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ABSTRACT. Some corollaries of the Hasse principle for Brauer
group of a pseudoglobal field are obtained. In particular we prove
Hasse-Minkowski theorem on quadratic forms over pseudoglobal
field and the Hasse principle for quadratic forms of rank 2 or 3
over the field of fractions of an excellent two-dimensional henselian
local domain with pseudofinite residue field. It is considered also
the Galois group of maximal p-extensions of a pseudoglobal field.

Let K be an algebraic function field K in one variable with pseud-
ofinite [1] constant field k. We call such a field pseudoglobal. For pseu-
doglobal fields there is an analogue of global class field theory [2,3], in
particular, for such a field k£ we have the following exact sequence

0 — Br(K) — €P Br(K,) — Q/Z — 0, (1)

veVE

where V& is the set of all valuations of K (trivial on the constant field
k), BrK (resp. BrKy,) is the Brauer group of K (resp. of the completion
K, of K at v € V).

Note that L.Efrat [7] considers a more general situation where K is an
algebraic function field in one variable over a perfect pseudo-algebraically
closed constant field £ and proves in that situation the exactness of the
sequence

0 — Br(K) — @P Br(K}) — G} — 1, (2)

veVE
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where GY ~ Homcont (Gr, Q/Z), Gy being the absolute Galois group of k;,
and K is a fixed henselization of K at v € VK.
The exact sequence (1) shows, in particular, that for a pseudoglobal
field K the map
Res : Br(K) — [] Br(K.,) (3)
veVEK

is injective, i.e. the Hasse principle for Brauer group holds over K.

Our first application of the Hasse principle for Brauer group of a
pseudoglobal field will be the analogue of the classical Hasse-Minkowski
theorem which asserts that a quadratic form defined over a global field
K is isotropic if and only if it is isotropic over all the completions of K.
This fact can be quickly proved by using the following proposition.

Proposition 1. Let K be a pseudoglobal field. Then:

(i) An element a € K is a norm from a cyclic extension L/K if and
only if it is a norm everywhere locally.

(ii) Let S be a finite set of valuations of a global field K. Let m be a
positive integer, (p,char(K)) =1, anda € K*. Ifa € K™ for allv ¢ S,
then a € K*™.

Proof. (i) For a cyclic extension L/K we get from (3) that there is an in-
jective map K*/Np g L* — [[,eyx Ky /N, /K, Lsy, where for all v € VK
w is a fixed extension of the valuation v to L, and L, is the corresponding
completion.

(ii) We follow the argument used in [5, pp. 82-83, 275-276]. Let
L/K be an abelian extension, and G = Gal(L/K). First we show that if
L, = K, for almost all v € VX then L = K. Suppose that K # L. Let
o be a fixed generator of the absolute Galois group of the pseudofinite
constant field k. Let v € VX and let k(v) and k(w) be the residue
field of K, and L,, respectively. Since almost all valuations of K are
unramified in L, we may assume v to be unramified in L. Denote by oy,
the restriction of o*(")#] to the field k(w). Then o, is a generator of
the cyclic group Gal(k(w)/k(v)) ~ Gal(L,,/K,) C G, note that o,, does
not depend on the choice of extension w|v: if o is fixed, then oy, € G is
uniquely determined by v, so we denote it by o,.

Let Ck (resp. Cr) be the idele class group of K (resp. L). By using
the isomorphism Cx /N, Cr ~ G (cf. [3]) we see that for any finite set
of valuations S C V& the group G is generated by the elements o, v ¢ S.
If there were exist only a finite set of valuations of K which does not split
completely in L, then by adding them to S we would obtain that all o,
are trivial for v ¢ S. This contradicts to the fact that o, v ¢ S generate
the group G. Thus L = K.
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Let a € K™ for all v ¢ S. As in the classical case (cf. [5], p.82-83) it
is enough to consider the case where m is a power of a prime number and
the m-th roots of unity are in K. In that case the extension L = K( {/a)
is a Kummer extension, and we have L,, = K, for all v ¢ S where w is

an extension of v to L. Then the above argument shows that L = K, i.e.
a€ K*. O

Theorem 2. A nondegenerate quadratic form q over a pseudoglobal field
K, charK # 2, is isotropic if and only if it is isotropic over all the com-
pletions K, of K.

Proof. Assume that the quadratic form ¢ is isotropic over all the com-
pletions K, of K. We shall argue by induction on n = rankq as in
([9], Appendix 3, and [10]). First, we consider the cases n = 1,2,3,4.
When n = 1, there is nothing to prove. When n = 2, we may suppose
that ¢ = X2 — aY?, and use Proposition 1 (ii) for m = 2. If n = 3,
after multiplying ¢ by nonzero element from K, we may assume that
qg=X?—aY?—bZ% The latter form represents zero in K if and only if
b is a norm from the field K(y/a), so for n = 3 Theorem 1 follows from
Proposition 1 (i). Finally, let n = 4. In this case we may suppose that

q=X%—-bY? - cZ%+ acT?. (4)

Form (4) represents 0 if and only if ¢ as an element of K(vab) is a
norm from K (v/a, v/b) ([10], 193-194). Thus Theorem 1 is established for
1<n<A4.

Now let n > 5. Write the form ¢ as follows

¢ X1, Xn) = a1 X? + asX? —r(X3,...,X,). (5)

The form r has rank n—2 > 3. Similarly to the classical case of quadratic
forms over global fields, the form r represents 0 for almost all v € VX,
It suffices to show this for quadratic forms of rank 3. Let r = b1 Y? +
bV + b3V let S = {v e VE | 3i € {1,2,3} v(b;) # 0}. S is a finite
set, and for all v ¢ S we can reduce r modulo v to obtain a quadratic
form 7 = by Y 4+ bo Y + b3V of rank 3 over a pseudofinite field & which
represents 0 over k (such statement is true over any finite field, thus it is
true over a pseudofinite field k, because the pseudofinite fields are infinite
models of finite fields). Henceforth, for all v ¢ S Hensel’s lemma implies
that the form r represents 0 in K, for all v ¢ S.

Since the subgroup K*? is open in K with respect to v-adic topology,
and r represents every element in the coset c-k*? if it represents ¢, € K},
then it follows that r represents the elements in a nonempty open subset
of K.
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Consider any v € S. Since the form (5) represents 0 in K,, there
exists ¢, € K such that both forms r and a3 X? + ag X2 represent it. So,
there exist x1(v),...,z,(v) € K such that

a121(v)? 4 agza(v)? = r(x3(v), ..., 2p(v)) = cy.

According to weak approximation theorem, we can find elements
x1,x9 € K* which are close enough to x1(v),z2(v) for all v € S, so
that ¢ = a12? + asx3 is close enough to ¢, to be represented by the form
T.

Thus the form c¢Y? —r represents 0 in K, for v € S. Since r represents
0 in K, for v ¢ S, it represents all elements in K, for v ¢ S. So, cY? —r
represents 0 in K, for all v € VE. By induction, ¢Y? — r represents 0 in
K. It follows that g represents 0 in K. O

Recall that two quadratic forms are said to be equivalent if one can
be obtained from the other by an invertible change of variables.

Corollary 3. Two nondegenerate quadratic forms q and q' over a pseu-
doglobal field K are equivalent over K if and only if ¢ and ¢’ are equivalent
over all the completions K,,v € VK.

Proof. Use induction on n = rankq = rankq exactly as in the case of
global field (cf. [9], p.150 or [10], p.209). O

Corollary 4. Any nondegenerate 5-dimensional quadratic form over a
pseudoglobal field K is isotropic.

Proof. Let ¢ = 7(X1,...,X4) — aX?. Using the local class field theory
for general local field [13] it is easy to prove that a nondegenerate 4-
dimensional quadratic form over a general local field F' (i.e. complete
discrete valued field with quasifinite residue field represents every nonzero
element of F. It follows that a nondegenerate 5-dimensional quadratic

form over a pseudoglobal field K represents 0 over all the completions
K,,ve VK, O

Corollary 5. Let A be a central simple algebra of exponent a power of
2 over a pseudoglobal field K. Then over any finite extension of K the
exponent of A is equal to the index of A.

Proof. This follows from [6, Prop. 7|. O

Remark 6. Any pseudoglobal field is a Ca-field (cf. [4]), and this im-
plies Corollaries 4 and 5. Moreover, the exponent of every central simple
algebra over a pseudoglobal field is equal to its index.
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Let k£ be a field, and let X be a curve defined over k. The Brauer
group Br(X) of X is the kernel of homomorphism BrK — &ycy, BrK,,
where K is the function field of X (cf. [11], Appendix A).

Proposition 7. Let K be a pseudoglobal field over constant field k, then
the following equivalent properties hold:

i) the reciprocity law holds for K /k;

ii) for any finite cyclic extension L/K the sequence

Br(L/K) — ®ueyxBr(Ly/K,) — [L: K| 7'Z/Z — 0

1s exact;

i) for any finite cyclic extension L/K, H'(Gal(L/K), Br(Y)) = 0,
where Br(Y') is the Brauer group of a smooth projective curve Y with
function field L;

i) for any finite cyclic extension L/K the map

K*/NpgL* — @ Ky /Np, i, Ly
veVE

18 injective;

v) HY(G(k),Jacc(ks)) = 0, where G(k) is the absolute Galois group
of k, and Jacc(ks) is the Jacobian of any complete smooth curve C over
k;

vi) Br(C) =0 for any complete smooth curve C over k.

Proof. For a pseudoglobal field K /k property i) was proved in [3] as well
as the equivalence of i) and iv), property iv) was also stated in Proposi-
tion 1 (i). The equivalence of 1), ii), and iii) was proved in Proposition
A.12 |11, p.167], and the equivalence of iv),v),vi) in Proposition A.13 [11,
p.168). 0

Condition vi) of Proposition 7 has important applications to the
quadratic forms and to the period-index problem of algebras on curves
over discretely valued fields. Namely, using the results from [12] we have.

Proposition 8. Let C be a curve defined over a general local field K
with pseudofinite residue field k. Let K(C') be its function field, and let
(n,chark) = 1. Let a € Br(K(C)) be an element of order n in the Brauer
group of K(C). Then the index of a divides n?.

Proof. 1) By Proposition 7 vi) Br(C') = 0 for any smooth projective curve
C defined over k. Then by [12], Theorem 3.5 the index of « divides n?. [
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On the other hand, Theorem 3.1 from [6] on quadratic forms over
fields of fractions of excellent two-dimensional henselian local domains
with either separably closed or finite residue field k holds also in the case
of pseudofinite residue field.

Proposition 9. Let A be an excellent two-dimensional henselian local
domains with pseudofinite residue field k in which 2 is invertible. Let K
be the field of fraction of A, and let q be a quadratic form of rank 2 or 3
over K. Then q is isotropic over K if and only if it is isotropic over all
completions of K with respect to rank 1 discrete valuations.

Proof. The only step in the proof of the corresponding result in [6] (The-
orem 3.1) which uses the specific of the field K is the assertion that if
certain element of exponent 2 in Br(K) is unramified, then it is trivial.
Denoting the unramified Brauer group by Bry,(K) we have the natural
inclusions Bry,,(K) C Br(X) C Br(K), where X is a regular model of A
with special fiber Xy — Spec(k). By Theorem 1.3 of [6] the restriction
map Br(X) — Br(Xj) induces an isomorphism on [-primary subgroups
for any prime [ different from p = chark. Further, Proposition 7 vi)
implies that Br(Xy) = 0, so Bry,(K) is a p-primary group. O

Now let us turn to the Galois group of maximal p-extensions of a
pseudoglobal field. The cohomological approach for describing the Galois
groups for p-extensions of local and global fields was elaborated by Koch
in [8]. It is known that any group can be described in terms of generators
and relations. We recall some definitions from [7| and [8].

Let p be a prime number, G be a pro-p-group, H"(G,Z/pZ) :=
H"™(G). The number of generators of G is dimg,;H'(G). The num-
ber of relations of G is dimgzH?(G). Let Gk be the absolute Ga-
lois group of the field K, and Gg(p) be its p-component.We denote
H"(K) = H"(GKk(p),Z/pZ).

In particular, a pro-p-group G is free if and only if H?(G) = 0.

Recall that a field k is called pseudo-algebraically closed (PAC) if
each nonempty variety over k has a k-rational point (pseudofinite field
is a perfect PAC field whose absolute Galois group is isomorphic to 2)
[.Efrat [7| considers the Hasse principle for Brauer group of arbitrary
extension of a perfect PAC field of relative trancendence degree 1 and
proves the following result.

Proposition 10. ([7], COROLLARY 3.6) Let k be a PAC field and let K
be an extension of k of relative trancendence degree 1. Then the restriction
homomorphism

Res: HA(K) — [] H*(K.,)

veVE
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is injective, where K, = K(p) N K", K(p) is the composite of all finite
Galois extensions of p-power degree, and Kf} s a henselization of K at v.

As an immediate corollary, we have the following theorem.

Theorem 11. Suppose that K is a pseudoglobal field. Let p be a prime
number. Let G be the Galois group of the mazimal p-extension of K, and
for v e VE let G, be the corresponding decomposition group. Then the
restriction homomorphism defines an injective map

p* HY(G) — Y H*(G,).

veVE

Proof. 1t suffices to note that by Lemma 3.3 |7] the image of the restric-
tion map H*(G) — [[ ey x H*(Gy) actually lies in Y, oy x H*(Gy). O

Corollary 12. Let w be any valuation of pseudoglobal field K, and let

¢l HA(G) — Y H(G,)
vFW

be the map induced by ¢*, where the item H?(Gy,) is omitted in the direct
sum. Suppose that K contains the p-th roots of 1. Then the map ¢}, is
injective.

Proof. It suffices to note that by the Hasse principle the map

H*(G,K"), — Y H*(Gy, Ky),y
vFW

remains injective. ]

Finally, consider the maximal p-extensions of a pseudoglobal field with
given ramification.

Let K be an algebraic function field in one variable over constant
field k£, S be any set of valuations of the field K. Let Gg be the Galois
group of the maximal p-extension Kg of K, unramified outside S. The
field Kg is the composite of all finite p-extensions of K with ramification
only in the set S. To the map ¢* from Theorem 11 there corresponds
the map ¢% = H?*(Gs) — Y. ,cg H*(Gy), induced by the morphisms
¢y i Gy — G — Gg. Denote the kernel of pg by Illg. The group Illg
can be nontrivial, but in the case of a global field it is finite. Moreover,
it is a subgroup of the finite group Bg := Char(Vg/K*P), where Vg =
{a € K* | (o) = aP, a € k) Yv € S}, and () is a principal divisor
corresponding to a.
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It is known [8] that in the case of a global field there is a natural em-
bedding of the group Illg into the group Bg. Here two natural questions
arise. Is there such an embedding in the case of a pseudoglobal field? Is
the group Illg finite for a pseudoglobal field?
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