Algebra and Discrete Mathematics Number 2. (2004). pp. 1-8 © Journal "Algebra and Discrete Mathematics"

Some applications of Hasse principle for pseudoglobal fields

RESEARCH ARTICLE

V. Andriychuk

Communicated by M. Ya. Komarnytskyj

ABSTRACT. Some corollaries of the Hasse principle for Brauer group of a pseudoglobal field are obtained. In particular we prove Hasse-Minkowski theorem on quadratic forms over pseudoglobal field and the Hasse principle for quadratic forms of rank 2 or 3 over the field of fractions of an excellent two-dimensional henselian local domain with pseudofinite residue field. It is considered also the Galois group of maximal *p*-extensions of a pseudoglobal field.

Let K be an algebraic function field K in one variable with pseudofinite [1] constant field k. We call such a field *pseudoglobal*. For pseudoglobal fields there is an analogue of global class field theory [2,3], in particular, for such a field k we have the following exact sequence

$$0 \longrightarrow \operatorname{Br}(K) \longrightarrow \bigoplus_{v \in V^K} \operatorname{Br}(K_v) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0,$$
(1)

where V^K is the set of all valuations of K (trivial on the constant field k), BrK (resp. Br K_v) is the Brauer group of K (resp. of the completion K_v of K at $v \in V^K$).

Note that I.Efrat [7] considers a more general situation where K is an algebraic function field in one variable over a perfect pseudo-algebraically closed constant field k and proves in that situation the exactness of the sequence

$$0 \longrightarrow \operatorname{Br}(K) \longrightarrow \bigoplus_{v \in V^K} \operatorname{Br}(K_v^h) \longrightarrow G_k^{\vee} \longrightarrow 1,$$
(2)

¹⁹⁹¹ Mathematics Subject Classification: 11R58; 11EA12, 11R37.

Key words and phrases: algebraic function field, Hasse principle, quadratic form.

where $G_k^{\vee} \simeq \operatorname{Hom}_{\operatorname{cont}}(G_k, \mathbb{Q}/\mathbb{Z}), G_k$ being the absolute Galois group of k, and K_v^h is a fixed henselization of K at $v \in V^K$.

The exact sequence (1) shows, in particular, that for a pseudoglobal field K the map

$$\operatorname{Res}: \operatorname{Br}(K) \longrightarrow \prod_{v \in V^K} \operatorname{Br}(K_v)$$
(3)

is injective, i.e. the Hasse principle for Brauer group holds over K.

Our first application of the Hasse principle for Brauer group of a pseudoglobal field will be the analogue of the classical Hasse-Minkowski theorem which asserts that a quadratic form defined over a global field K is isotropic if and only if it is isotropic over all the completions of K. This fact can be quickly proved by using the following proposition.

Proposition 1. Let K be a pseudoglobal field. Then:

(i) An element $a \in K$ is a norm from a cyclic extension L/K if and only if it is a norm everywhere locally.

(ii) Let S be a finite set of valuations of a global field K. Let m be a positive integer, $(p, \operatorname{char}(K)) = 1$, and $a \in K^*$. If $a \in K_v^{*m}$ for all $v \notin S$, then $a \in K^{*m}$.

Proof. (i) For a cyclic extension L/K we get from (3) that there is an injective map $K^*/N_{L/K}L^* \to \prod_{v \in V^K} K_v^*/N_{L_w/K_v}L_w^*$, where for all $v \in V^K$ w is a fixed extension of the valuation v to L, and L_w is the corresponding completion.

(ii) We follow the argument used in [5, pp. 82–83, 275–276]. Let L/K be an abelian extension, and $G = \operatorname{Gal}(L/K)$. First we show that if $L_w = K_v$ for almost all $v \in V^K$ then L = K. Suppose that $K \neq L$. Let σ be a fixed generator of the absolute Galois group of the pseudofinite constant field k. Let $v \in V^K$, and let k(v) and k(w) be the residue field of K_v and L_w respectively. Since almost all valuations of K are unramified in L, we may assume v to be unramified in L. Denote by σ_w the restriction of $\sigma^{[k(v):k]}$ to the field k(w). Then σ_w is a generator of the cyclic group $\operatorname{Gal}(k(w)/k(v)) \simeq \operatorname{Gal}(L_w/K_v) \subset G$, note that σ_w does not depend on the choice of extension w|v: if σ is fixed, then $\sigma_w \in G$ is uniquely determined by v, so we denote it by σ_v .

Let C_K (resp. C_L) be the idele class group of K (resp. L). By using the isomorphism $C_K/N_{L/K}C_L \simeq G$ (cf. [3]) we see that for any finite set of valuations $S \subset V^K$ the group G is generated by the elements $\sigma_v, v \notin S$. If there were exist only a finite set of valuations of K which does not split completely in L, then by adding them to S we would obtain that all σ_v are trivial for $v \notin S$. This contradicts to the fact that $\sigma_v, v \notin S$ generate the group G. Thus L = K. Let $a \in K_v^{*m}$ for all $v \notin S$. As in the classical case (cf. [5], p.82-83) it is enough to consider the case where m is a power of a prime number and the *m*-th roots of unity are in K. In that case the extension $L = K(\sqrt[m]{a})$ is a Kummer extension, and we have $L_w = K_v$ for all $v \notin S$ where w is an extension of v to L. Then the above argument shows that L = K, i.e. $a \in K^{*m}$.

Theorem 2. A nondegenerate quadratic form q over a pseudoglobal field K, char $K \neq 2$, is isotropic if and only if it is isotropic over all the completions K_v of K.

Proof. Assume that the quadratic form q is isotropic over all the completions K_v of K. We shall argue by induction on $n = \operatorname{rank} q$ as in ([9], Appendix 3, and [10]). First, we consider the cases n = 1, 2, 3, 4. When n = 1, there is nothing to prove. When n = 2, we may suppose that $q = X^2 - aY^2$, and use Proposition 1 (ii) for m = 2. If n = 3, after multiplying q by nonzero element from K, we may assume that $q = X^2 - aY^2 - bZ^2$. The latter form represents zero in K if and only if b is a norm from the field $K(\sqrt{a})$, so for n = 3 Theorem 1 follows from Proposition 1 (i). Finally, let n = 4. In this case we may suppose that

$$q = X^2 - bY^2 - cZ^2 + acT^2.$$
 (4)

Form (4) represents 0 if and only if c as an element of $K(\sqrt{ab})$ is a norm from $K(\sqrt{a}, \sqrt{b})$ ([10], 193-194). Thus Theorem 1 is established for $1 \le n \le 4$.

Now let $n \ge 5$. Write the form q as follows

$$q(X_1, \dots, X_n) = a_1 X_1^2 + a_2 X_2^2 - r(X_3, \dots, X_n).$$
(5)

The form r has rank $n-2 \geq 3$. Similarly to the classical case of quadratic forms over global fields, the form r represents 0 for almost all $v \in V^K$. It suffices to show this for quadratic forms of rank 3. Let $r = b_1Y_1^2 + b_2Y_2^2 + b_3Y_3^2$; let $S = \{v \in V^K \mid \exists i \in \{1, 2, 3\} \ v(b_i) \neq 0\}$. S is a finite set, and for all $v \notin S$ we can reduce r modulo v to obtain a quadratic form $\overline{r} = \overline{b_1}Y_1^2 + \overline{b_2}Y_2^2 + \overline{b_3}Y_3^2$ of rank 3 over a pseudofinite field k which represents 0 over k (such statement is true over any finite field, thus it is true over a pseudofinite field k, because the pseudofinite fields are infinite models of finite fields). Henceforth, for all $v \notin S$ Hensel's lemma implies that the form r represents 0 in K_v for all $v \notin S$.

Since the subgroup K_v^{*2} is open in K_v^* with respect to v-adic topology, and r represents every element in the coset $c \cdot k^{*2}$ if it represents $c_v \in K_v^*$, then it follows that r represents the elements in a nonempty open subset of K_v^* . Consider any $v \in S$. Since the form (5) represents 0 in K_v , there exists $c_v \in K_v^*$ such that both forms r and $a_1X_1^2 + a_2X_2^2$ represent it. So, there exist $x_1(v), \ldots, x_n(v) \in K_v^*$ such that

$$a_1 x_1(v)^2 + a_2 x_2(v)^2 = r(x_3(v), \dots, x_n(v)) = c_v,$$

According to weak approximation theorem, we can find elements $x_1, x_2 \in K^*$ which are close enough to $x_1(v), x_2(v)$ for all $v \in S$, so that $c = a_1x_1^2 + a_2x_2^2$ is close enough to c_v to be represented by the form r.

Thus the form $cY^2 - r$ represents 0 in K_v for $v \in S$. Since r represents 0 in K_v for $v \notin S$, it represents all elements in K_v for $v \notin S$. So, $cY^2 - r$ represents 0 in K_v for all $v \in V^K$. By induction, $cY^2 - r$ represents 0 in K. It follows that q represents 0 in K.

Recall that two quadratic forms are said to be equivalent if one can be obtained from the other by an invertible change of variables.

Corollary 3. Two nondegenerate quadratic forms q and q' over a pseudoglobal field K are equivalent over K if and only if q and q' are equivalent over all the completions $K_v, v \in V^K$.

Proof. Use induction on $n = \operatorname{rank} q = \operatorname{rank} q'$ exactly as in the case of global field (cf. [9], p.150 or [10], p.209).

Corollary 4. Any nondegenerate 5-dimensional quadratic form over a pseudoglobal field K is isotropic.

Proof. Let $q = r(X_1, \ldots, X_4) - aX_5^2$. Using the local class field theory for general local field [13] it is easy to prove that a nondegenerate 4dimensional quadratic form over a general local field F (i.e. complete discrete valued field with quasifinite residue field represents every nonzero element of F. It follows that a nondegenerate 5-dimensional quadratic form over a pseudoglobal field K represents 0 over all the completions $K_v, v \in V^K$.

Corollary 5. Let A be a central simple algebra of exponent a power of 2 over a pseudoglobal field K. Then over any finite extension of K the exponent of A is equal to the index of A.

Proof. This follows from [6, Prop. 7].

Remark 6. Any pseudoglobal field is a C_2 -field (cf. [4]), and this implies Corollaries 4 and 5. Moreover, the exponent of every central simple algebra over a pseudoglobal field is equal to its index.

Let k be a field, and let X be a curve defined over k. The Brauer group $\operatorname{Br}(X)$ of X is the kernel of homomorphism $\operatorname{Br} K \longrightarrow \bigoplus_{v \in V_K} \operatorname{Br} K_v$, where K is the function field of X (cf. [11], Appendix A).

Proposition 7. Let K be a pseudoglobal field over constant field k, then the following equivalent properties hold:

i) the reciprocity law holds for K/k;

ii) for any finite cyclic extension L/K the sequence

$$\operatorname{Br}(L/K) \longrightarrow \bigoplus_{v \in V^K} \operatorname{Br}(L_w/K_v) \to [L:K]^{-1} \mathbb{Z}/\mathbb{Z} \longrightarrow 0$$

is exact;

iii) for any finite cyclic extension L/K, $H^1(\text{Gal}(L/K), \text{Br}(Y)) = 0$, where Br(Y) is the Brauer group of a smooth projective curve Y with function field L;

iv) for any finite cyclic extension L/K the map

$$K^*/N_{L/K}L^* \longrightarrow \bigoplus_{v \in V^K} K_v^*/N_{L_w/K_v}L_w^*$$

is injective;

v) $H^1(G(k), \operatorname{Jac}_C(k_s)) = 0$, where G(k) is the absolute Galois group of k, and $\operatorname{Jac}_C(k_s)$ is the Jacobian of any complete smooth curve C over k;

vi) Br(C) = 0 for any complete smooth curve C over k.

Proof. For a pseudoglobal field K/k property i) was proved in [3] as well as the equivalence of i) and iv), property iv) was also stated in Proposition 1 (i). The equivalence of i), ii), and iii) was proved in Proposition A.12 [11, p.167], and the equivalence of iv),v),vi) in Proposition A.13 [11, p.168].

Condition vi) of Proposition 7 has important applications to the quadratic forms and to the period-index problem of algebras on curves over discretely valued fields. Namely, using the results from [12] we have.

Proposition 8. Let C be a curve defined over a general local field K with pseudofinite residue field k. Let K(C) be its function field, and let $(n, \operatorname{chark}) = 1$. Let $\alpha \in \operatorname{Br}(K(C))$ be an element of order n in the Brauer group of K(C). Then the index of α divides n^2 .

Proof. i) By Proposition 7 vi) Br(C) = 0 for any smooth projective curve C defined over k. Then by [12], Theorem 3.5 the index of α divides n^2 .

On the other hand, Theorem 3.1 from [6] on quadratic forms over fields of fractions of excellent two-dimensional henselian local domains with either separably closed or finite residue field k holds also in the case of pseudofinite residue field.

Proposition 9. Let A be an excellent two-dimensional henselian local domains with pseudofinite residue field k in which 2 is invertible. Let K be the field of fraction of A, and let q be a quadratic form of rank 2 or 3 over K. Then q is isotropic over K if and only if it is isotropic over all completions of K with respect to rank 1 discrete valuations.

Proof. The only step in the proof of the corresponding result in [6] (Theorem 3.1) which uses the specific of the field K is the assertion that if certain element of exponent 2 in $\operatorname{Br}(K)$ is unramified, then it is trivial. Denoting the unramified Brauer group by $\operatorname{Br}_{nr}(K)$ we have the natural inclusions $\operatorname{Br}_{nr}(K) \subset \operatorname{Br}(X) \subset \operatorname{Br}(K)$, where X is a regular model of Awith special fiber $X_0 \to \operatorname{Spec}(k)$. By Theorem 1.3 of [6] the restriction map $\operatorname{Br}(X) \to \operatorname{Br}(X_0)$ induces an isomorphism on l-primary subgroups for any prime l different from $p = \operatorname{chark}$. Further, Proposition 7 vi) implies that $\operatorname{Br}(X_0) = 0$, so $\operatorname{Br}_{nr}(K)$ is a p-primary group. \Box

Now let us turn to the Galois group of maximal p-extensions of a pseudoglobal field. The cohomological approach for describing the Galois groups for p-extensions of local and global fields was elaborated by Koch in [8]. It is known that any group can be described in terms of generators and relations. We recall some definitions from [7] and [8].

Let p be a prime number, G be a pro-p-group, $H^n(G, \mathbb{Z}/p\mathbb{Z}) := H^n(G)$. The number of generators of G is $\dim_{\mathbb{Z}/p\mathbb{Z}} H^1(G)$. The number of relations of G is $\dim_{\mathbb{Z}/p\mathbb{Z}} H^2(G)$. Let G_K be the absolute Galois group of the field K, and $G_K(p)$ be its p-component. We denote $H^n(K) = H^n(G_K(p), \mathbb{Z}/p\mathbb{Z})$.

In particular, a pro-*p*-group G is free if and only if $H^2(G) = 0$.

Recall that a field k is called pseudo-algebraically closed (PAC) if each nonempty variety over k has a k-rational point (pseudofinite field is a perfect PAC field whose absolute Galois group is isomorphic to $\widehat{\mathbb{Z}}$). I.Efrat [7] considers the Hasse principle for Brauer group of arbitrary extension of a perfect PAC field of relative trancendence degree 1 and proves the following result.

Proposition 10. ([7], COROLLARY 3.6) Let k be a PAC field and let K be an extension of k of relative trancendence degree 1. Then the restriction homomorphism

Res:
$$H^2(K) \longrightarrow \prod_{v \in V^K} H^2(\widehat{K}_v)$$

is injective, where $\widehat{K}_v = K(p) \cap K_v^h$, K(p) is the composite of all finite Galois extensions of p-power degree, and K_v^h is a henselization of K at v.

As an immediate corollary, we have the following theorem.

Theorem 11. Suppose that K is a pseudoglobal field. Let p be a prime number. Let G be the Galois group of the maximal p-extension of K, and for $v \in V^K$ let G_v be the corresponding decomposition group. Then the restriction homomorphism defines an injective map

$$\varphi^*: H^2(G) \longrightarrow \sum_{v \in V^K} H^2(G_v)$$

Proof. It suffices to note that by Lemma 3.3 [7] the image of the restriction map $H^2(G) \to \prod_{v \in V^K} H^2(G_v)$ actually lies in $\sum_{v \in V^K} H^2(G_v)$. \Box

Corollary 12. Let w be any valuation of pseudoglobal field K, and let

$$\varphi_w^*: H^2(G) \to \sum_{v \neq w} H^2(G_v)$$

be the map induced by φ^* , where the item $H^2(G_w)$ is omitted in the direct sum. Suppose that K contains the p-th roots of 1. Then the map φ^*_w is injective.

Proof. It suffices to note that by the Hasse principle the map

$$H^2(G, \widehat{K}^*)_p \to \sum_{v \neq w} H^2(G_v, \widehat{K}^*_{\mathfrak{p}})_p$$

remains injective.

Finally, consider the maximal *p*-extensions of a pseudoglobal field with given ramification.

Let K be an algebraic function field in one variable over constant field k, S be any set of valuations of the field K. Let G_S be the Galois group of the maximal p-extension K_S of K, unramified outside S. The field K_S is the composite of all finite p-extensions of K with ramification only in the set S. To the map φ^* from Theorem 11 there corresponds the map φ_S^* : $H^2(G_S) \to \sum_{v \in S} H^2(G_v)$, induced by the morphisms φ_v^* : $G_v \to G \to G_S$. Denote the kernel of φ_S^* by III_S. The group III_S can be nontrivial, but in the case of a global field it is finite. Moreover, it is a subgroup of the finite group $B_S := \operatorname{Char}(V_S/K^{*p})$, where $V_S =$ $\{\alpha \in K^* \mid (\alpha) = \mathfrak{a}^p, \ \alpha \in k_v^p \ \forall v \in S\}$, and (α) is a principal divisor corresponding to α .

It is known [8] that in the case of a global field there is a natural embedding of the group III_S into the group B_S . Here two natural questions arise. Is there such an embedding in the case of a pseudoglobal field? Is the group III_S finite for a pseudoglobal field?

References

- J.Ax, The elementary theory of finite fields// Ann. of Math., (1968), 88, 2, 239-271.
- [2] V.Andriychuk, On the algebraic tori over some function fields // Mat.Studii, (1999), 12, 2, p.115-126.
- [3] Андрійчук В.І. Псевдоскінченні поля і закон взаємності // Матем. студії. 2, 1993, 14-20.
- [4] V.Andriychuk, On the Brauer group and Hasse principle for pseudoglobal fields // Вісник Львів. ун-ту, Серія мех.-мат. (2003), **61**, 2, с.3-12.
- [5] E.Artin, J.Tate, Class field theory. Harvard, 1961.
- [6] J.-L. Colliot-Théléne, M. Ojanguren and R. Parimala, Quadratic forms over fraction fields of two-dimensional henselian rings and Brauer groups of related schemes, Algebra, Arithmetic and Geometry, Proceedings of the Mumbai Colloquium 2000.
- [7] I.Efrat, A Hasse principle for function field over PAC fields // Israel J. Math, (2001), 122, 43-60.
- [8] H.Koch, Galoische Theorie der p-Erweiturungen // Berlin,1970. (Russian translation: Х. Кох, Теория Галуа р-расширений. Москва, Мир, 1973.)
- [9] J.Millnor, D.Husemoller, Symmetric bilinear forms. Springer-Verlag, Berlin Heidelberg New York, 1973 (Russian translation: Дж. Милнор, Д.Хьюзмоллер. Симметрические билинейные формы. Москва, Наука, 1986).
- [10] J.S.Milne, Class field theory, Course notes, http// www.jmilne.org/math
- [11] J.S.Milne, Arithmetic Duality Theorems, Academic Press, Inc. Boston, 1986.
- [12] D.J.Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc., 12, No.1. (1997), pp. 25-47; 13, No.2. (1998), pp. 125-129.
- [13] J.-P. Serre, Corps locaux. Paris, 1962.

Contact information

V. Andriychuk

Department of Mathematics and Mechanic, Lviv Ivan Franko University, Lviv, Ukraine E-Mail: v_andriychuk@mail.ru, topos@franko.lviv.ua

Received by the editors: 24.02.2004 and final form in 01.06.2004.