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Abstract. We prove that every finite dimensional algebra

over an algebraically closed field is either derived tame or derived

wild. We also prove that any deformation of a derived wild algebra

is derived wild.

Introduction

This is a talk given by the author at the IV International Algebraic
Conference in Ukraine (Lviv, August 2003). It is devoted to the notions of
derived tameness and wildness of algebras and the recent progress in the
topic. The main result, obtained by Viktor Bekkert and the author, is the
tame-wild dichotomy for derived categories, which is an analogue of the
author’s theorem for algebras [5]. The proof is also very much alike that
of [5]; it relies on the technique of matrix problems (representations of
boxes) and a reduction algorithm for matrices. The principal distinction
is that here we have to consider non-free (even non-semi-free) boxes.
Fortunately, the required class of boxes can be dealt with in a similar
way; it is considered in Section 3 of this paper. Section 1 is devoted to the
general notions related to derived categories, derived tameness, etc., while
Section 2 presents a transition to matrix problems. Further, we consider
the results related to deformations and degenerations of derived tame and
derived wild algebras obtained by the author [7]. Namely, in Section 4
we construct some “almost versal” families of complexes with projective
bases, analogous to the families of modules constructed in [8]. It makes
possible to introduce the “number of parameters” defining complexes of
given rank and to prove (in Section 5) that this number is upper semi-
continuous in flat families of algebras. As a corollary, we get that a
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deformation of a derived tame algebra is derived tame; respectively, a
degeneration of a derived wild algebra is derived wild. We also explain
the situation that can arise if one considers families that are non-flat
(especially the example of Brüstle [2]).

Since it is a survey, we sometimes only sketch proofs referring to the
papers [1, 7], though we try to give all necessary definitions, especially
related to derived categories and boxes.

I am grateful to Viktor Bekkert and Igor Burban for fruitful collabora-
tion and useful discussions, which were of great influence in preparing this
paper. I am also thankful to Birge Huisgen-Zimmermann who inspired
me to start these investigations.

1. Derived categories

In what follows we consider finite dimensional algebras over an alge-
braically closed field k. Let A be such an algebra. As usually, we write
⊗ and Hom instead of ⊗k and Homk; we denote by V ∗ the dual vector
space Hom(V,k). All considered categories A are also supposed to be
linear categories over the field k, which means that all sets A(a, b) are
vector spaces over k and the multiplication of morphisms is k-bilinear.
Recall that the derived category D(A) of (finite dimensional) A-modules
is defined as follows [13, 14]. First consider the category of complexes
C(A). Its objects are sequences M• = (Mn, dn) of finite dimensional
modules and their homomorphisms

. . .
dn+2

−−−−→ Mn+1
dn+1

−−−−→ Mn
dn−−−−→ Mn−1

dn−1

−−−−→ . . . (1)

such that dn+1dn = 0 for all n. A morphism φ• = (φn) of a complex (1)
to another complex M ′

• = (M ′
n, d′n) is a commutative diagram

. . .
dn+2

−−−−→ Mn+1
dn+1

−−−−→ Mn
dn−−−−→ Mn−1

dn−1

−−−−→ . . .

φn+1

y φn

y φn−1

y

. . .
d′

n+2

−−−−→ M ′
n+1

d′
n+1

−−−−→ M ′
n

d′n−−−−→ M ′
n−1

d′
n−1

−−−−→ . . .

(2)

One says that such a morphism is homotopic to zero if there are homo-
morphisms σn : Mn → M ′

n+1 (n ∈ N) such that φn = σn−1dn + d′n+1σn

for all n. The factor category H(A) of C(A) modulo the ideal of mor-
phisms homotopic to zero is called the homotopic category of A-modules.
For each n the n-th homology of a complex (1) is defined as Hn(M•) =
Ker dn/ Im dn+1. Obviously, a morphism φ• of complexes induces ho-
momorphisms of homologies Hn(φ•) : Hn(M•) → Hn(M ′

•), and if φ• is
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homotopic to zero, it induces zero homomorphisms of homologies. Hence,
Hn can be considered as functors H(A) → vec, the category of (finite
dimensional) vector spaces. One call a morphism φ• from C(A) or from
H(A) quasi-isomorphism if all Hn(φ•) are isomorphisms. Now the de-
rived category D(A) is defined as the category of fractions H(A)[Q−1],
where Q is the set of all quasi-isomorphisms.

One calls a complex (1) right bounded (left bounded, bounded) if there
is n0 such that Mn = 0 for n < n0 (respectively, there is n1 such that
Mn = 0 for n > n1, or there are both). The corresponding categories are
denoted by C−,H−,D− (respectively, by C+,H+,D+, or by Cb,Hb,Db).
In this paper we mainly deal with the bounded derived category Db(A).
The category A-mod of (finite dimensional) A-modules naturally embeds
into D(A) (even in Db(A)): a module M is identified with the complex
M• such that M0 = M, Mn = 0 for n 6= 0.

Since the category of modules has enough projectives, one can replace,
when considering right bounded homotopic or derived category, arbitrary
complexes by projective ones, i.e. consisting of projective modules only.
We denote by P−(A) and by Pb(A) the categories of right bounded and
bounded projective complexes. Actually, D−(A) ≃ H−(A) ≃ P−(A)/Ih,
where Ih is the ideal of morphisms homotopic to zero [13, 14]. Moreover,
in finite dimensional case every module M has a projective cover, i.e.
there is an epimorphism p(M) : P (M) → M , where P (M) is projective,
such that Ker p(M) ⊆ radP (M), the radical of P (M) [9]. Therefore,
one can only consider minimal complexes, i.e. projective complexes such
that Im dn ⊆ radPn−1 for all n. We denote by P−

min(A) the category
of minimal projective complexes. Thus D−(A) ≃ P−

min(A)/Ih. One
immediately checks that the image in D−(A) of a morphism φ• of minimal
complexes is an isomorphism if and only if φ itself is an isomorphism.
Hence, if we are interested in classification of objects from D−(A), we can
replace it by P−

min(A). Unfortunately, it is no more the case if we consider
Db(A). Certainly, if gl.dimA < ∞, one has that Db(A) ≃ Pb

min(A)/Ih,
since any bounded complex has a bounded projective resolution. On the
contrary, if gl.dimA = ∞, it is wrong even for modules. Nevertheless,
we propose the following approximation of Db(A), which is enough for
classification purpose. (Compare it with [16].)

We denote by Pm(A) the category of bounded projective complexes
M• such that Mn = 0 for n > m (note that the left bound is not pre-
scribed). We say that a morphism φ• in Pm(A) is quasi-homotopic to
zero if there are homomorphisms σn : Mn → M ′

n+1 such that φn =
σn−1dn + d′n+1σn for all n < m. Let Hm(A) = Pm(A)/Iqh, where Iqh

is the ideal of morphisms quasi-homotopic to zero. Especially, if P• is a
minimal complex from Pm(A), it is isomorphic in Hm(A) to a minimal
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complex P̃• such that P̃n = Pn, d̃n = dn for n 6= m, while Pm = P̃m⊕Q so
that Q ⊆ Ker dm, d̃m = dm|P̃m

and Ker d̃m ⊆ rad P̃m. There is a natural

functor Hm(A) → Hm+1(A), which maps a complex P• to the complex
P+
• , where P+

n = Pn, d+
n = dn for n ≤ m, while P+

m+1 = P (Ker dm) and
d+

m+1 is the epimorphism p(Ker dm) : P+
m+1 → Ker dm. Conversely, there

is a functor Hm+1(A) → Hm(A), which just abandon Pm+1 in a complex
P•. One easily verifies the following results.

Proposition 1.1. 1. Db(A) ≃ lim
−→m

Hm(A);

2. D−(A) ≃ lim
←−m

Hm(A).
Moreover, if complexes P• and P ′

• ∈ Pm(A) are minimal, their images
in Db(A) are isomorphic if and only if P̃• ≃ P̃ ′

• as complexes.

Thus dealing with classification problems, one can deal with Hm or
with Pm instead of Db. Note also that if we fix all Hn(P•) for a complex
from Pm

min(A), there are finitely many possibilities for the values of Pn.
Taking into consideration these remarks, one can define derived wild

and derived tame algebras as follows.

Definition 1.2. 1. Let R be a k-algebra. A family of A-complexes
based on R is a complex of finitely generated projective A ⊗ Rop-
modules P•. We denote by Pm(A,R) the category of all bounded
families with Pn = 0 for n > m (again we do not prescribe the right
bound). For such a family P• and an R-module L we denote by
P•(L) the complex (Pn ⊗R L, dn ⊗ 1). If L is finite dimensional,
P•(L) ∈ Pm(A).

2. We call a family P• strict if for every finite dimensional R-modules
L, L′

(a) P•(L) ≃ P•(L
′) if and only if L ≃ L′;

(b) P•(L) is indecomposable if and only if so is L.

3. We call A derived wild if it has a strict family of complexes over
every finitely generated k-algebra R.

The following fact is well known.

Proposition 1.3. An algebra A is derived wild if and only if it has a
strict family over one of the following algebras:

1) free algebra k〈x, y〉 in two variables;

2) polynomial algebra k[x, y] in two variables;
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3) power series algebra k[[x, y]] in two variables.

Let A1, A2, . . . , As be a set of representatives of isomorphism classes
of indecomposable projective A-modules. (For instance, one can choose
a decomposition 1 =

∑m
i=1 ei, where ei are primitive orthogonal idem-

potents, take e1, e2, . . . , es all pairwise non-conjugate of them, and set
Ai = Aei.) If P is an arbitrary projective A-module, it uniquely decom-
poses as P ≃

⊕s
i=1 riAi. Set r(P ) = (r1, r2, . . . , rs) and call it the vector

rank of P . For a projective complex P• set r•(P•) = (r(Pn) |n ∈ Z).
Given an arbitrary sequence v• = (vn |n ∈ Z) denote by P(v•,A) the
set of complexes P• such that r•(P•) = v•.

Definition 1.4. 1. A rational algebra is a k-algebra k[t, f(t)−1] for a
non-zero polynomial f(t). A rational family of A-complexes is a
family over a rational algebra R.

2. For a rational family P• denote by r•(P•) = r•(P•(L)) , where L is
a one-dimensional R-module. (This value does not depend on the
choice of L.)

3. An algebra A is called derived tame if there is a set of rational
families of bounded A-complexes S such that:

(a) for every (bounded) v• the set S(v•) = {P• ∈ S | r•(P•) = v• }
is finite.

(b) for every v• all indecomposable complexes from P(v•,A), ex-
cept finitely many of them (up to isomorphism) are isomorphic
to a complex P•(L) for some P• ∈ S and some finite dimen-
sional L.

We call S a parameterising set of A-complexes.

These definitions do not formally coincide with other definitions of
derived tame and derived wild algebras, for instance, those proposed in
[11, 12], but all of them are evidently equivalent. It is obvious (and easy
to prove) that neither algebra can be both derived tame and derived wild.
The following result (“tame-wild dichotomy for derived categories”) has
recently been proved by V. Bekkert and the author [1].

Theorem 1.5 (Main Theorem). Every finite dimensional algebra over
an algebraically closed field is either derived tame or derived wild.

2. Reduction to matrix problems

We recall now the main notions related to the matrix problems (represen-
tations of boxes). More detailed exposition can be found in [6]. A box is a
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pair A = (A,V), where A is a (k-linear) category and V is an A-coalgebra,
i.e. an A-bimodule supplied with comultiplication µ : V → V ⊗A V and
counit ι : V → A, which are homomorphisms of A-bimodules and satisfy
the usual coalgebra conditions

(µ ⊗ 1)µ = (1 ⊗ µ)µ, il(ι ⊗ 1)µ = ir(1 ⊗ ι)µ = id,

where il : A⊗AV ≃ V and ir : V⊗AA ≃ V are the natural isomorphisms.
The kernel V = Ker ι is called the kernel of the box. A representation of
such a box in a category C is a functor M : A → C. Given another
representation N : A → C, a morphism f : M → N is defined as a
homomorphism of A-modules V ⊗A M → N , or, equivalently, as a homo-
morphism of A-bimodules V → HomC(M, N), the latter supplied with
the obvious A-bimodule structure. The composition gf of f : M → N
and g : N → L is defined as the composition

V ⊗A M
µ⊗1

−−−−→ V ⊗A V ⊗A M
1⊗f

−−−−→ V ⊗A N
g

−−−−→ L,

while the identity morphism idM of M is the composition

V ⊗A M
ι⊗1

−−−−→ A⊗A M
il−−−−→ M.

Thus we obtain the category of representations Rep(A, C). If C = vec,
we just write Rep(A). If f is a morphism and γ ∈ V(a, b), we denote by
f(γ) the morphism f(b)(γ⊗_ ) : M(a) → N(a). A box A is called normal
(or group-like) if there is a set of elements ω = {ωa ∈ V(a, a) | a ∈ obA}
such that ι(ωa) = 1a and µ(ωa) = ωa ⊗ ωa for every a ∈ obA. In
this case, if f is an isomorphism, all morphisms f(ωa) are isomorphisms
M(a) ≃ N(a). This set is called a section of A. For a normal box, one
defines the differentials ∂0 : A → V and ∂1 : V → V ⊗A V setting

∂0(α) = αωa − ωbα for α ∈ A(a, b);

∂1(γ) = µ(γ) − γ ⊗ ωa − ωb ⊗ γ for γ ∈ V(a, b).

Usually we omit indices, writing ∂α and ∂γ.

Recall that a free category kΓ, where Γ is an oriented graph, has the
vertices of Γ as its objects and the paths from a to b (a, b being two
vertices) as a basis of the vector space kΓ(a, b).

A semi-free category is a category of fractions kΓ[S−1], where S =
{ gα(α) |α runs through a set of loops } (called the marked loops) of the
graph Γ. The arrows of Γ are called the free (respectively, semi-free)
generators of the free (semi-free) category. A normal box A = (A,V) is
called free (semi-free) if such is the category A, moreover, the kernel V =
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Ker ι of the box is a free A -bimodule and ∂α = 0 for each marked loop α.
A set of free (respectively, semi-free) generators of such a box is a union
S = S0∪S1, where S0 is a set of free (semi-free) generators of the category
A and S1 is a set of free generators of the A-bimodule V. A set of free (or
semi-free) generators S is called triangular if there is a function ̺ : S → N

(we call it “weight”) such that, for every α ∈ S, the differential ∂α belongs
to the sub-box generated by {β ∈ S | ̺(β) < ̺(α) }; especially, if ̺(α) =
0, α is minimal, i.e. ∂α = 0. A free (semi-free) box having a triangular
set of free (semi-free) generators is called triangular. For a triangular box
a morphism of representations f : M → N is an isomorphism if and only
if all f(ωa) are isomorphisms. In what follows we always suppose that
our graphs are locally finite, i.e. only have finitely many arrows starting
or ending at a given vertex. If such a graph Γ has no oriented cycles,
then the category kΓ is locally finite dimensional, i.e. all its spaces of
morphisms are finite dimensional.

We call a category A trivial if it is a free category generated by a
trivial graph (i.e. one with no arrows); thus A(a, b) = 0 if a 6= b and
A(a, a) = k. We call A minimal, if it is a semi-free category with a set
of semi-free generators consisting of loops only, at most one loop at each
vertex. Thus A(a, b) = 0 again if a 6= b, while A(a, a) is either k or
a rational algebra. We call a normal box A = (A,V) so-trivial if A is
trivial, and so-minimal if A is minimal and all its loops α are minimal
too (i.e. with ∂α = 0).

In [5] (cf. also [6]) the classification of representations of an arbitrary
finite dimensional algebra was reduced to representations of a free trian-
gular box. To deal with derived categories we have to consider a wider
class of boxes. First, a factor-box of a box A = (A,V) modulo an ideal
I ⊆ A is defined as the box A/I = (A/I,V/(IV + VI) (with obvious
comultiplication and counit). Note that if A is normal, so is A/I.

Definition 2.1. A sliced box is a factor-box A/I, where A = (A,V)
is a free box such that the set of its objects V = obA is a disjoint
union V =

⋃
i∈Z

Vi such that A(a, b) = 0 if a ∈ Vi, b ∈ Vj with j > i,
A(a, a) = k, and V(a, b) = 0 if a ∈ Vi, b ∈ Vj with i 6= j. We call a sliced
box A/I triangular if so is the free box A. The partition V =

⋃
i Vi is

called a slicing.

Certainly, in this definition we may assume that the elements of the
ideal I are linear combinations of paths of length at least 2. Otherwise
such an element is a linear combination of arrows, so we can just eliminate
one of these arrows from the underlying graph.

Note that for every representation M ∈ Rep(A), where A is a free
(semi-free, sliced) box with the set of objects V, one can consider its di-
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mension Dim(M), which is a function V → N, namely Dim(M)(a) =
dimM(a). We call such a representation finite dimensional if its support
supp M = { a ∈ V |M(a) 6= 0 } is finite and denote by rep(A) the cate-
gory of finite dimensional representations. Having these notions, one can
easily reproduce the definitions of families of representations, especially
strict families, wild and tame boxes; see [5, 6] for details. The following
procedure, mostly modelling that of [5], let us replace derived categories
by representations of sliced boxes.

Let A be a finite dimensional algebra, J be its radical. As far as
we are interested in A-modules and complexes, we can replace A by a
Morita equivalent reduced algebra, thus suppose that A/J ≃ ks [9]. Let
1 =

∑s
i=1, where ei are primitive orthogonal idempotents; set Aji =

ejAei and Jji = ejJei; note that Jji = Aji if i 6= j. We denote by S
the trivial category with the set of objects { (i, n) |n ∈ N, i = 1, 2, . . . , s }
and consider the S-bimodule J such that

J
(
(i, n), (j, m)

)
=

{
0 if m 6= n − 1,

J∗
ji if m = n − 1.

Let B = S[J ] be the tensor category of this bimodule; equivalently, it is
the free category having the same set of objects as S and the union of
bases of all J

(
(i, n), (j, m)

)
as a set of free generators. Denote by U the

S-bimodule such that

U
(
(i, n), (j, m)

)
=

{
0 if n 6= m,

A∗
ji if n = m

and set W̃ = B⊗S U⊗SB. Dualizing the multiplication Akj⊗Aji → Aki,
we get homomorphisms

λr :B → B ⊗S W̃,

λl :B → W̃ ⊗S B,

µ̃ :W̃ → W̃ ⊗S W̃.

In particular, µ̃ defines on W̃ a structure of B-coalgebra. Moreover,
the sub-bimodule W0 generated by Im(λr − λl) is a coideal in W̃, i.e.

µ̃(W0) ⊆ W0 ⊗B W̃ ⊕ W̃ ⊗B W0. Therefore, W = W̃/W0 is also a B-
coalgebra, so we get a box B = (B,W). One easily checks that it is free
and triangular.

Dualizing multiplication also gives a mapping

ν : J∗
ji →

s⊕

k=1

J∗
jk ⊗ J∗

ki. (3)
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Namely, if we choose bases {α } , {β } { γ } in the spaces, respectively,
Jji, Jjk, Jki, and dual bases {α∗ } , {β∗ } , { γ∗ } in their duals, then
β∗⊗γ∗ occurs in ν(α∗) with the same coefficient as α occurs in βγ. Note
that the right-hand space in (3) coincide with each B

(
(i, n), (j, n − 2)

)
.

Let I be the ideal in B generated by the images of ν in all these spaces and
D = B/I = (A,V), where A = B/I, V = W/(IW + WI). If necessary,
we write D(A) to emphasise that this box has been constructed from a
given algebra A. Certainly, D is a sliced triangular box, and the following
result holds.

Theorem 2.2. The category of finite dimensional representations
rep(D(A)) is equivalent to the category Pb

min(A) of bounded minimal
projective A-complexes.

Proof. Let Ai = Aei; they form a complete list of non-isomorphic in-
decomposable projective A-modules; set also Ji = radAi = Jei. Then
HomA(Ai, Jj) ≃ Jji. A representation M ∈ rep(D) is given by vector
spaces M(i, n) and linear mappings

Mji(n) : J∗
ji = A

(
(i, n), (j, n − 1)

)
→ Hom

(
M(i, n), M(j, n − 1)

)

subject to the relations

s∑

k=1

m
(
Mjk(n) ⊗ Mki(n + 1)

)
ν(α) = 0 (4)

for all i, j, k, n and all α ∈ Jji, where m denotes the multiplication of
mappings

Hom
(
M(k, n), M(j, n − 1)

)
⊗ Hom

(
M(i, n + 1), M(k, n)

)
→

→ Hom
(
M(i, n + 1), M(j, n − 1)

)
.

For such a representation, set Pn =
⊕s

i=1 Ai ⊗ M(i, n). Then radPn =⊕n
i=1 Ji ⊗ M(i, n) and

HomA(Pn, radPn−1) ≃
⊕

i,j

HomA

(
Ai ⊗ M(i, n), Jj ⊗ M(j, n − 1)

)
≃

≃
⊕

ij

Hom
(
M(i, n), HomA

(
Ai, Jj ⊗ M(j, n − 1)

))
≃

≃
⊕

ij

M(i, n)∗ ⊗ Jji ⊗ M(j, n − 1) ≃

≃
⊕

ij

Hom
(
J∗

ji, Hom
(
M(i, n), M(j, n − 1)

))
.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.66 Derived tame and derived wild algebras

Thus the set {Mji(n) | i, j = 1, 2, . . . , s } defines a homomorphism dn :
Pn → Pn−1 and vice versa. Moreover, one easily verifies that the condi-
tion (4) is equivalent to the relation dndn+1 = 0. Since every projective
A-module can be given in the form

⊕s
i=1 Ai ⊗ Vi for some uniquely de-

fined vector spaces Vi, we get a one-to-one correspondence between finite
dimensional representations of D and bounded minimal complexes of pro-
jective A-modules. In the same way one also establishes one-to-one corre-
spondence between morphisms of representations and of the correspond-
ing complexes, compatible with their multiplication, which accomplishes
the proof.

Corollary 2.3. An algebra A is derived tame (derived wild) if so is the
box D(A).

3. Proof of the main theorem

Now we are able to prove the main theorem. Namely, according to Corol-
lary 2.3, it follows from the analogous result for sliced boxes.

Theorem 3.1. Every sliced triangular box is either tame or wild.

Actually, just as in [5] (see also [6]), we shall prove this theorem in
the following form.

Theorem 3.1a. Suppose that a sliced triangular box A = (A,V) is not
wild. For every dimension d of its representations there is a functor Fd :
A → M, where M is a minimal category, such that every representation
M : A → vec of A of dimension Dim(M) ≤ d is isomorphic to the
inverse image F ∗N = N ◦ F for some functor N : M → vec. Moreover,
F can be chosen strict, which means that F ∗N ≃ F ∗N ′ implies N ≃ N ′

and F ∗N is indecomposable if so is N .

Remark. We can consider the induced box AF = (M,M⊗AV⊗AM). It
is a so-minimal box, and F ∗ defines a full and faithful functor rep(AF ) →
rep(A). Its image consists of all representations M : A → vec that
factorise through F .

Proof. As we only consider finite dimensional representations, we may
assume that the set of objects is finite. Hence the slicing V =

⋃
i Vi

(see Definition 2.1) is finite too: V =
⋃m

i=1 Vi and we use induction by
m. If m = 1, A is free, and our claim has been proved in [5]. So we
may suppose that the theorem is true for smaller values of m, especially,
it is true for the restriction A′ = (A′,V ′) of the box A onto the subset
V′ =

⋃m
i=2 Vi. Thus there is a strict functor F ′ : A′ → M, where M
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is a minimal category, such that every representation of A′ of dimension
smaller than d is of the form F ′∗N for N : M → vec. Consider now
the amalgamation B = A

⊔A′

M and the box B = (B,W), where W =
B ⊗A V ⊗A B. The functor F ′ extends to a functor F : A → B and
induces a homomorphism of A-bimodules V → W; so it defines a functor
F ∗ : rep(B) → rep(A), which is full and faithful. Moreover, every
representation of A of dimension smaller than d is isomorphic to F ∗N
for some N , and all possible dimensions of such N are restricted by some
vector b. Therefore, it is enough to prove the claim of the theorem for
the box B.

Note that the category B is generated by the loops from M and the
images of arrows from A(a, b) with b ∈ V1 (we call them new arrows).
It implies that all possible relations between these morphisms are of the
form

∑
β βgβ(α), where α ∈ B(a, a) is a loop (necessarily minimal, i.e.

with ∂α = 0), gβ are some polynomials, and β runs through the set of
new arrows from a to b for some b ∈ V1. Consider all of these relations
for a fixed b; let them be

∑
β βgβ,k(α). Their coefficients form a matrix(

gβ,k(α)
)
. Making linear transformations of the set {β } and of the set of

relations, we can make this matrix diagonal, i.e. make all relations being
βfβ(α) = 0 for some polynomials fβ . If one of fβ is zero, the box B has
a sub-box

aα 99
β // b ,

with ∂α = ∂β = 0, which is wild; hence B and A are also wild. Otherwise,
let f(α) 6= 0 be a common multiple of all fβ(α), Λ = {λ1, λ2, . . . , λr }
be the set of roots of f(α). If N ∈ rep(B) is such that N(α) has no
eigenvalues from Λ, then f(N(α)) is invertible; thus N(β) = 0 for all
β : a → b. So we can apply the reduction of the loop α with respect
to the set Λ and the dimension d = b(a), as in [5, Propositions 3,4] or
[6, Theorem 6.4]. It gives a new box that has the same number of loops
as B, but the loop corresponding to α is “isolated,” i.e. there are no
more arrows starting or ending at the same vertex. In the same way
we are able to isolate all loops, obtaining a semi-free triangular box C

and a morphism G : B → C such that G∗ is full and faithful and all
representations of B of dimensions smaller than b are of the form G∗L.
As the theorem is true for semi-free boxes, it accomplishes the proof.

Remark. Applying reduction functors, like in the proof above, we can also
extend to sliced boxes (thus to derived categories) other results obtained
before for free boxes. For instance, we mention the following theorem,
quite analogous to that of Crawley-Boevey [3].



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.68 Derived tame and derived wild algebras

Theorem 3.2. If an algebra A is derived tame, then, for any vector d =
(dn |n ∈ Z) such that almost all dn = 0, there is at most finite set of
generic A-complexes of endolength d, i.e. such indecomposable minimal
bounded complexes P• of projective A-modules, not all of which are finitely
generated, that lengthE(Pn) = dn for all n, where E = EndA(P•).

Its proof reproduces again that of [3], with obvious changes necessary
to include sliced boxes into consideration.

4. Families of complexes

We consider now algebraic families of A-complexes, i.e. flat families over
an algebraic variety X. Such a family is a complex F• = (Fn, dn) of
flat coherent A⊗OX -modules. We always assume this complex bounded
and minimal ; the latter means that Im dn ⊆ JFn−1 for all n, where
J = radA. We also assume that X is connected; it implies that the
vector rank r•(F•(x)) is constant, so we can call it the vector rank of the
family F and denote it by r•(F•) Here, as usually, F(x) = Fx/mxFx,
where mx is the maximal ideal of the ring OX,x. We call a family F• non-
degenerate if, for every x ∈ X, at least one of dn(x) : Fn(x) → Fn−1(x) is
non-zero. Having a family F• over X and a regular mapping φ : Y → X,
one gets the inverse image φ∗(F), which is a family of A-complexes over
the variety Y such that φ∗(F)(y) ≃ F(φ(y)). If F• is non-degenerate,
so is φ∗(F). Given an ideal I ⊆ J, we call a family F• an I-family if
Im dn ⊆ IFn−1 for all n. Then any inverse image φ∗(F) is an I-family
as well. Just as in [8], we construct some “almost versal” non-degenerate
I-families.

Consider again a complete set of non-isomorphic indecomposable pro-
jective A-modules {A1, A2, . . . , As }. For each vector r = (r1, r2, . . . , rs)
set rA =

⊕s
i=1 riAi, and denote I(r, r′) = HomA(rA, I · r′A), where

I is an ideal contained in J. Fix a vector rank of bounded complexes
r• = (rk |m ≤ k ≤ n) and set H = H(r•, I) =

⊕n
k=m+1 I(rk, rk−1).

Consider the projective space P = P(r•, I) = P(H) and its closed subset
D = D(r•, I) ⊆ P consisting of all sequences (hk) such that hk+1hk = 0 for
all k. Because of the universal property of projective spaces [15, Theorem
II.7.1], the embedding D(r•, I) → P(r•, I) gives rise to a non-degenerate
I-family V• = V•(r•, I):

V• : Vn
dn−−−−→ Vn−1

dn−1

−−−−→ . . . −→ Vm, (5)

where Vk = OD(n − k) ⊗ rkA for all m ≤ k ≤ n. We call V•(r•, I)
the canonical I-family of A-complexes over D(r•, I). Moreover, regular
mappings φ : X → D(r•, I) correspond to non-degenerate I-families F•
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with Fk = 0 for k > n or k < m and Fk = L⊗(n−k) ⊗ rkA for some
invertible sheaf L over X. Namely, such a family can be obtained as
φ∗(V•) for a uniquely defined regular mapping φ. Moreover, the following
result holds, which shows the “almost versality” of the families V•(r•, I).

Proposition 4.1. For every non-degenerate family of I-complexes F• of
vector rank r• over an algebraic variety X, there is a finite open covering
X =

⋃
j Uj such that the restriction of F• onto each Uj is isomorphic to

φ∗
jV•(r•, I) for a regular mapping φj : Uj → D(r•, I).

Proof. For each x ∈ X there is an open neighbourhood U ∋ x such that
all restrictions Fk|U are isomorphic to OU ⊗ rkA; so the restriction F•|U
is obtained from a regular mapping U → D(r•, I). Evidently it implies
the assertion.

Note that the mappings φj are not canonical, so we cannot glue them
into a “global” mapping X → D(r•, I).

Consider now the group G = G(r•) =
∏

k Aut(rkA), which acts
on H(r•, I): (gk) · (hk) = (gk−1hkg

−1
k ). It induces the action of G(r•)

on P(R•, I) and on D(r•, I). The definitions immediately imply that
V•(r•, I)(x) ≃ V•(r•, I)(x

′) (x, x′ ∈ D) if and only if x and x′ belong to
the same orbit of G. Consider the sets

Di = Di(r•, I) = {x ∈ D | dimGx ≤ i } .

It is known that they are closed (it follows from the theorem on dimen-
sions of fibres, cf. [15, Exercise II.3.22] or [17, Ch. I, § 6, Theorem 7]). We
set

par(r•, I,A) = max
i

{dim Di(r•, I) − i }

and call this integer the parameter number of I-complexes of vector rank
r•. Obviously, if I ⊆ I′, then par(r•, I,A) ≤ par(r•, I

′,A). Especially,
the number par(r•,A) = par(r•,J,A) is the biggest one.

Proposition 4.1, together with the theorem on the dimensions of fi-
bres and the Chevalley theorem on the image of a regular mapping (cf.
[15, Exercise II.3.19] or [17, Ch. I, § 5, Theorem 6]), implies the following
result.

Corollary 4.2. Let F• be an I-family of vector rank r• over a variety
X. For each x ∈ X set Xx = {x′ ∈ X | F•(x

′) ≃ F•(x) } and denote

Xi = {x ∈ X | dimXx ≤ i } ,

par(F•) = max
i

{dimXi − i } .

Then all subsets Xx and Xi are constructible (i.e. finite unions of locally
closed sets) and par(F•) ≤ par(r•, I,A).
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Note that the bases D(r•, I) of our almost versal families are projective,
especially complete varieties. In the next section we shall exploit this
property.

Tame-wild dichotomy allows to establish the derived type of an al-
gebra knowing the behaviour of the numbers par(r•,A). Namely, if
rk = (rk1, rk2, . . . , rks), set |r•| =

∑
k,i rki. Since it is a maximal pos-

sible number of indecomposable summands of complexes of vector rank
r•, indecomposable complexes over derived tame algebra form at most
one-parameter families, and the parameter number grows quadratically
for derived wild algebras, the following corollary is evident.

Corollary 4.3. An algebra A is derived tame if and only if par(r•,A) ≤
|r•| for all vector ranks r•.

An important case is that of families of free modules, i.e. such that
Fk(x) ≃ akA for some integer k. Namely, let r(A) = (a1, a2, . . . , as)
(we do not suppose that A is Morita reduced). For every vector b =
(bm, bm+1, . . . , bn) we set ba = (bma, bm+1a, . . . , bna) and write D(b, I),
par(b, I,A), etc. instead of, respectively, D(ba, I), par(ba, I,A), etc.
When we are interested in the asymptotical behaviour of parameter num-
bers (it is enough, for instance, to establish the derived type), we can
restrict our considerations by free complexes only. Indeed, for a vector
r = (r1, r2, . . . , rs), denote

[
r/a

]
= max { b | bai ≤ ri for all i } ,]

r/a
[

= min { b | bai ≥ ri for all i } .

If r• = (rm, rm+1, . . . , rn), set

b = (bm, bm+1, . . . , bn), where bk =
]
rk/a

[
;

b′ = (b′m, b′m+1, . . . , b
′
n), where b′k =

[
rk/a

]
.

Then, obviously,

par(b′, I,A) ≤ par(r•, I,A) ≤ par(b, I,A).

Especially, Corollary 4.3 can be reformulated as follows.

Corollary 4.4. An algebra A is derived tame if and only if par(b,A) ≤
|b|dimA for every sequence b = (bm, bm+1, . . . , bn).

5. Families of algebras. Semi-continuity

A (flat) family of algebras over an algebraic variety X is a sheaf A of OX -
algebras, which is coherent and flat (thus locally free) as a sheaf of OX -
modules. For such a family and every sequence b = (bm, bm+1, . . . , bn)
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one can define the function par(b,A, x) = par(b,A(x)). (Recall that
here bk denote the ranks of free modules in a free complex.) Our main
result is the upper semi-continuity of these functions.

Theorem 5.1. Let A be a flat family of finite dimensional algebras over
an algebraic variety X. For every vector b = (bm, bm+1, . . . , bn) the func-
tion par(b,A, x) is upper semi-continuous, i.e. all sets

Xj = {x ∈ X | par(b,A, x) ≥ j }

are closed.

Proof. We may assume that X is irreducible. Let K be the field of
rational functions on X. We consider it as a constant sheaf on X.
Set J = rad(A ⊗OX

K) and J = R ∩ A. It is a sheaf of nilpotent
ideals. Moreover, if ξ is the generic point of X, the factor algebra
A(ξ)/J (ξ) is semisimple. Hence there is an open set U ⊆ X such that
A(x)/J (x) is semisimple, thus J (x) = radA(x) for every x ∈ U . There-
fore par(b,A, x) = par(b,J (x),A(x)) for x ∈ U ; so Xj = Xj(J ) ∪ X ′

j ,
where

Xj(J ) = {x ∈ X | par(b,J (x),A(x)) ≥ j }

and X ′ = X \U is a closed subset in X. Using noetherian induction, we
may suppose that X ′

j is closed, so we only have to prove that Xj(J ) is
closed too.

Consider the locally free sheaf H =
⊕n

k=m+1 Hom(bkA, bk−1J ) and
the projective space bundle P(H) [15, Section II.7]. Every point h ∈ P(H)
defines a set of homomorphisms hk : bkA(x) → bk−1J (x) (up to a ho-
mothety), where x is the image of h in X, and the points h such that
hkhk+1 = 0 form a closed subset D ⊆ P(H). We denote by π the re-
striction onto D of the projection P(H) → X; it is a projective, hence
closed mapping. Moreover, for every point x ∈ X the fibre π−1(x) is iso-
morphic to D(b,A(x),J (x)). Consider also the group variety G over X:
G =

∏n
k=m GLbk

(A). There is a natural action of G on D over X, and the
sets Di = { z ∈ D | dimGz ≤ i } are closed in D. Therefore the sets Zi =
π(Di) are closed in X, as well as Zij =

{
x ∈ Zi | dimπ−1(x) ≥ i + j

}
.

But Xj(J ) =
⋃

i Zij , thus it is also a closed set.

Taking into consideration Corollary 4.4, we obtain

Corollary 5.2. For a family of algebras A over X denote

Xtame = {x ∈ X | A(x) is derived tame } ,

Xwild = {x ∈ X | A(x) is derived wild } .
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Then Xtame is a countable intersection of open subsets and Xwild is a
countable union of closed subsets.

The following conjecture seems very plausible, though even its ana-
logue for usual tame algebras has not yet been proved.

Conjecture 5.3. For any (flat) family of algebras over an algebraic va-
riety X the set Xtame is open.

Recall that an algebra A is said to be a (flat) degeneration of an
algebra B, and B is said to be a (flat) deformation of A, if there is a
(flat) family of algebras A over an algebraic variety X and a point p ∈ X
such that A(x) ≃ B for all x 6= p, while A(p) ≃ A. One easily verifies
that we can always assume X to be a non-singular curve. Corollary 5.2
obviously implies

Corollary 5.4. Suppose that an algebra A is a flat degeneration of an
algebra B. If B is derived wild, so is A. If A is derived tame, so is B.

If we consider non-flat families, the situation can completely change.
The reason is that the dimension is no more constant in these families.
That is why it can happen that such a “degeneration” of a derived wild al-
gebra may become derived tame, as the following example due to Brüstle
[2] shows.

Example 5.5. There is a (non-flat) family of algebras A over an affine
line A

1 such that all of them except A(0) are isomorphic to the derived
wild algebra B given by the quiver with relations

•

• α // •
β1 // •

γ1

OO

γ2

²²

•
β2oo β1α = 0,

•

while A(0) is isomorphic to the derived tame algebra A given by the
quiver with relations

•

• α // •

ξ1

@@
¢

¢
¢

¢
¢

¢
¢

¢ β1 // •

γ1

OO

γ2

²²

•
β2oo

ξ2¡¡¢¢
¢
¢
¢
¢
¢
¢

β1α = γ1β1 = γ2β2 = 0.

•

(6)
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Namely, one has to define A(λ) as the factor algebra of the path algebra of
the quiver as in (6), but with the relations β1α = 0, γ1β1 = λξ1, γ2β2 =
λξ2. Note that dimA = 16 and dimB = 15, which shows that this family
is not flat.

Actually, in such a situation the following result always holds.

Proposition 5.6. Let A be a family (not necessarily flat) of algebras
over a non-singular curve X such that A(x) ≃ B for all x 6= p, where p
is a fixed point, while A(p) ≃ A. Then there is a flat family B over X
such that B(x) ≃ B for all x 6= p and B(p) ≃ A/I for some ideal I.

Proof. Note that the restriction of A onto U = X \ { p } is flat, since
dimA(x) is constant there. Let n = dimB, Γ be the quiver of the algebra
B and G = kΓ be the path algebra of Γ. Consider the Grassmannian
Gr(n,G), i.e. the variety of subspaces of codimension n of G. The ideals
form a closed subset Alg = Alg(n,G) ⊂ Gr(n,G). The restriction of the
canonical vector bundle V over the Grassmannian onto Alg is a sheaf of
ideals in G = G ⊗ OAlg, and the factor F = G/V is a universal family
of factor algebras of G of dimension n. Therefore there is a morphism
φ : U → Alg such that the restriction of A onto U is isomorphic to
φ∗(F). Since Alg is projective and X is non-singular, φ can be continued
to a morphism ψ : X → Alg. Let B = ψ∗(F); it is a flat family of
algebras over X. Moreover, B coincides with A outside p. Since both
of them are coherent sheaves on a non-singular curve and B is locally
free, it means that B ≃ A/T , where T is the torsion part of A, and
B(p) ≃ A(p)/T (p).

Corollary 5.7. If a degeneration of a derived wild algebra is derived
tame, the latter has a derived wild factor algebra.

In the Brüstle’s example 5.5, to obtain a derived wild factor algebra
of A, one has to add the relation ξ1α = 0, which obviously holds in B.

By the way, as a factor algebra of a tame algebra is obviously tame
(which is no more true for derived tame algebras!), we get the following
corollary (cf. also [4, 8]).

Corollary 5.8. Any deformation (not necessarily flat) of a tame algebra
is tame. Any degeneration of a wild algebra is wild.
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