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ABSTRACT. A major part of Iyama’s characterization of
Auslander-Reiten quivers of representation-finite orders A consists
of an induction via rejective subcategories of A-lattices, which
amounts to a resolution of A as an isolated singularity. Despite
of its useful applications (proof of Solomon’s second conjecture
and the finiteness of representation dimension of any artinian al-
gebra), rejective induction cannot be generalized to higher dimen-
sional Cohen-Macaulay orders A. Our previous characterization
of finite Auslander-Reiten quivers of A in terms of additive func-
tions [22] was proved by means of L-functors, but we still had to
rely on rejective induction. In the present article, this dependence
will be eliminated.

Introduction

Let R be a complete regular local ring of dimension d. An R-algebra A is
said to be a Cohen-Macaulay order if gA is finitely generated and free. A
A-module M is said to be Cohen-Macaulay if g M is finitely generated and
free. The category of Cohen-Macaulay modules over A will be denoted
by A-CM. For example, if d = 0, then R is a field, and A-CM is the
category of finite dimensional modules over the artinian algebra A. For
d =1, A is an order over a complete discrete valuation ring R, and A-CM
is the category of A-lattices.
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By a theorem of Auslander [2], the category A-CM (for A Cohen-
Macaulay) has almost split sequences if and only if A is either non-
singular or an isolated singularity, i. e. if gld A, = d holds for all non-
maximal prime ideals p of R. For A representation-finite (i. e. the num-
ber of isomorphism classes of indecomposables in A-CM is finite), it is
known [2] that A-CM has almost split sequences.

Given an isolated singularity A, it is natural to ask what are the possi-
ble Auslander-Reiten quivers A(A-CM) of A-CM. In the representation-
finite case, this question has been answered for d = 0 by Igusa and
Todorov [7, 8, 9] and Brenner [4], for d = 1 by Iyama [10, 11, 12|, and for
d = 2 by Reiten and Van den Bergh [20]. There is an essential difference
between d < 2 and d > 2. Roughly speaking, the projective and injective
objects play a predominant role for d > 2. To make this precise, recall
that a sequence 74 2 9A S A of morphisms u,v of a Krull-Schmidt
category A is said to be right almost split if u is a right almost split mor-
phism, and v = kerw is a left almost split morphism. Now A is said to
be a strict T-category [10] if A has right and left almost split sequences
for each object A. For d < 2, the projective objects P of A-CM can be
characterized by 7P = 0, but in case d = 2, the projective objects of
A-mod no longer coincide with the projectives of A-CM since in that
case, A-CM has no projectives at all. This means that for all objects A,
the right almost split sequence 74 — 9A — A is left almost split, and
vice versa. Thus A-CM is a strict 7-category if and only if d < 2.

Among the dimensions d < 2, the characterization of finite translation
quivers of the form A(A-CM) has been most difficult in case d = 1.
To achieve this, a rather intensive study of 7-categories was necessary
[10, 11, 12]. Moreover, the theory of overorders had to be translated into
the language of rejective subcategories of A-CM (which were invented for
that purpose). In this way, the structure of A(A-CM) was determined
by induction via a decreasing chain of rejective subcategories, a non-
commutative analogue to a resolution of singularities. Amazingly, the
same induction led Iyama to the proof of two important conjectures in
the representation theory of algebras and orders, respectively (see [13]).

Another tool for the determination of A(A-CM) was an improved
theory of ladders, initiated by Igusa and Todorov in 1984. Originally,
starting with a suitable morphism, a step of a ladder is given by a com-
mutative square

Aipr — A

Lo

Bit1 — B;
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such that the mapping cone sequence A; 11 — A; ® B;+1 — B; is almost
split. After a series of modifications, this ultimately led to the concept
of ladder functor [22]. For a Krull-Schmidt category A, let M(.A) denote
the homotopy category of two-termed complexes (see §3). A pair of L-
functors is an adjoint pair LT 4 L~ of additive functors L*: M(A) —
M(A) together with natural transformations A*: LT — 1 and A7: 1 —
L, with additional properties (see §2). More generally, L-functors can
be defined for any additive category M instead of M(.A). If L-functors
exist for M, they are unique, and M carries a structure similar to that
of a triangulated category. Therefore, we call such a category M triadic
(52).

By definition, a left L-functor L™: M(A) — M(A) applies to any
morphism a: A; — Ag in A. Then \,: LTa — a gives rise to a pullback-
pushout square in A, which can be regarded as a step of a (generalized)
ladder. In particular, if a € ObM(A) is of the form 0 — A with A
indecomposable and non-projective, then A\, gives a commutative square

TA—=0

|1

YA — A

corresponding to the almost split sequence 74 — 9A — A. Thus L-
functors yield almost split sequences in a functorial way, and they also
apply to morphisms instead of objects A.

Using L-functors, a simplification of the statement and proof of
Iyama’s characterization of A(A-CM) for representation-finite A with
d = 1 became possible [22]. In particular, the complicated part of his
criterion could be replaced by the existence of an additive function [ > 0
on the vertices of A(A-CM).

In order to extend the characterization of A(A-CM) to dimensions
d > 2, L-functors might be useful. For arbitrary dimension d, the triadic
category M(A-CM) has L-functors if and only if A-CM has almost split
sequences [28]. However, a big obstacle came from the induction via re-
jective subcategories for d = 1. This allows no generalization to higher
dimensions since a resolution of higher-dimensional non-commutative sin-
gularities A would not be feasable. Therefore, toward a criterion for
d > 2, a fundamental step would be to eliminate that inductive rejection
in d = 1. This will be done in the present paper. As a side-effect, The-
orem 1 of |22] which was fundamental for the introduction of additive
functions, also has been dropped now. Approximately, this latter reduc-
tion eliminates half of the use of L-functors in our treatment of d = 1.

As already begun in [22], we investigate A-CM for d = 1 in a more
general setting. We define a A-lattice as a finitely presented A-module
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with no simple submodules. In this way, the classical situation is reduced
to what is really needed. In particular, no base ring of A has to be
specified. In §1, the structure of lattice categories A-CM (for d = 1) will
be characterized within this general context in category-theoretic terms.
L-functors will be introduced and applied to lattice categories in §§2 - 3.
For a Krull-Schmidt lattice category A, we show (Theorem 4) that M(.A)
has L-functors if and only if A is a strict T-category.

From §4 on, we investigate strict 7-categories A. Heuristically, this
means that we study the local structure of A, given by its Auslander-
Reiten meshes. We will assume that A is L-finite, i. e. for any object a €
M(A), the powers L*"a stabilize for n > 0. This condition holds, e. g.,
if A is equivalent to A-CM, or its universal cover (see [31, 10]), in case
A is representation-finite. To characterize A in terms of the Auslander-
Reiten quiver, we have to reconstruct its global structure from the local
mesh structure. This job will be done by the L-functors. For an object A
of A, the repeated application of L™ to 0 — A yields a cokernel P — A
with P projective, which shows that .4 has enough projectives in a strict
sense. Similarly, the kernel of a cokernel ¢ € A is obtained by applying
Lt to ¢, for n > 0 (Proposition 7). To show that every morphism in A
has a kernel, more assumptions are necessary.

We call a monomorphism m € A simple if it allows no factorization
m = ab into non-invertible monomorphisms a,b. Analoguously, simple
epimorphisms are defined. For an L-finite strict 7-category A, a simple
monomorphism is either epic or a kernel. If it is epic, it need not be
a simple epimorphism. We show that equality of the classes of simple
monomorphisms and simple epimorphisms among the monic and epic
morphisms establishes a duality between projectives and injectives in A.
This condition holds, e. g., when the Auslander-Reiten quiver of A admits
an additive function [ > 0 (Proposition 9). For a lattice category, such an
[ is given by the rational rank. If, in addition, A satisfies ()7—; Rad"A =
0, we prove (Theorem 5) that A has all the relevant global properties
of A-CM in case d < 1. In particular, Theorem 5 implies that A is
noetherian in a strong sense (Corollary 1). As a further consequence,
we get the above mentioned characterization of finite translation quivers
arising as Auslander-Reiten quivers of A-CM for a Cohen-Macaulay order
A over a complete discrete valuation ring (Corollary 3).

1. Categories of lattices

Let A be any ring (associative with 1). By A-mod we denote the category
of finitely presented left A-modules. A module F € A-mod is said to be a
A-lattice |23] if E has no simple submodules. For example, if A is an order
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over a Dedekind domain R (see [19]), then A-lattices are just what they
ought to be. Therefore, we denote the full subcategory of A-lattices in
A-mod (for any ring A) by A-lat. An additive category .A equivalent to a
category A-lat with A left noetherian will be called a left lattice category.
We call A a right lattice category if A°P is a left lattice category. If A
is a left and right lattice category, we simply speak of a lattice category
A. In the particular case where A is an R-order, the duality functor
E — Homy (F, R) provides an equivalence

(A-lat)°P ~s A°P_lat, (1)

which shows that A-lat is in fact a lattice category. In this section, we
will give an intrinsic characterization of lattice categories.

A morphism in an additive category A is said to be regular if it is
monic and epic. We say that A has a quotient category, denoted by Q(A),
if the regular morphisms admit a calculus of left and right fractions [5].
Thus if Q(A) exists, it has the same objects as A, and the morphisms
of Q(A) are formal fractions fr—! = s"lg with r, s regular and sf = gr.
Moreover, there is a faithful embedding

A = Q(A) (2)

which respects kernels and cokernels of morphisms.

Recall that a short exact sequence A B % C in A is defined by
the property a = kerb and b = coka. By ~ (resp. —) we indicate that
a morphism is a (co-) kernel. An object P of A is said to be projective
if for each cokernel ¢: B — C, every morphism P — C factors through
c. An object C of A will be called a covering object if every E € Ob A
admits a cokernel C™ — E for some n € N. The dual notions of injective
or cocovering objects are defined analoguously. The full subcategories of
projective (injective) objects will be denoted by Proj(.A) (resp. Inj(A)).
An additive category A is said to be preabelian if every morphism of A
has a kernel and a cokernel.

Proposition 1. For a preabelian category A, the following are equivalent.

(a) If a composition fg is a cokernel, then f is a cokernel.

(b) For given A So L B, the morphism (c f): A® B — C is a
cokernel.

(¢) EBvery composition fg of cokernels f,g is a cokernel.

d) If f: A5 E % B is a morphism with ¢ = cok(ker f), then d is

monic.
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1
Proof. (a) = (b): Consider the composition ¢: A @ AeB 1)

(b) = (c): Let f: B — C be the cokernel of d: D — B, and g:
A — B. Then property (b) implies that there is a pushout

e fg

Hence fg = coke.

(¢c) = (d): Suppose that dg = 0. Then d factors through e := cok g,
and there exists a morphism h with ec = cok h. Hence fh = 0. Therefore,
h factors through the kernel of f, and thus ch = 0. Consequently, ¢ =
cok h, whence e is invertible. So we get g = 0, which shows that d is
monic.

(d) = (a): Consider a factorization f = dc with ¢ = cok(ker f) and
d monic. Assume that fg = cokh. Since d is monic, this implies that
cgh = 0. So cg factors through fg. Therefore, d is split epic, hence
invertible. U

A preabelian category A which satisfies the equivalent properties of
Proposition 1 is called left semi-abelian |21]. By [21], Proposition 1, a
preabelian category A is left semi-abelian if and only if for any pullback

A—a>B

b Lc (3)
d

C——D

in A where d is a cokernel, the morphism a is epic. In [21] we called the
preabelian categories A where a is even a cokernel for all such pullbacks
(3) left almost abelian. Several authors use the term “quasi-abelian” in-
stead of “almost abelian” [30, 29, 3]. Following this trend, we replace
“left almost abelian” by “left quasi-abelian” in what follows. If A and A°P
(resp. A°P) is left quasi-abelian, we call A (right) quasi-abelian. Similarly,
we define (right) semi-abelian. We are grateful to Y. Kopylov for pointing
out to us that the term “quasi-abelian” dates back to R. Succi Cruciani’s
paper [30] of 1973. There is also a Russian tradition [16, 17, 18, 15| that
calls quasi-abelian categories “(Raikov-)semi-abelian”.

Proposition 2. Let A be a preabelian category, such that every object A
admits a cokernel P — A with P projective. Then A is left quasi-abelian.
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Proof. Consider a pullback (3) where d is a cokernel. By assumption,
there is a cokernel p: P — B with P projective. Hence cp factors through
d, and the pullback property implies that p factors through a. Thus a is
a cokernel by Proposition 1. O

By [21], Proposition 6, a semi-abelian category A has a quotient cat-
egory if and only if for each pullback (3) with d epic, the morphism a is
also epic. Semi-abelian categories with this property (i. e. that epimor-
phisms are stable under pullback) are called integral [21]. For an integral
category A, the quotient category Q(A) is abelian. Examples of quasi-
abelian and integral categories are abundant (see [21], §2). We will see
below that lattice categories are integral and quasi-abelian.

An additive category A is said to be noetherian if for each object
of A, the subobjects satisfy the ascending chain condition. We call A
bi-noetherian if A and A°P are noetherian. Assume that every kernel or
cokernel can be completed to a short exact sequence, and that condition
(a) of Proposition 1 together with its dual is satisfied. (Then (c) of
Proposition 1 follows.) This holds, for example, when A is semi-abelian.
Define the rational length p(A) € NU {co} of an object A € Ob A as the
supremum of all n € N for which there exists a chain

0:A0>a—1>A1>a—2>-":1—n>An:A (4)
of non-invertible kernels aq,...,a, € A. According to our assumption,

this definition is self-dual, i. e. the sequence of kernels (4) can be replaced
by a sequence of cokernels A — --- — 0. If A is integral, then [25],
Proposition 2, implies that the rational length of an object A € Ob A is
equal to p(A) in the abelian category Q(A). We call A € Ob A irreducible
if p(A) = 1. A chain (4) with Cok a; irreducible will be called a rational
composition series of A. Thus if A is integral, every rational composition
series (4) is of length n = p(A). For a regular morphism r € A, we define
the length p(r) € NU {oco} as the supremum of all n € N for which r
can be written as a composition r = r; -- -, into non-invertible regular
morphisms r;. We say that r has a composition series if a factorization
r=ry---r, with p(r;) = 1 exists. If A is integral and quasi-abelian, then
every composition series of r is of length p(r) by [24], Proposition 2.

Proposition 3. An integral quasi-abelian category A is bi-noetherian
if and only if its objects have finite rational length, and every regular
morphism has finite length.

Proof. Assume first that A is bi-noetherian. For any non-zero object A,
there exists a maximal subobject a1: Ay — Ag with a; non-invertible.
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Thus a; is a kernel with p(Coka;) = 1. By induction, we get a sequence

Ap & Aq & As & ... of kernels with p(Coka;) =1 for all i. So there
are commutative diagrams

A; ~ Ao o

I

Ai—l — A() — Ci—l

for all i. Since A°P is noetherian, we infer that A, = 0 for some n >
1. Hence p(Ag) = n < oo. A similar argument shows that regular
morphisms of 4 have finite length. Conversely, assume that p(A) < oo
and p(r) < oo for all A € Ob A and all regular € A. Consider a strictly
increasing sequence Ag < A1 < Ay < --- of subobjects of A € Ob A.
Since p(A) < o0, almost all monomorphisms A; — A;+1 must be regular.
Therefore, the sequence cannot be infinite. O

For a quasi-abelian category A, we define the initial category [21] as
the full subcategory A, of objects D of A such that every monomorphism
D" — D is a kernel. The full subcategory A° of A with (A°)°P = (A°P),
is called the terminal category of A. By [21], Proposition 8, the categories
Ao and A° are abelian. Now we are ready to prove

Theorem 1. An additive category A is a lattice category if and only if
the following are satisfied.

(a) A is preabelian with a projective covering object P and an injective
cocovering object I.

(b) A has a quotient category.
(c) A is bi-noetherian.
(d) Ao = A° =0.

Proof. Assume that A = A-lat with A left noetherian. Then A is pre-
abelian and noetherian, and there is a hereditary torsion theory (7, A-lat)
in A-mod, where 7 is the class of length-finite A-modules. By [21], Theo-
rem 2, this implies that 4 is integral, whence (b) holds. Moreover, there
is a short exact sequence Ag — A — P in A-mod with Ag € 7 and
P € A-lat. Thus P is a projective covering object. For any non-zero
A-lattice F, there is a maximal A-submodule F'. Therefore, if £ € A,
then ¢: F — FE is a kernel in A-lat. But the cokernel of ¢ in A-lat is
zero, a contradiction. Thus A, = 0. By symmetry, this proves that every
lattice category satisfies (a)-(d).
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Conversely, let (a)-(d) be satisfied. By Proposition 2, this implies that
A is quasi-abelian. By [24], Proposition 11, we have Q;(A) &~ A-mod,
where A := End4(P)°P, and Q;(A) denotes the left abelian cover [21]
of A. From |[21], Theorem 2, we infer that there is a torsion theory
(R(A),F) in A-mod with F ~ A, such that a finitely presented A-
module M belongs to R(.A) if and only if there exists a regular morphism
r € F with M = Cokr in A-mod. By (d), every simple A-module
belongs to R(A). Moreover, A is integral by (b). Therefore, the regular
morphisms are essentially monic and essentially epic. Hence (c) implies
that R(A) is the full subcategory of length-finite modules in A-mod.
Thus A ~ F = A-lat with A left noetherian by (c). O

As a consequence of Theorem 1 and Proposition 2, we get
Corollary. Every lattice category is integral and quasi-abelian.

Remark. If (d) in Theorem 1 is replaced by A, = A° = A, then
the conditions (a)-(d) characterize a category A which is equivalent to
A-mod ~ (I'-mod)°? with A, T" left artinian. This can be regarded as the
0-dimensional analogue of a lattice category.

2. L-functors

In this section we review the basic theory of L-functors, as far as needed
for our present purpose. Functors between additive categories are always
assumed to be additive. Let M be an additive category. For a full
subcategory C of M, a morphism ¢: a — b of M is said to be C-epic
(C-monic) if every morphism ¢ — b (resp. a — ¢) with ¢ € C factors
through ¢. By [C] we denote the ideal of M generated by the identity
morphisms 1., ¢ € ObC. If M/|[C] has a quotient category, we say that
Mec = Q(M/[C]) ezists. For a class ¥ of morphisms, let Pr¥ (resp.
In¥) denote the largest full subcategory C of M such that every ¢ €
is C-epic (C-monic).

Assume that Mg exists. For a morphism o € M, we denote the (co-)
kernel of & in Mg by kerca (resp. cokear) and call this a local (co-)kernel.
As a counterpart, we call o € M a global kernel of 3 € M¢ if fa =0
holds in Mg, and for each o/ € M with 3¢’ = 0 in M¢ there exists
a unique v € M with ay = /. By this universal property, the global
kernel and its dual, the global cokernel, are unique up to isomorphism.
We write a = ker®( (resp. cok®) for the global (co-)kernel of 3.

We call an object s of M left (right) semisimple if every monomor-
phism a — s (epimorphism s — a) splits. The full subcategory of left
(right) semisimple objects is denoted by S;(M) (resp. S,(M)), and the
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objects of S(M) = S;(M) N S, (M) will be called semisimple. Note
that for a module category M, the semisimple objects coincide with the
semisimple modules ([1], Theorem 9.6).

Definition 1. Let M be an additive category. By X we denote the
class of regular morphisms which are S;(M)-epic and S, (M)-monic. The
morphisms in 3 will be called (absolutely) exact. We call M (absolutely)
triadic if the following are satisfied for P := Pr¥ and Z :=In 3.

(T1) Mp and M7z exist and are abelian, Mp has enough projectives,
and M7 has enough injectives.

(T2) Every morphism in Mp (resp. Mz) has a global (co-)kernel.
(T3) Every global kernel is a global cokernel, and vice versa.

Remark. By [28], Corollary of Theorem 1, the global kernels in M coin-
cide with the exact morphisms. In [28], we define a triadic category with
respect to arbitrary full subcategories P,Z of M. Then it can be shown
that Pr3 C P and InX C Z. Thus in the absolute case of Definition 1,
P and I are as small as possible. In the wider sense of [28], every ad-
ditive category M is triadic with respect to the pair P =7 = M. The
reason why we introduced triadic categories for arbitrary P and I comes
from the observation that they naturally arise in the study of orders over
a two-dimensional reqular ring.

By [28], Theorem 1, we have

Theorem 2. Let M be a triadic category. There is an equivalence T':
Mp = Mz such that every exact morphism (3 can be completed to a
triad [28], i. e. a sequence

Td oL e g (5)

with o = kerzf3, v = cokpf3, and f = cok?a = ker”~, such that each
commutative diagram Y3 = ['x with exact B’ induces a morphism of
triads

Td—L s c >~ d
Td sy NN

Remark. Using (T2), Theorem 2 implies that every epimorphism ~ €
Mp, and every monomorphism o € Mz can be extended to a triad (5).
Moreover, each of the commutative squares in (6) extends to a morphism
of triads.
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Recall that a pointed functor [14] of M is defined as a functor L™:
M — M together with a natural transformation A™: 1 — L~. Du-
ally, we define an augmented functor of M as an endofunctor L™ with
a natural transformation A™: LT — 1. For an augmented or pointed
functor L*, let PrL* (resp. InL*) denote the largest full subcate-
gory C of M such that AF is C-epic (resp. C-monic) for every a €
Ob M. For an adjoint pair of endofunctors L™ - L~ with adjunction
®: Hom (LT a,b) =~ Hompq(a, L™b), an augmentation A\*: LT — 1 of
Lt makes L~ into a pointed functor via A\; = ®(\}). In other words,
the right adjoint of an augmented functor is pointed, and the left adjoint
of a pointed functor is augmented. If M is triadic, we define a left triadic
functor of M as an augmented functor L*t: M — M such that A} is
exact for all a € Ob M. Thus if LT is left triadic, every object a of M
gives rise to a triad

+
TSa 2% Lta 2% o ™ Sa (7)

with a functor S: M — Mp. Dually, a pointed functor L~ of M with
A, exact for all a € Ob M will be called right triadic.

a

Definition 2. Let M be a triadic category. We define a left L-functor of
M as a left triadic functor LT: M — M such that the inclusions Pr Lt C
PrY, InL"™ C InX¥ hold, and Sa is semisimple for every a € Ob .M.
Dually, a pointed functor LT of M will be called a right L-functor if it
induces a left L-functor M — M°P. We say that an additive category
has L-functors if it is triadic and admits a left L-functor L* and a right
L-functor L~.

By [28], Proposition 15, we have

Theorem 3. If an additive category M has L-functors, then LT is left
adjoint to L. The right adjoint of a left L-functor is a right L-functor,
and vice versa. A left or right L-functor of a triadic category is unique,
up to isomorphism.

3. L-functors for lattice categories

Now we will show how triadic categories arise in the context of lattice
categories. Let A be a Krull-Schmidt category, i. e. an additive category
such that every object of A is a finite direct sum of objects with local en-
domorphism rings. The ideal Rad A of A generated by the non-invertible
morphisms between indecomposable objects is called the radical of A.
Let Mor(A) be the category of two-termed complexes 0 — A; % Ay — 0
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in A. So the objects of Mor(A) can be regarded as morphisms a € A,
and the morphisms in Mor(A) are tantamount to commutative squares
in A. If we identify A € Ob A with the identity morphism 14 € Mor(A),
then A becomes a full subcategory of Mor(A), such that the ideal [A]
of Mor(A) consists of the morphisms ¢: a — b in Mor(.A) which are
homotopic to zero. Since every morphism f € A has a decomposition
f = e @ r into an isomorphism e and some r € Rad A, the factor cat-
egory Mor(A)/[A] is equivalent to its full subcategory M(A) of objects
A % A with a € Rad A. For any A € Ob A, there are two corre-
sponding objects AT: 0 — A and A7: A — 0 of M(A). So we get two
equivalences ( )*: A =~ AT and ( )7: A = A" between A and full
subcategories of M(.A).

A morphism f: A — B in A is said to be right almost split if f €
Rad A, and every morphism A’ — B in Rad A factors through f. If f is
right almost split in A°P, then f is called left almost split. A sequence

TA S 9A 1A A (8)

in A is said to be right almost split if u 4 is right almost split, and v4 =
keruy is left almost split. Note that a right almost split sequence (8) is
uniquely determined by the object A, up to isomorphism. Similarly, a
sequence

ut vA
A— I A—>71 A (9)

is said to be left almost split if it is right almost split in A°P. A Krull-
Schmidt category A with left and right almost split sequences for all
A € Ob A is called a strict T-category [10].

To each strict T-category A, a (valued) translation quiver A(A) can
be associated as follows. The class of vertices of A(A) is given by a
representative system ind A of the isomorphism classes of indecomposable
objects in A. For A, B € ind A, let dap be the multiplicity of A in
a direct decomposition of JB, and d’yp the multiplicity of B in 9~ A.
Then there is an arrow A — B with valuation (dap,d’z) whenever
dap # 0 (or equivalently, dy5z # 0). The translation quiver A(A) is
called the Auslander-Reiten quiver |10] of A. Iyama [10] has shown that
A(A), together with its natural modulation, determines the associated
completely graded T-category of A up to equivalence.

Proposition 4. Let A be a lattice category with the Krull-Schmidt prop-
erty. For every indecomposable projective object P, there exists a unique
mazimal subobject VP < P.
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Proof. Since A is noetherian, there exists a maximal subobject E < P.
Assume that there is a different maximal subobject F' < P. The corresop-
nding monomorphisms £ — P « F induce a morphism g: £ & F — P.
Since A is semi-abelian, g has a decomposition g = mgq with m monic
and g a cokernel. Thus m defines a subobject of P which contains F and
F. Hence m is invertible. Since P is projective with End4(P) local, we
infer that either E — P or F' — P is split epic, a contradiction. O

Remark. Let P = P, @ --- ® P, be any projective object in a Krull-
Schmidt lattice category, with P; indecomposable.  Then the monomor-
phisms up,: VP; — P; define a monomorphism up: 9P — P such that

0 — 9P 25 (10)

s a right almost split sequence. By duality, every injective object I of A

I
gives rise to a left almost split sequence T — 9~ I — 0.

Proposition 5. Let A be a lattice category with the Krull-Schmidt prop-
erty. An object of M(A) is left semisimple if and only if it is isomorphic
to up ® E~ for some projective object P, and an arbitrary object E of A.

Proof. Let a: Ay — Ap be a left semisimple object in M(.A). Then there

is an exact square
A— Ay

S
P —= Ay
with P projective. By [22], Proposition 2 and its dual, this represents a
regular morphism : p — a in M(A). Hence ¢ is split monic, and thus

invertible. Therefore, f is invertible, which shows that Ay is projective.
Now the proof can be completed as in the proof of [27], Proposition 8. [

Recall that a commutative square (3) is said to be ezact if it is a
pullback and a pushout. Proposition 5 allows us to determine the exact
morphisms (see Definition 1) of M(.A).

Proposition 6. Let A be a lattice category with the Krull-Schmidt prop-
erty. Then M(A) is triadic. A morphism ¢: b — ¢ in M(A), given by a
commutative square (3), is exact if and only if (3) is an exact square.

Proof. Assume that b — ¢ is exact. By Proposition 5, this implies that
¢ is A= -epic. Hence (3) is exact by [22]|, Proposition 2. Conversely, let
¢ be given by an exact square (3). Then ¢ is A -epic and AT -monic
by [22], Proposition 2. Hence ¢ is exact by Proposition 5 and its dual.
Now [28], Corollary 2 of Theorem 3, implies that M(A) is triadic. O
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Theorem 4. Let A be a lattice category with the Krull-Schmidt property.
Then M(A) has L-functors if and only if A is a strict T-category.

Proof. This follows by Proposition 4 and the above remark, and Propo-
sition 6 together with [28], Theorem 5. O

4. L-finiteness

For a strict 7-category A, the homotopy category M(A) need not be
triadic. Nevertheless, by [22], §3, there exists an augmented functor L*:
M(A) — M(A) with a right adjoint L~ such that L* become L-functors
when A is triadic. An object a of M(A) belongs to Pr L™ (resp. PrL™)
if and only if AT (resp. A;) is invertible. Therefore, we call A left (right)
L-finite if for each a € ObM(A), there is an integer n € N such that
Lt"aq € PrL* (resp. L™"a € InL™). If A is left and right L-finite, we
just say that A is L-finite. Thus if A is left L-finite, every a € ObM(A)
gives rise to an exact square

B - A
lb a (11)
P P — Ap

with b = L™"a € Pr LT. Hence 7P = 0.

Proposition 7. Let A be a left L-finite strict T-category. Then every
cokernel has a kernel, and for each A € Ob A, there is a cokernel P — A
with P projective. An object P of A is projective if and only if TP = 0,
and a morphism of A is a cokernel if and only if it is Proj(.A)-epic.

Proof. If we set Ay = 0 in (11), we get a short exact sequence B —
P — Ay with 7P = 0. The proof of [22]|, Theorem 3, shows that P is
projective. Therefore, [22], Proposition 11, implies that the projective
objects P are characterized by the property 7P = 0. Thus if a in (11)
is a cokernel, then p factors through a, which implies that b is split epic.
Since b € Rad A, we infer that P = 0, whence ¢ = kera. Finally, let b:
B — C be Proj(A)-epic. Consider a short exact sequence C’ Spto
and a cokernel ¢: @ — B with P,Q projective. Then bq = pd for some
d: Q — P, and it is easily verified that (b p): B® P — C is a cokernel
of <:1d g): Q@ C" — B @ P. Hence (b p) has a kernel, which gives an
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exact square

E—Ssp

L)
b

B —— C.
Hence p factors through b, and the pullback property implies that e is split
epic. Since idempotents split in .4, we infer that e has a kernel g: K — FE.
Thus by the pushout property of (12), it follows that b = cok(fg). O

Proposition 7 shows that the short exact sequences of an L-finite strict
T-category A make A into an Ext-category (see [28]), that is, an exact
category with enough projectives and enough injectives such that every
split epimorphism has a kernel.

Corollary. Let A be an L-finite strict T-category. Then M(A) has L-
functors.

Proof. By [22]|, Proposition 2, and [27], Proposition 8, a morphism in
M(A) is exact if and only if it corresponds to an exact square in .A.
Therefore, the corollary follows by [28], Theorem 5 and Corollary 2 of
Theorem 3. ]

Remark. By [22/, §6, and [10], §7, it follows that whether a strict T-
category A is L-finite can be read off from the Auslander-Reiten quiver
A(A). For the rest of this section, we will derive further consequences

of L-finiteness. Since A(A) = A(A/ (2, Rad"A), we eventually assume
that ;2 Rad" A = 0.

Lemma 1. Let A be a Krull-Schmidt category with a commutative dia-
gram,

B+ 4
b Ia
6,

J —— 1.
Assume that e is split monic, J injective, and cokb € Rad A. Then every

retraction of e can be lifted to a retraction of €.

Proof. If fe = 1, then there is a morphism f: I — J with f'a = bf.
Hence (1 — f’¢’)b = 0, and thus 1 — f’¢’ € Rad.A. Therefore, f'e’ is
invertible, and it follows easily that (f’e¢’)~!f’ is the desired lifting. O

Lemma 2. Let A be an L-finite strict T-category with (),—; Rad"A = 0.
Then every object A of A admits a rational composition series.
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Proof. By duality, it is enough to show that an infinite strictly ascending
sequence Ag < Ay < --- of subobjects A; — A cannot exist. We may as-
sume, without loss of generality, that A is injective. Suppose first that A
is indecomposable. Then all A; are indecomposable by Lemma 1. There-
fore, the inclusions A; — A;+1 are in Rad A, whence Ay ~— A belongs
to (2, Rad" A, a contradiction. Now let A be decomposable. Since
M., Rad™ A = 0, there exists an integer n € N such that A, — A; does
not belong to Rad A for all i > n. Hence there exists an indecomposable
direct summand B of A,, such that the composition e;: B »— A, ~— A; is
split monic for all ¢ > n. So there are commutative diagrams with short

exact rows
€n

B - A, Ch

€;

B > Az 7T CZ

b Ci
e A A
J - A C,

with J injective and cok b € Rad A, where all the e; are split monic. The
lifting e of e, is split monic by Lemma 1. Moreover, Lemma 1 implies that
every retraction of e; lifts to a retraction of e. Therefore, the ¢; are kernels.
So we get an infinite strictly ascending sequence C,, < Cpy1 < --- of
subobjects C; — C'. By induction, this leads to a contradiction. U

Lemma 3. Let A be a left L-finite strict T-category. If a pullback is made
up of two commutative squares

) e

A E ~ B
lb Lg lc (13)
c—L,F f - D,

where the left-hand square is exact, then the right-hand square is a pull-

back.

Proof. Let z: Z — E be a morphism with ez = gz = 0. Since the left-
hand square is a pullback, there is an z: Z — A with iz = z and bz = 0.
Hence (fl)x =0, and thus = 0. So we get z = 0.

Next let p: P — B and ¢: P — I be morphisms with ¢p = fq.
Assume first that P is projective. Since the left-hand square is a pushout,

there are morphisms p’: P — F and ¢': P — C with ¢ = gp’+jq'. Hence
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c(p—ep') = fj-q¢. So we get a morphism h: P — A with p—ep’ = eih
and ¢’ = bh. Thus I/ := p’ + ih satisfies p = eh’ and g = gh’. Now let P
be non-projective. Then there is a cokernel r: () — P with @ projective,
and we get a morphism h”: QQ — E with pr = eh” and qr = gh”. Hence
eh” and gh” annihilate the kernel k of r. Consequently, h’k = 0, and
thus A" = h'r for some h': P — E. So we get p=eh’ and ¢ =gh'. O

Let A be an L-finite strict 7-category. For a monomorphism A —
B, let B/A denote the poset of subobjects E of B with A < E < B.
Then every exact square (3) with monomorphisms a,d gives rise to an
isomorphism of posets B/A = D/C. In fact, if E € B/A is given, then
the corresponding F' € D/C' is obtained via (13) by taking the pushout
of i and b. By Lemma 3 and its dual, this correspondence E +— F' is
bijective.

Let us call a monomorphism A — B simple if B/A has exactly two el-
ements. Dually, we call an epimorphism simple if it is a simple monomor-
phism in A°P.

Proposition 8. Let A be an L-finite strict T-category. A morphism a:
Ay — Ag is a cokernel if and only if there exists no factorization a = me
with a stmple monomorphism m.

Proof. Assume that a is not a cokernel. By Proposition 7, there ex-
ists an exact square (11) with P projective and b = wupd for some d:
B — 9P. Since ug is a simple monomorphism for any indecomposable
direct summand @ of P, there exists a factorization b = st with a simple
monomorphism s. By Lemma 3, the pushout of ¢ and ¢ yields an exact

square
D—+F

ls \Lm
P— A

with a simple monomorphism m such that a factors through m. Con-
versely, let a = me be a cokernel with m monic. Then e factors through
a. Thus m is split epic, hence invertible. Il

Corollary. Let A be an L-finite strict T-category. A simple monomor-
phism m: A — B is either epic or a kernel.

Proof. Suppose that fm = 0 with f # 0. We show that m = ker f.
Assume that fg = 0. Since (g m) is not a cokernel, it factors through a
simple monomorphism. Hence ¢ factors through m. O
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5. The dualizing property

Let A be an L-finite strict 7-category. For any simple monomorphism
a: Ay — Ap in A, there is an exact square (11) with b = up for some
indecomposable projective P. If a € Rad.A, we may regard (11) as
an exact morphism in M(A). Since up € PrL*, we necessarily have
up & L™"a for n > 0. Therefore, up to isomorphism, P is uniquely
determined by a.

Definition 3. Let A be a strict 7-category. A function I: Ob A — N is
said to be additive if for A, B € Ob A4,

(A B) = I(A) + I(B) (14)
1(A) = I(WA) — (T A) = (9~ A) — I(r—A). (15)

If [((A) > 0 for A # 0, then we write [ > 0. We say that A is dualizing if
there is a one-to-one correspondence between the isomorphism classes of
indecomposable projective P with up epic and the isomorphism classes
of indecomposable injective I with u! monic, given by an exact square

9P I
\LUP Lul (16)
P 9 1.

Assume that A is L-finite. Then the correspondence (16) is explic-
itly given by up = LT"u! and w! = L="up for n > 0. Therefore, the
dualizing property merely depends on the Auslander-Reiten quiver A(.A)
(cf. [10], §7). An additive function I: Ob.A — N admits a natural exten-
sion to Ob M(A). Namely, for an object a: A1 — Ay of M(A), we define
l(a) :== 1(Ag) — I(A1). Thus I(AT) > 0 and {(A™) < 0. Moreover, we
have [(L*ta) =I(L™a) = I(a) for all a € Ob M(A).

For an indecomposable projective P € Ob A, the monomorphism up
is obviously simple. Assume that up is epic (which happens, e. g., if Ais a
lattice category), and let us try to prove that up is a simple epimorphism.
For a factorization up = ab, there are two possibilities. If a € Rad A,
then b is invertible. Otherwise, a is split epic. So b is a regular morphism
of the form b: YP — P & C. For lattices over an order, of course, this
is not possible, unless C' = 0. The reason is that the rational rank of
lattices is an additive function.

Proposition 9. For an L-finite strict T-category A, the following are
equivalent.
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(a) A is dualizing.

(b) A regular r € A is a simple monomorphism if and only if it is a
simple epimorphism.

If A has an additive function I > 0, then A is dualizing.

Proof. The equivalence (a) < (b) follows by the above. Assume that A
has an additive function [ > 0. We show that up is a simple epimorphism
for any indecomposable projective P. By the dual of Proposition 8, there
is a factorization up = ab with a simple epimorphism b. If a € Rad A,
then a has a factorization @ = upc. Hence up(l — ¢b) = 0, and thus
ch=1,a contradiction So we infer that a is of the form a: P& C — P.
Since l( ) = 1(L7"b) = I(u!) = 0 for n > 0 and some injective I, we get
I(C™)=1(a) =1(up) — I(b) = 0. Hence a is invertible. O

Lemma 4. Let A be an L-finite dualizing strict T-category. If a morphism
c: A — C does not factor through a regular morphismr: A — B of length
1, then there is an exact square

C

l (17)

D

with p(r') = 1. A regular f € A is a simple epimorphism if and only if
p(f) =1.

Proof. Assume first that r is a simple epimorphism. If ¢ does not factor
though 7, then the dual of Proposition 8 implies that (ﬁ) is a kernel. Hence
there exists an exact square (17) with a simple epimorphism /. Now let
f: E — B be a regular morphism with p(f) = 1. By Proposition 9, it
remains to show that f is a simple monomorphism. By Proposition 8,
there exists a factorization f = rs with a simple monomorphism r. We
show that s is epic. Thus let ¢ be a morphism with ¢s = 0. If ¢ factors
through 7, then ¢ = 0 since rs is regular. Otherwise, by Proposition 9,
the above argument yields a commutative diagram (17) with a simple
monomorphism /. Thus df = drs = r’cs = 0, and therefore, d = 0.
Hence 7'¢ = 0, which gives ¢ = 0. This shows that r,s are regular,
whence s is invertible. OJ

———>-

D<=

d
L

Lemma 5. Let A be an L-finite dualizing strict T-category. If B is an
irreducible object and r: A — B a simple monomorphism, then p(A) < 1.
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Proof. If r is not regular, then r is a kernel by the Corollary of Proposi-
tion 8. Then A = 0. So let r be regular, and let ¢: A — C be a cokernel.
Then Lemma 4 yields a commutative diagram (17) with 7’ regular and
p(r) < 1. If p(r') = 0, then d is a cokernel, whence C' = D = (. Oth-
erwise, we may assume that (17) is exact. Then d = cok(r - ker¢), and
thus d is invertible. Hence c is invertible. O

Lemma 6. Let A be an L-finite dualizing strict T-category with
N.—,;Rad"A = 0. Every non-zero morphism f: A — B with B irre-
ducible admits a factorization f = rc with a cokernel ¢ and a regular
morphism r having a composition series.

Proof. If f is not a cokernel, then Proposition 8 yields a factorization
f = rif’ with a simple monomorphism r;: By — B. By Lemma 5,
p(B1) = 1. So we can apply the same argument to f/, which leads to a
strictly decreasing sequence B > By > By --- of subobjects. As the B;
are irreducible, the inclusions B;11 — B; belong to Rad . A. Therefore,

we end up with a factorization f: A S B, = B, where r is regular with
a composition series of length n. O

Now we are ready to prove our main theorem.

Theorem 5. Let A be an L-finite dualizing strict T-category with
Moo, Rad" A =0. Then A is a bi-noetherian integral quasi-abelian cate-

gory.

Proof. Let Ag < A; < --- be a strictly increasing infinite sequence of
subobjects of A. If A is irreducible, then Lemma 6 implies that the
inclusions A; — A are regular with a composition series. Therefore, the
A; with ¢ > 1 are irreducible by Lemma 5. So the inclusions A; — A;11
belong to Rad A, whence 49 — A is in (),—; Rad"A, a contradiction.
Now we proceed by induction. By Lemma 2, there exists a rational
composition series 0 — ---»— B »— A. This gives a short exact sequence
B — A — C with C irreducible. If A; < B for all i, we are done.
Otherwise, the composition p;: A; — A — C is non-zero for some n € N.
By Lemma 6, p; = 7;¢; with a cokernel ¢; and regular ;. So there are
commutative diagrams

B; ‘Al’

] l N

BJ>—>A]4C>»

<.
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with short exact rows and monic vertical morphisms for n < ¢ < j. By
the inductive hypothesis, the ascending sequences of subobjects B, <
Bpt1 < --- < Band C, < Chy1 < --- < C become stationary, i. e.
B; = B;y1 and C; = ;41 for some ¢ > n. Taking a cokernel P — A;11
with P projective, it follows easily that the left-hand square in (18) with
j =i+ 11is a pushout. Hence A; = A;y1, a contradiction. By duality,
this proves that A is bi-noetherian.

Next let f: A — B be any non-zero morphism in A. Consider a

rational composition series 0 — --- — D >i B, and let ¢: B — C be
the cokernel of d. Then C' is irreducible. We shall prove, by induction,
that f has a kernel. By Lemma 6, there is a factorization cf = rc¢’ with a
cokernel ¢’ and a regular morphism 7. This gives a commutative diagram

et A

b A

Dr rB rfC

with exact rows. By our inductive hypothesis and Lemma 6, there is a
kernel k: K »— D’ of g. Now it is easily verified that d’k = ker f. By
duality, this shows that A is preabelian, hence quasi-abelian by Proposi-
tion 2.

Since A is bi-noetherian, it follows that regular morphisms have a
composition series. By Lemma 4 and [21], Proposition 6, this implies
that A is integral. O

Let us call an additive category A strongly noetherian if the category
mod(.A) of coherent functors A°® — Ab is abelian and noetherian. (For
equivalent descriptions of mod(.A), see [21], and [28]|, Proposition 5.)
More explicitly, this property can be expressed as follows. A non-empty
class ¥ of morphisms f: Ay — A in A is said to be an (additive) sieve [6]
of Aif for f,g € X, the morphism (f g): Af®A, — A and each composite
morphism fh with h € A belongs to ¥. Now A is strongly noetherian
if and only if every sieve X of any object of A is principal, i. e. every
morphism in Y factors through a fixed f € 3. We call A strongly bi-
noetherian if A and A°P is strongly noetherian. For example, a ring R
is left noetherian if and only if the category R-proj of finitely generated
projective left R-modules is strongly noetherian. .4 will be called a strong
lattice category if A ~ A-mod ~ (I'-mod)°? with A, T noetherian.

Corollary 1. Let A be an L-finite dualizing strict T-category with
MNo—;Rad" A =0. Then A is strongly bi-noetherian.
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Proof. Let ¥ be a sieve of A € Ob.A. Since A is semi-abelian, every f:
Ay — Ain ¥ admits a factorization f = mycy with a cokernel ¢y and a
monomorphism my. Since A is noetherian, there exists an h € ¥ such
that every f € X factors through my: B — A. Therefore, replacing A by
B, we may assume, without loss of generality, that there is a cokernel fy €
Y. By |22], Corollary of Proposition 9, there exists an integer n € N such
that every morphism f: Ay — A in Rad"A belongs to [Proj(.A)], and
thus factors through fo. Now we construct a finite sequence fo, fi,..., fm
in 3 such that every f € 3 factors through (fo, fi,..., fm): Afp @ - @
Ay, — A. Define R' := Rad"A \ Rad"™ A and u;: 94 — - L4
VA 24 A. Let i be the greatest integer < n with ¥ N R # @. Then
there is a morphism f; = u;d; € ¥ with dy: Dy — ¥ A split monic and
D; indecomposable. So we have ¥'A = D; @ C. Denote the injection
((1]): C — Dy @ C by dj. If there exists a morphism in ¥ N R’ which
factors through wu;d}, then there is an fo = w;d|dy € ¥ with a split
monomorphism dy: Dy — C' and Dy indecomposable. After finitely
many steps, we get a sequence fo, f1,..., f; such that every f € ¥ N R’
factors through (fo, fi,..., fj). Therefore, modulo (fo, f1,..., f;), we can
replace ¢ by a smaller integer. By induction, this proves the corollary. [

Corollary 2. Let A be a Krull-Schmidt category with finitely many iso-
morphism classes of indecomposable objects. The following are equivalent.

(a) A is a strong lattice category.

(b) A is an L-finite strict T-category with (,—, Rad"A = 0, having an
additive function | > 0.

Proof. (a) = (b): By [26], A is a strict 7-category. The remaining as-
sertions follow by [26], and the implication (b) = (c) of [22], Theorem 4
(see also [22|, Proposition 10).

(b) = (a): Proposition 9, Theorem 5, and Proposition 7 imply that
A satisfies (a)-(c) of Theorem 1. Suppose that there is a non-zero object
Ain A,. Since A is noetherian, there exists a simple monomorphism m:
B — A. Since A is L-finite, I{(m) = l[(up) = 0 for some projective object
P. On the other hand, A € Ob A, implies that m is a kernel, which
gives a contradiction. Hence A is a lattice category. By Corollary 1,
Proj(A) and Inj(A) are strongly bi-noetherian. Thus A is a strong
lattice category. O

By the remark of §4, L-finiteness of a strict 7-category is a property
of its Auslander-Reiten quiver. Therefore, we may speak of an L-finite
translation quiver . By [10], Theorem 7.1, this property of ) can be
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checked easily. A translation quiver @ with valuation (d, d’) is said to be
admissible [12] if there exists a function ¢: @ — N~ {0} with cx = ¢;x
for non-projective vertices X, and

cxdxy = dxyey
for all X,Y € Q.

Corollary 3. For a finite admissible translation quiver @, the following
are equivalent.

(a) There exists an order A over a complete discrete valuation ring R

with Q = A(A-CM).
(b) Q is L-finite and admits an additive function I > 0.

Proof. By [12], 4.2.1, there exists a modulation for @), and the mesh cate-
gory A is R-linear for some complete discrete valuation ring R. Moreover,
Mo, Rad" A = 0. By [22], Proposition 8, the existence of an additive
function [ > 0 implies that A is a strict 7-category. Therefore, the equiv-
alence (a) < (b) follows by Corollary 2. O

Remark. There are 0-dimensional analogues of Corollary 2 and Corol-
lary 3 that also follow by Theorem 5. Here the additive function | has to
be replaced by a function ! > 0 with [(P) = [(VP)+1 and [(I) = (V" I)+1
for indecomposable P,I with P projective and I injective. Furthermore,
the condition of L-finiteness can be dropped since Rad. A is nilpotent in
this case.
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