7 Rt)a

TQ:(907907S07"'7()0)7
t=a1+az+ag+:- -+ an, ¢ € Aut(Q,+),a} € Q.

Let

Tl == {(La1-[a1) LaQIa1+aQa La3]a1+a2+a37 ceey LanIt’ Rt) ‘
Vat € Q}Ta={(p, 0, 0,...,0) [ € Aut(Q, +)}.

Taking into consideration Corollary 1 it is easy to see that |T;| = |Q|™.
It is clear that |To| = |Aut(Q, +)|.

We prove that 3 N Ty = (g,¢,...,¢). Indeed, if Ly, I4, = ¢, then
Ly 14,0 =¢0,a1 =0, p =¢.

From Lemma 3 it follows that any n-tuple 77 € T; and any n-tuple
T, € o is an autotopy of the quasigroup (Q,g). Therefore |Z(Q, g)| =
Q" - |Aut(Q, +)|- O

Corollary 2. Let (Q,g) be a finite n-ary quasigroup of order |Q| with
the form g(z') = anx1 + oxe + - - - + apxy, where (Q,+) is a group, af
are permutations of the set Q. Then

%@, 9)] = [Q" - [Aut(Q, +)].
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Proof. This follows from Proposition 1 and Theorem 1 since finite iso-
morphic groups have equal orders. O

Corollary 3. Let (Q,g) be an n-ary quasigroup of the form g(z}) =
x1 + xo + -+ + Ty, where (Q,+) is an abelian group. An (n+ 1)-tuple
T = (a1,...,00,7) of permutations of the set @QQ is an autotopy of the
quasigroup (Q, g) if and only if T = (Lay@, Loy, Las@s - Lan?s Lip),
where t = a1 +az+ag + -+ an, ¢ € Aut(Q,+), a € Q.

Proof. In abelian group I, = ¢, L, = R, for all a € Q. O

Theorem 3. If an n-ary quasigroup (Q,g) has the form g(z7) = aqz1 +
ag®e + -+ -+ anxy, where (Q,+) is an abelian group, of are permutations
of the set Q, then

n

T(Q.9) = EP(Q. +)i N Aut(Q,+),

i=1
where @, (Q,+); is a direct sum of n copies of the group (Q,+).

Proof. By Theorem 1, autotopy groups of isotopic n-ary quasigroups are
isomorphic (moreover, autotopy groups of isostrophic n-ary quasigroups
are isomorphic [3]). Therefore it is sufficient to prove this theorem for an
n-ary quasigroup (@, f) with the form f(a}) =21+ z2+ -+ z,, where
(Q,+) is an abelian group.

From Corollary 3 it follows that any autotopy 7' of the quasigroup
(Q, g) has the form T' = Tj o Ty, where

Tl = (LaﬂLangaz’,a” '7LanaLt)7

TQ:(@ﬂ@a@a"'a@)?
t=a1+az+as3+ -+ an,p € Aut(Q,+),a} € Q.

Let

T1= {(Lal’La2’La3""’Lﬂn?Lt) ‘t =a1+...an, for all arll S Q}7
To={(p,0,0,...,¢)|for all ¢ € Aut(Q,+)}.

From Corollary 3 it follows that T(Q, g) = %1 o %a.

We shall prove that 1 N Ty = (e,¢,...,¢). Indeed, if Ly, = ¢, then
Ly 0=¢0,a1 =0, p=c¢.

From Lemma 3 it follows that any n-tuple 77 € ¥; and any n-tuple
T, € %5 is an autotopy of the quasigroup (Q, g).

The set T; forms a group with respect to the term by term multipli-
cation of (n + 1)-tuples of the set T;. Really, let

Tl - (LalaLa27"'7Lan7Ld)7
T2 — (LblyLan"'aLbn,Lt)a
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T1,T5 € T1. We prove that Ty o Ty € T7.

We have La1 Lb1 = La1+b1, S ,Laann = Lan+bn>Lst = Ld+t,a1 +
bi+---+an+b, =d+t. Then T 0T € T;. From Lemma 1 (ii) it follows
that 7, = (L_ay, Lay, s L_a,, L_q). Thus T; ! € %4,

Therefore (¥1,0) is a group and it is easy to see that (%1,0) =
D1 (Q, +):.

It is clear that (T9,0) = Aut(Q,+), (%1,0) € T(Q,9g), (T2,0) C
(@, 9).

We shall prove that (T1,0)<%(Q, g). Let T = (La, ¢, Lay @, Lasps - - -
Lantp, Lt(p) c (Z, T, = (Lbl,Lb2,Lb3, ey Lbn;Ld) c Tl.

From Lemma 1 it follows that

T = (L_@,1a180*17 L—Ap*1a290417 L_(p71a390*1’ SR
L—go—lan(p_la L—cp—ltso_l)'

Further we have

T loTioT = (L_y149 'Ly Layp, L_p-14y0 'Lty Layp, - . -,
L_y14,9 "Ly, La,p, L_y-1,0" ' LaLsp) =

(L L—gp*1a2+¢*1bg+w*1a27 ey
L*So_lan+@_1bn+§0_1an7 L7¢—1t+¢—1d+ap—1t) €%

%)
—p~tar+o b1+~ tars

By proving the last equality we have used Lemma 1.
Therefore T(Q..9) = @,(Q:+)i » Aut(Q. +). =

Let Z=D(Q,4) = {a € Z(Q,+)|(n — 1)a = 0}, where (Q,+) is
a group and Z(Q,+) is the centre of this group. It is easy to see that

~1(Q,+) is a subgroup of the group (Q,+). Let Z(Q,+) be a group
that consists from all left translations of the group (Q,+) such that = €
Z0=0(Q, +), ie. Z(Q,4) C M(Q, +).

Proposition 2. In a quasigroup (Q,g) with the form g(x}) = x1 + x2 +
-+ + 2y, where (Q,+) is a binary group,

Aut(Q, 9) = Z(Q, +) N Aut(Q, +).

Proof. Really, Z(Q,+) N Aut(Q,+) = ¢, Z(Q,+) < Aut(Q, g), and, fur-
ther, we have

2(Q,+) - Aut(Q, +) = Aut(Q, 9),
Aut(Q.9)/Z(Q, +) QMQ+
Aut(Q,9) = Z(Q,+) N Aut(Q,

o~

)
+).
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Corollary 4. In a quasigroup (Q, g) with the form g(z}) = a1 +agxe+
-+ apy, where (Q,+) is a binary group, of are permutations of the
set @,

Aut(Q, 9) = H < (Q,+) X Aut(Q, +).

Proof. From definition of isotopy it follows that (Q,g) = (Q, f)(a1, ag,
.., Qp, €), where the n-ary quasigroup (Q, f) has the form f(z}) =
x1 + x2 + - - + xp, over the group (Q,+).

Then from Theorem 1 it follows that any quasiautomorphism of the
n-ary quasigroup (@, g) has the same form as the form of any quasiauto-
morphism of the n-ary quasigroup (Q, f).

Thus from Lemma 3 and Lemma 1 (iii) it follows that any quasi-
automorphism of the n-ary quasigroup (Q, g) has the form LT ¢, where
v € Aut(Q,+). Therefore any automorphism of the quasigroup (@, g)
has the same form.

From Lemma 3 it follows that any permutation of the form L} ¢ is
an quasiautomorphism of the n-ary quasigroups (@, g) and (Q, f).

It is easy to check that set of all quasiautomorphisms of the quasigroup
(Q, g) forms a group with respect to usual operation multiplication of
permutations of the set Q. It is well known ([10]) that this group is
isomorphic to the group (Q,+) X Aut(Q, +).

Therefore Aut(Q,g) = H C (Q,+) X Aut(Q, +). O

Remark 3. Binary analog of Corollary 4 was proved in [18].

3. On automorphisms of n-ary T-quasigroups

In this section we study automorphisms and automorphism groups of
some classes of n-ary T-quasigroups. We prove that every finite medial
n-ary quasigroup of order greater than 2 has a non-identity automor-
phism group. We recall an example of an infinite medial quasigroup with
identity automorphism group [22].

The binary analog of Proposition 3 was proved in [18], n-ary analog
of Proposition 3 was claimed in [21].

It is known that centralizer of elements ¢1, . .., ¢, in group Aut(Q,+)
is the following set {w € Aut(Q,+)| wp; = piwVi € 1,n} ([10]). Denote
this set as C gy, 4) (1, - - -, Pn). Sometimes we shall denote this set only
by letter C. The set C forms a group with respect to usual operation of
multiplication of permutations of the set @ ([10]).

Proposition 3. A permutation v of a set @ is an automorphism of
n-T-quasigroup (Q, f) of the form f(x1,x2,...,2,) = @171 + Yoxe +
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coo A+ py + a if and only if v = L;ﬂ, where fa —a = b, B €
CAut(Q,+)((101’ .. 'ﬂpn)f 0= Z?:l PYi— &, be Q

Proof. From Corollary 3 and Theorem 1 it follows that any autotopy T'
of the n-T-quasigroup (@, f) has the following form:

T= (L<p;1<a1>*0l_llwl’ LopiaPa 992
Lgpgl(an)@?’; w¢n’Lt¢)’

where 1) is an automorphism of abelian group (@,+), all translations in
the last equality are translations of the abelian group (@, +). It is so
since ¢ Ly = chqxgo_lwgo for all x € Q.

Since any automorphism of n-T-quasigroup (@, f) is an autotopy with
equal components, then we can write any automorphism of quasigroup
(Q, f) in the form L3 where § € Aut(Q,+) and Ly is a left translation
of the group (@, +).

Such presentation of this quasigroup automorphism is unique. Indeed,
if Lgp = Ly, then Lgp0 = LpB0, d =b, p = (.

Let LyS € Aut(Q, f), ie. o1 LpfBx1 +palpfBro+ -+ onlpfay, +a =
LyB(p121 + poxa + -+ - + @pay). Since ¢; € Aut(Q,+) for any i € 1,n,
we have

010+ p18z1 + @ab + 282 + - - - + b+ P, +a =
(6)
b+ Bprx1 + Bz + -+ Bona, + Pa.

If we take in (6) x; = 0 for all 4, then we have
©1b+ @20+ + ppb+a=b+ Ba. (7)

If we denote > | ¢; — € by 4, then we have fa — a = db.
If we take into consideration equality (7), then from (6) it follows

1821 + 28T + -+ on Py, = Bor1x1 + Bpara + - -+ Bonxy. (8)

If we take in (8) 9 = 23 = -+ = x, = 0, then we have 18 =
By1. Similarly we obtain that wof8 = By, ..., 0n0 = By, ie. G €

C aut(@,4) (P15, on) = C.
It is easy to check up that the converse is correct too. Indeed,

(@) = v(im (wixi) + a) = LyB(3 iz, (wiwi) +a) =
b4 >0 Byixi + Ba =

Z?:l(%b) + Z?:1(<Pzﬂ$z) +a=

Z?:l(gpl(l’bﬂxl)) +a= f(’Y.Il, o 7’Yx7l)
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Corollary 5. If L3 € Aut(Q, f), where (Q, f) is an n-T-quasigroup
with the form f(z}) = 121 + @awa + -+ + P&y, then Ly € Aut(Q, f)
and B € Aut(Q, f).

Proof. If Ly € Aut(Q, f), then equality (7) is fulfilled. Equality (7) in
case a = 0 has the form b =Y.' | (¢;b). Further we have

Lyf(27) = Ly(D 01, (piwi)) =
b+ i piri = Y i (pib) + D00 pizi =
Yo gilb+ ) = f(Lpx, ..., Lyxy).

Thus Ly € Aut(Q, f). If LB € Aut(Q, f), Ly € Aut(Q, f), then g €
Aut(Q, f). O

Proposition 4. If an n-T-quasigroup (Q, g) has the form g(z}) = p1x1+
Pox2 + -+ + Oy, then

Aut(Q,g) = KX C,

where K = {L} |b € Q, p1b+ @b+ -+ b =1}, C = {w € Aut(Q,+) |
wp; = piwVi € 1,n}.

Proof. From Proposition 3 and Corollary 5 it follows that sets K and C
are subgroups of group Aut(@,g) and that Aut(Q@,g) = K - C. Since
KNC=¢, K <Aut(Q, g) we have Aut(Q,g9) = K X C. O

An element d of an n-ary quasigroup (Q, f) such that f(d,...,d) =d
is called an idempotent element of quasigroup (Q, f) (in brackets we have
taken the element d exactly n times). In binary case an element d € Q
such that d - d = d is called an idempotent element of quasigroup (@, ).

Corollary 6. If n-T-quasigroup (Q,g) with the form g(z1,...,x,) =
Yo, wixi has exactly one idempotent element, then

Aut(Q, 9) = C,
where C' = {w € Aut(Q,+) |wp; = piwVie 1,n}.
Proof. In this case K = {e}. O

Corollary 7. If n-T-quasigroup (Q,g) is an idempotent quasigroup with
the form g(z1, ..., xy) = > iy ix; over an abelian group (Q,+), then

Aut(Q,9) = (Q, +) N C,

C ={w € Aut(Q,+) |wp; = piwVi € 1,n}.
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Proof. We have K = (Q,+) in case when (@, ¢) is an idempotent quasi-
group. ]

Lemma 4. An n-T-quasigroup (Q, f) f(x1,...,%n) = Dty Pi%i+a has
at least one idempotent element if and only if it is isomorphic to n-T-
quasigroup (Q, g) with the form g(x) = Y"1 | @ix; over the same abelian

group (Q,+).

Proof. Let element u be an idempotent element of n-ary T-quasigroup
(@, f) with the form f(z1,z9, ..., zp) = Y iy @izi+a. If we take in the
last equality x1 = zo = -+ = x,, = u, then we have Z?:l YU+ a = u,
i.e.

n

Z«piu—l—a—u:O. (9)

i=1

Then isomorphic image of the n-T-quasigroup (Q, f) with an iso-

morphism 7" of form (Ly,---, Ly) ((n+1) times), where L, is a left
translation of the group (@, +), will be n-T-quasigroup (@, g) with form
g(z1,22,...,2n) = > i, @izi. Really, we have

L—uf(Lumh e 7Luxn) =

—U+ P1U+ @121+ P2U + PaX2 + -+ PpU+ Ty +a =
—u+ Q1u+ gou+ -+ oputa+ D i =

Y piuta—u+ 3, e =

0+ 300 witi = g(1, 7+ o)

Any n-T-quasigroup (Q, g) with the form )" ; ¢;x; has at least one
idempotent element. Indeed, Y7 ; ;0 = 0. Then the n-T-quasigroup
(Q, f), that is an isomorphic copy of n-T-quasigroup (@, g), has an idem-
potent element. The lemma, is proved. ]

Condition (9) that the n-T-quasigroup (@, f) with the form f(2]) =
>, ¢ix; + a has an idempotent element u we can re-write in the form
d0u = —a, where ¢ is an endomorphism of abelian group (@, +) such that
d=>1 pi—¢

Hence we can formulate the following conditions when the n-T-quasi-
group (Q, f) has an idempotent element.

Lemma 5. An n-T-quasigroup (Q, f), f(z1,...,2n) = > iy pi%i + a,
has at least one idempotent element if and only if there exists element

d € Q such that 6d = —a.

Remark 4. An n-T-quasigroup (Q, f), f(z1,...,2n) = > iy @iz + a,
has exactly one idempotent element if and only if the endomorphism ¢ is
a permutation of the set @), i.e. if and only if the endomorphism § is an
automorphism of the quasigroup (Q, f).
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For binary case Lemmas 4 and 5 are easy received from the remark
on page 109 in [18].

Lemma 6. T-quasigroup (Q,-), -y = @12 + @2y + a, has at least one
idempotent element if and only if it is isomorphic to T-quasigroup (Q, o)
with the form x oy = p1x + pay over the same abelian group (Q,+).

Lemma 7. T-quasigroup (Q,-) with the form x -y = @121+ @2y + a has
at least one idempotent element if and only if there exists element d € Q
such that 6d = —a.

Theorem 4. If n-T-quasigroup (Q,g) with the form g(xi,...,x,) =
Yoy wixi + a has at least one idempotent element, then

Aut(Q,g) = KX C,

where K = {Ll")F b€ Q,o1b+pab+---+ppb=0b}, C={w e Aut(Q,+) |
wp; = piwVi € 1,n}.

Proof. 1t is sufficient to take into consideration Lemma 4 and Proposi-
tion 4. O

Remark 5. In binary case from idempotency of T-quasigroup (Q,-) it
follows that this quasigroup is medial and distributive. Really if z -2 =
pr +Yxr = x for any x € @Q, then o+ 1 = ¢, ¢ = — + ¢ and then
ph= (= +elp=—P* +y =P(—y+e) =Y.

We notice that even in ternary case there exist non-medial idempotent
T-quasigroups.

Example 1. Let (Q,+) = (Z5 & Z5,+) be a direct sum of two cyclic
groups of order 5. Let

(22 (13 (30
Q] = 21 ,OéQ— 02 ,Oé3— 33?

where, for example,

(2 2) (?Jl) :<2-y1+2-y2>
2.1 Y2 2-y1+1-y2
for all (y1,y2) € Z5 ® Zs.
A quasigroup (@, f) of the form f(x1,z2,r3) = a1r1 + asxs + asxs

for all z1, 2,23 € @ is an idempotent non-medial (ajay # azaq) 3-ary
T-quasigroup.
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Remark 6. It is clear that with growing of arity of a quasigroup oper-
ation an influence of idempotent elements on properties of a quasigroup
will be weakened. Really, in binary idempotent quasigroup (Q, f2) we
have |Q|? quasigroup “words" of the form (z,y, f2(z,y)) and |Q| idem-
potent elements, in ternary quasigroup (Q, f3) we shall have |Q|® such
quasigroup words and |@| idempotent elements and so on.

Example 2. Medial quasigroup (Z,0o) over infinite cyclic group (Z,+)
of the form z oy = —x — y + 1 has identity automorphism group ([22]).

Proof. From Proposition 3 it follows that any automorphism of the qua-
sigroup (Z, %), x xy = —x — y + a has form L;rw, where ¢ € Aut(Z,+) =
(Z2,-) (]10]). We suppose that Zy = {1, —1}.

Then we have L;rq/;(a: oy) = L;“L/Ja: o L;zpy, b— vz — Yy + Ya =
—b—vr—b—yYy+a, va—a=—-3b. Ifp=1, then 0 = —3b, b =0 and
we obtain that L;w = ¢ is an automorphism of the quasigroup (Z, ). If
1 = —1, then we have —2a = —3b, b = (2/3)a.

Therefore if a = 3k, then Aut(Z,%) = Zy. If a =3k+1or a = 3k+2,
then Aut(Z,*) consists only of the identity mapping. Thus

|Aut(Z,0)| = 1.
O

Note that all other binary medial quasigroups over the group (Z,+)
have one of the following forms: z*y =z +y+a, oy = —y + a,
rT®Yy = —x +y + a. Every of these quasigroups has an idempotent
element: (—a) * (—a) = —a,a0a=a,a®a = a.

Using Lemma 6 and Proposition 4 we can obtain that the automor-
phism group of any from these quasigroups is isomorphic to the group
Zy. See also [22].

Theorem 5 is similar to Proposition 8 ([18]) that was proved for finite
binary T-quasigroups.

Let (@, f) be an n-T-quasigroup of the form f(z7) =Y | (pizi) +a
over an abelian group (@Q,+). Let P = {C(a) — a} N Q, C(a) be an
orbit of the element a in the set @) under action of the group C' and C be
a centralizer of the elements 1, ..., @, in the group Aut(Q,+), N be a
kernel of the endomorphism §, § = Y"1 | ¢; — &, S be a stabilizer of the
element a under action of the group C on the set Q.

Theorem 5. If (Q,f) is an n-T-quasigroup of the form f(z}) =
Yo (gizi) + a over an abelian group (Q,+), and the sets P,N,S have
finite order, then

|Aut(Q, f)I = |P[ - IN]-[S].
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Proof. This proof is a re-written form of the proof of Proposition 8
from [18]. We must do analysis of the equality aa — a = 6b.

If there exists a pair of elements (b, ), b € Q,a € C such that the
equality aa — a = 0b is fulfilled, then L;roc € Aut(Q, f).

Every element p € P corresponds to |N| elements b, of the set @) such
that 6(b,) = p and this element p corresponds to |S| elements &, of the
set C such that §,(a) —a =p. If p,r € P, p # r, then 6(b,) # (b,) and
&p # & Therefore |Aut(Q, f)| = |P|- |N|-|5]. O

Corollary 8. A finite n-ary T-quasigroup (Q, f) of the form f(z}) =
Yo (pizi) + a over an abelian group (Q,+) has the identity automor-
phism group if and only if

m

(Qv +) = @(ZQ)U

i=1

(@, f) = (Q,9), where g(af) = > (pix;), endomorphism § is a permu-
tation of the set Q, |C| =1, m is a natural number.

Proof. Let |Aut(Q, f)| = 1. From Theorem 5 it follows that in this case
|N| = 1. Since the order of the set @ is finite, then the endomorphism
¢ is a permutation of the set () and it is an automorphism of the group
Q..

Further from Lemma 5 it follows that the quasigroup (Q, f) has an
idempotent element, (Q, f) = (Q, g) where g(z}) = > (piz;). More-
over, since the endomorphism ¢ is an automorphism, we obtain that the
quasigroup (@, f) has exactly one idempotent element, and from Corol-
lary 6 it follows that Aut(Q, f) = C. Therefore in this case we have that
|IC| = 1.

In any abelian group (@, +) the permutation I, I(z) = —z, is an
automorphism of this group and [y = @1 for any ¢ € Aut(Q,+), i.e.
I € C. Therefore, for a fulfillment of the condition |C| = 1 it is necessary
that I =e¢.

It is well known (|10]) that in finite case only elementary abelian group
of order 2™, where m is a natural number, has the property that I = ¢.
Therefore (Q,+) = @i, (Z2)i.

Conversely. Let (Q, f) be a finite n-ary T-quasigroup of the form
flay) = >0 (piz;) over an abelian group (Q,+) = @;",(Z2);, endo-
morphism § is a permutation of the set @ and |C| = 1.

Then |N| = 1, the quasigroup (Q, f) has exactly one idempotent
element, by Corollary 6 Aut(Q, f) = C and, further, |Aut(Q, f)| = 1,
since |C| = 1. O



A. MARINI, V. SHCHERBACOV 75

Corollary 9. Any finite medial n-ary quasigroup (Q, f) such that |Q| > 3
has a non-identity automorphism group.

Proof. From Theorem 5 it follows that if |[N| > 1, then Aut(Q, f) >
1. If we suppose that |[N| = 1, then, taking into consideration that
quasigroup (Q, f) is finite, we have that endomorphism 4 is a permutation
of the set @), quasigroup (Q, f) has exactly one idempotent element and
Aut(Q, f) =2 C.

Since quasigroup @ is a medial quasigroup, p;p; = @;p; for all suit-
able values i, j. Thus < ¢1,...,p, >C C.

Then |C| = 1 only in case when ¢; = -+ = ¢, = . In this case
quasigroup (@, f) will have form f(z7) = > " |(x;) and by Proposition
2 Aut(Q, f) = Z"HQ,+) X Aut(Q,+). Tt is well known ([10]) that
|Aut(Q,4+)| > 1 for any group (Q,+) such that |Q] > 3. Therefore
|Aut(Q, f)| > 1 in this case too. O

Example 3. This example of T-quasigroup with the identity automor-
phism group is given in [18]. Let (Q,+) = Zo® Zo® Zy, -y = px + 1)y,
where

010 1 01
o=(100], v=[100
011 111

Then |Aut(Q, )| = 1.

4. On automorphisms of some isotopes of idempotent n-
ary quasigroups

In this section we study some connections between automorphism groups
of an idempotent n-quasigroup and some its isotopes.

We denote a set {17 € Aut(Q, f)|Ta =at}, where (Q, f) is an n-ary
quasigroup, « is a permutation of the set Q, by Cay(q,p)(a). As it was
noted in previous section, the set C4,4(q, ) () forms a group with respect
to the usual multiplication of permutations ([10]).

Theorem 6. If (Q, f) = (Q, g)T is an isotope of n-ary idempotent qua-
sigroup (Q, g) such that isotopy Ty has the form (g,...,e, Bit1, €,...,€)
(there are (n 4+ 1) members in this sequence) and i € 0,n, then

Aut(Q, f) = Cauy@Q,g) (Bit1)-

Proof. (a) Let i € 0,n — 1. Let ¢ € Aut(Q, f), i.e. of(z1,2z2,...,2,) =
floz1, pxa, ..., @x,) for all x1,x9,...,x, € Q. Passing to operation g
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we obtain

0g(z1, ..., i, Bit1Tit1, Tit2, - .-, Tp) =
g(@xlv ceey PTG, 5i+190$i+17 PLi42, ..., 90$n)

If we change ;41 by ﬂi:_llxi+1, then further we have

gOg(:I}l, ey Ly L 1y L2y« oy [L'n) =
. . (10)
g(pz1,. .., pxi, ﬁz+1@ﬂi+1$z+la PTi42, -+ PTn).-
Ifin (10) 1 = 9 = - - - = x,, = x, then taking into consideration that
operation ¢ is idempotent, we have pz = g(pz,. .., gpx,ﬂiﬂcpﬂ;_llx, px,

.., px). But g(@z") = g(pz,...,px) = px. Therefore g(pz,...,px,
Bir1eBi @, ox, .., px) = glpx, ... px) = g(@T"). Since (Q, g) is qua-
sigroup from the last equality we have ﬁiﬂgoﬁ;rll = @, then G110 =

©Bit1-
Therefore we can re-write (10) in the following form ¢g(2]) =

g(px1,. .., pxn). Then ¢ € Aut(Q, g), Aut(Q, ) € Cau(Q.q)(Bit1)-
Converse. Let ¢ € Cauy(q,g)(Bi+1)- Then

of () = eg(x1, ..., i, Bir1Tir1, Tiga, - -, Tn) =
9(PT1, .. QT OB 1Tig1, PTit2,s - ., PTy) =
g((ﬂl'l, sy PTG, ﬁi—l—l@xi—i-l? PLj4-25 -« wxn) = f(gO.%'l, PL2, ... ,QOJIn)-

Therefore C 4u1(Q,9)(Bi+1) € Aut(Q, f) and, finally, we obtain

AUt(Qv f) = CAut(Q,g) (ﬁi—l—l)'
(b) Let @ = n. Let ¢ € Aut(Q,f), ie. of(r1,22,...,2,) =

flox1, pza,. .., pxy,) for all zy,zq,...,2, € Q. Passing to operation
g we obtain pBu419(1,. .., Tn) = Bas19(px1, ..., 0Tn).
If in the last equality we put 1 = xo = - - - = x,, = z, then, taking into

consideration that operation g is idempotent, we have p3, 11 = Gp+1p.
Thus

ﬁn-&-l(pg(xl, ) $n) = /Bn—i—lg(@xlv s (,Ol’n),

Spg(xlv R ,$n) = 9(90951, sy @xn)v

¢ € Aut(Q, f), Aut(Q, f) € Caur(q,g)(Bi+1)-

Converse. Let ¢ € Cuy(@,g)(Bit+1)- Then

of (@1, ..., Tn) = @Pnt19(x1, ..., Tp) =
Br199(x15 - - Tn) = Pry19(0x1, . .., 0Tn) =
= f((pxh QDI,'Q, R QO.’L'n)

Therefore C4y1(Q,9) (Bn+1) S Aut(Q, f).
From inclusions Aut(Q, f) € Caui(,g)(Bi+1) and C4uy(,g)(Bn+1)

-
Aut(Q, f) it follows equality Aut(Q, f) = CauyQ,g)(Bi+1). In case (b)
this theorem is proved too. O
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Corollary 10. If n-ary quasigroup (Q, f) is an isotope of an n-ary idem-
potent T-quasigroup (Q,g),g(x}) = D0, iz, and the isotopy has the
form (g,...,e, Bit1, &,...,€), 1 €0,n, Biy1 = Ld+, then

Aut(@Q, f) = (Q, +) X S,
where S = {0 € C|0d = d}, C = {w € Aut(Q,+) |wa; = awVi € 1,n}.

Proof. From Theorem 6 it follows that we need to find the condition
when Ly0Lg = LgLyf, where Lyf € Aut(Q,g) (Corollary 7). We have
Lpi9q0 = Ly g0, Lyigaf0 = Ly 400, b+ 6d = b+ d, 0d = d. ]

Corollary 11. If (Q, f) = (Q,g)Ty is an isotope of n-ary idempotent
T-quasigroup (Q,g) such that isotopy Ty has the form (e,...,e, Bit1,
€,...,€), 1 €0,n and Biy1 = ¢ € Aut(Q,+), then

Aut(Q, f) 2 BX N
where B ={L;|b € Q,pb=b}, N = {0 € Clop = ¢po}.

Proof. From Corollary 7 it follows that any automorphism of n-T-
quasigroup (Q, g) has the form Ly where b € Q, L; is a left translation
of abelian group (Q,+), 6 € C. Taking into consideration Theorem 6 we
find the condition when the component ¢ of the isotopy Ty and an auto-
morphism L0 of quasigroup (@, g) commute: Ly = Lyfp. Further we
have Loypl = LyOp, Loppt0 = Ly0p0, b = b, pf = 0. O

Remark 7. It is easy to see that in Corollaries 10 and 11 the n-ary
quasigroup (Q, f) is an n-ary T-quasigroup.

Corollary 12. Ifxoy = ax -y where (Q,-) is an idempotent quasigroup,
« is a permutation of the set Q, then Aut(Q,0) = Cayy(q,)().

Proof. If in conditions of Theorem 6 we suppose that n = 2, ¢ = 1, then
we have conditions of this corollary. O

Corollary 13. If xoy = vy(x-y) where (Q,-) is an idempotent quasigroup,
7 is a permutation of the set Q, then Aut(Q, o) = Cayyq,)(7)-

Proof. Proof is analogous to the proof of Corollary 12. O

Example 4. Let (Q,+) be a group of rational numbers. It is known
([10]) that Aut(Q,+) = (Q*,-), i.e. this group is isomorphic to group of
non-zero rational numbers with respect to the operation of multiplication
of these numbers. Let (Q, f) be an n-ary medial quasigroup of the form

f@) = (i, gixi) +a, ¢F € Q*, a € Q.
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1%

(Q,+) ™ (Q, ).

a). If 0 =0 and a = 0, then Aut(Q, f)
) (@Q,+)

Q
b). If 6 = 0 and a # 0, then Aut(Q, f)
¢). If § # 0, then Aut(Q, f) = (Q*

1

)
Proof. a). In this case the quasigroup (Q, f) is an idempotent quasigroup
and by Corollary 7 Aut(Q, ) = (Q,+) X (Q*,-).
b). By Corollary 10 Aut(Q, f) = (Q,4+) X S. In our case S =¢.
¢). In this case the endomorphism ¢ is a permutation of the set
Q, quasigroup (Q, f) has exactly one idempotent element, by Corollary
6 Aut(Q, f) = C. In our case C = (Q*,-). Therefore Aut(Q, f) =

5. On automorphisms of some loop isotopes

In this section we study a connection between automorphism group of
a loop and automorphism group of loop isotope of a special form. We
denote the identity element of a loop (@, +) as 0.

Proposition 5. If (Q,0) is a quasigroup with the form x oy = ax + vy,
where (Q,+) is a loop, a is a permutation of the set Q such that a0 = 0,
then Aut(Q, o) = Cau(g,4) ().

Proof. Let ¢ € Aut(Q,0), i.e. p(xoy) = propy for all z,y € Q. Passing
to operation + we have

ooz +y) = apr + @y. (11)

If we take in equality (11) 2 = y = 0, then 0 = ap0 + ¢0, apd = 0,
00 = a~'0 = 0, therefore 0 = 0. If we assume that y = 0 in (11),
then paxr = apr + 0 = apr + 0 = apz, i.e. paxr = apzr. Therefore
pa = ap and ¢ € Aut(Q,+) since p(ax + y) = apr + py = pax + @y.
Thus ¢ € Aut(Q,+), Aut(Q,0) C Cayyq,+) ().

Let ¢ € Cayyg+)(@). Then o(zoy) = plax +y) = pax + gy =
apr+py = propy. Therefore Cyyyqg4)(a) € Aut(Q, o), Cauyo,+)(a) =
Aut(Q, o). O

Proposition 6. If (Q,0) is a quasigroup with the form x oy = x + Py
where (Q, +) is a loop, B is a permutation of the set Q such that 0 = 0,
then Aut(Q,o) = Caur(Q,+) (8).

Proof. Proof is analogous to the proof of Proposition 5. O

Proposition 7. If (Q,0) is a quasigroup with the form xoy = ~(z +y),
where (Q,+) is a loop, v is a permutation of the set Q such that ~0 = 0,
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then ¢ € Aut(Q, o) if and only if: (i) (p, ¢, Laoy) is an autotopy of the
loop (Q,+); (1) v'¢v = Lyoy; (i) 0+ =+ ¢0 for all x € Q;
(iv) ©0 0 p0 = 0.

Proof. Let ¢ € Aut(Q,o). Then

ev(x +y) =y(pz + 9y). (12)

If in (12) = y = 0 then 70 = (0 + ¥0), Y0 = (0 + 0),
00 = @00 0, i.e. p0 is an idempotent element of the quasigroup (@, o).
If we take in (12) z = 0, then we have vy = vLoopy, 7 Loy = Lyogp.

By y = 0 in (12) we have pyz = v(pz +¢0), v 1oy = Ryop. Then
we have

7 v = Roow = Loog. (13)

We can re-write (12) in the following way v~ lovy(z + y) = @z + @y
and, taking into consideration equality (13), as Loop(z + y) = vz + ¢y,
ie. (¢, ¢, Lyoy) is an autotopy of the loop (Q,+).

From equality (13) it follows that Ry = Lo, i.e. 4+ ¢0 = 90+ x
for any z € Q.

Conversely. If (¢, ¢, Lyop) is an autotopy of the loop (@, +), then we
have Loop(x +y) = vz + vy, vLeoop(x +y) = v(px + ¢y). From (ii) we
have Lo = 7. py(z+y) =v(pz+¢y), p(zoy) = propy. Therefore
€ Aut(Q,0). O

We shall denote by Z((Q,+) the subset of a loop (Q,+) such that
ZQ,+)={aeQat+trz=x+aVzecQ}

Corollary 14. Let the quasigroup (Q,o) be an isotope of a loop (Q,+)
with Z(Q,4+) = 0 of the form x oy = vy(z + y) where v is a permutation
of the set Q such that 70 = 0. Then Aut(Q,o) = Cayui(,+)(7)-

Proof. If ¢ € Aut(Q,o), then (¢, ¢, Lyp) is an autotopy of the loop
(Q,+). Since Z(Q,+) = 0, then L, = ¢, the permutation ¢ is an
automorphism of the loop (@, +). From condition (ii) of Proposition 7 it
follows that ¢ = ¢v. Therefore Aut(Q,0) C Cauy(q,+)(7)-

Conversely. Let ¢ € Cau,+)(7). Then o(zoy) = @y(z +y)

vyo(x+y) = v(px+ py) = pxopy. Therefore Aut(Q, o) = Caut(Q,+) ().
Ol

Remark 8. For groups the condition Z(Q,+) = 0 is equivalent to the
condition that the centre of the group (Q, +) coincides with 0. In the con-
dition of Corollary 14 the quasigroup (@, o) has exactly one idempotent
element.
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Proposition 8. Let the quasigroup (Q,o) with an unique idempotent
element be an isotope of a loop (Q,+) of the form x oy = ax + By where
«, B are the permutations of the set QQ such that a0 = B0 = 0. Then

Aut(Q, o) = Cruy@,+)(a, B).

Proof. If the quasigroup (Q,o) has an unique idempotent element and
has form x oy = ax + By where a0 = 50 = 0, then 0 0 0 = 0 is this
idempotent element. If ¢ is an automorphism of the quasigroup (@, o),
then 0 = 0. Indeed, p(000) = @0 o ©0, Y0 = 0 o 0, Y0 = 0 because
there is only one idempotent element, namely 0.

From ¢(x o y) = ¢z o vy we have p(ax + By) = apr + Bey. If we
take in the last equality x = 0, then By = Bpy. By analogy pa = «p.
Then Aut(Q, o) C Cayrq,+)(a; B).

Further p(zoy) = p(az+By) = paz +¢pBy = apa+ By = propy.
Then Aut(Q, o) = Cau(g,+) (e, B). O

Remark 9. It is possible to re-write the condition “the quasigroup (@, o)
has an unique idempotent element" as ax + Sz # x for all z € Q \ {0}.

6. Some known codes as n-ary medial quasigroups and
their automorphism groups

In this section we apply obtained results to describe automorphism groups
of nm-ary quasigroups that correspond to the ISSN code, the EAN code
and the UPC code.

Example 5. The International Standard Serial Number code (the ISSN
code) which it is used now consists of eight digits. These are the arabic
numerals from 0 to 9 on places from the 1-th to the 7-th. On the 8-th
place can occur the arabic numerals 0 to 9 and an upper case X. Denote
this code as €.

The first seven digits a are the so-called information symbols and the
8-th digit ag is a check digit. Any eight right (without any error) digits
of the ISSN code satisfy the following check equation:

8-a1+T7-a2+6-a3+5-a4+4-a5+3-a6+2-a7+1-ag =0 (mod 11),

i.e. af € € if and only if this code word satisfies the above-stated check
equation.

We can associate with the ISSN code 7-ary medial quasigroup (Z11, f)
in such manner: 8-y1 +7-y2+6-y3+5-y4+4-ys+3-y6 +2-y7 = —1-ys
(mod 11) for all y17 € Z11,ys =3-y1+4-y2+5-ys+6-y4+7-y5+8-ys+9-y7
(mod 11).
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Therefore we have 7-ary quasigroup (Zi1, f) of the form f(y{) =
3 y1+4-y2+5-y3+6-ys+7ys +8-ys +9-yr over the group (Z11,+).
It is easy to see that f(y]) = ys if and only if 3} € €.

Prove that Aut(Z11, f) = Z1p. It is easy to check that the quasigroup
(Z11, f) has exactly one idempotent element, namely the element 0. In

conditions of this example we can apply Corollary 6. Since Aut(Z11) =
Z10 is a commutative group, we obtain C' = Z13. Therefore

Aut(ZH, f) = ZlO-

Example 6. The European Article Number code (the EAN code) is the
code with the check equation 1-214+3-2z9+1-234+3-x4+1-25+3 26+
l-xz7+3-28+1-29+3-x10+1-211+3 212+ 1-213 =0 (mod 10), where
x; € Z19, % € 1,13, elements 1‘%2 are the information digits and element
z13 is a check digit (]20]).

Similarly as in Example 5 we can associate with this code a 12-ary
medial quasigroup (Z19, f). From the last check equation we have —x13 =
1-z143-20+1-23+3- x4+ 1-25+3 w6+ 1-2743-23+1-29+3- 210+ 1-11+3-212
(mod 10), 13 =9 21+ 7 - 220 4+9-23+7-24+9 - 25+ 7 -26+9- 27+ 7-
28 +9 -9+ 7 210+ 9 211 + 7212 (mod 10).

Therefore we obtain 12-ary medial quasigroup (Zig, f) of the form
f(JU%Q) =9 21+7-2204+9 23+7-04+9-25+7 - 26+9-27+7-284+9-
x9o+7-x10+9 211+ 7 T12.

By Proposition 4 Aut(Z11, f) = KX C. In conditions of this example
we have K = {Lg, Lo, L4, Lg, Lg}, K = Z5. Since Aut(Z19) = Z4 and Z,4
is a commutative group, we obtain C' = Z4. Therefore

Aut(Zlo, f) = Z5 PN Z4.

Example 7. The Universal Product Code (the UPC code) is the code
with the check equation 1-0+3-2z94+1-23+3-24+1-254+3-26+1-
zr+3-xs+1-294+3-z0+1-211+3-x12+1-213=0 (mod 10), where
x; € Zyo, 1 € 1,13, elements x%Q are the information digits and element
x13 is a check digit. In other words the UPC code is in fact a subset of
the more general the EAN code.

We can associate with this code an 11-ary medial quasigroup (Z19, f)
of the form f(z3?) =7 2o+ 9 23+ 7 - 24 +9 25 +7 26+ 9 27+ 7"
8 +9-x9+7-x10+9 211+ 7212

We can use Proposition 4 also in this example. We have K = {Lg, L5},
K = Zy. Since Aut(Zy9) = Zy, we obtain C = Z4. Therefore
Aut(Zl(), f) = ZQ DN Z4.

Since any element 3 of the group Z4 acts on the group Zs, Z, = {0, 1},
as an inner automorphism ([10]), then S0 = 0 and, therefore 51 = 1.
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Then any element of the group Z4 acts on the group Zs as the identity

automorphism, and, finally, we have

(1]
2]

3l
(4]

]

0
17
8
19

[10]

[11]

12]

113

14

[15]

[16]

[17]

[18]

A’U,t(Zlo,f) = ZQ X Z4.
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