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ABSTRACT. According to the canonical isomorphism between
the positive part U;(g) of the Drinfeld-Jimbo quantum group
U,(g) and the generic composition algebra C(A) of A, where the
Kac—Moody Lie algebra g and the finite dimensional hereditary al-
gebra A have the same diagram, in specially, we get a realization
of quantum root vectors of the generic composition algebra of the
Kronecker algebra by using the Ringel-Hall approach. The com-
mutation relations among all root vectors are given and an integral
PBW-basis of this algebra is also obtained.

1. Introduction

According to Lusztig [12], a Cartan datum is a pair A = (I,(, )) con-
sisting of a finite set I and a symmetric bilinear form on the free abelian
group Z[I]. It is assumed that (a) (i,i) € {2,4,6,...} for any ¢ € I,
(b) 2% € {0,—1,=2,...} for any i # j in 1. Denote a;; = 2((%)), then
C = (a4j)i jer is a symmetrizable Cartan matrix. Let g be symmetrizable
Kac-Moody Lie algebra of type A = (I,(, )) (see [11]). We denote by
®T the set of all positive roots of g with respect to a set of simple roots
«; for all i € 1.

According to a result of Ringel [19], for any Cartan datum A and any
finite field k, there exists a finite dimensional hereditary k—algebra A such
that the isomorphism classes of simple A—modules are in bijective with
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the index set I and moreover, together with the symmetric Euler form
(, ) of A defined on the Grothendieck group Go(A) give a realization
of A. By definition, Go(A) is the abelian group of all finite dimensional
A-modules modulo exact sequences and can be identified with Z[I] in a
natural way. For any A—module M, the corresponding element in Go(A)
is given by the dimension vector dim M = »_, ;[M : S;]dim S;, where
[M : S,] is the Jordan-Holder multiplicity of S; in M. It is also known
from [7, 8] that there is a surjective map from the isomorphism classes of
the indecomposable A-modules to ®*, by mapping the isomorphism class
of an indecomposable A-module M onto », ;[M : S;Jc;. This surjection
induces a bijection between the isomorphism classes of indecomposable
A—modules of discrete dimension types and the positive real roots. More-
over, there exists a family of non—-isomorphic indecomposable A—modules
corresponding to the positive imaginary roots of A if A is not of finite
type.

Let Q(v) be the field of rational function in the variable v. The
quantized enveloping algebra U,(g), ¢ = v?, is defined as the Q(v)-
algebra generated by elements FE;, F;, K; and K_;, ¢ € I, with the well-
known defining relations.

According to Lusztig [12], there exists an action of the braid group
corresponding to A on Ugy(g). Applying the standard generators T3, ¢ € I,
of the braid group to the generators of U,(g) in an admissible order, we
obtain a family of linearly independent elements in U;r (g). Since those
elements degenerate into a basis of ® acat 8a by the specialization ¢ — 1,

we call these elements the real root vectors of U;(g). If A is of finite
type they provide a complete set of root vectors.

Based on Lusztig’s work [12], Green [10] proved that the positive part
U/ (g) of U,y(g) is isomorphic to the generic composition algebra C(A) of
A (see Section 2 for definition) if g and A have the same Cartan datum.

Ringel [20] gave an explanation for the root vectors obtained by
Lusztig’s braid group action in terms of the Ringel-Hall algebra H(A).
He showed that for preprojective and preinjective indecomposable A—
modules V), the elements u) in H(A) coincide with the corresponding real
root vectors in U (g), up to the scalar v~ dimg (V2)+dimy Enda VAT (5], we
have obtained an algorithm to express those elements in the composition
algebra C(A) as linear combination of simple elements.

For affine Kac—Moody Lie algebra g, there exist imaginary roots.
Several authors have introduced imaginary root vectors for Uy(g) (see [3,
4, 6, 9]). Those imaginary root vectors cannot be obtained by Lusztig’s
operations.

Since the Auslander—Reiten quiver is a convenient tool to visualize the
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module category of a finite dimensional algebra, following Ringel [20], we
may ask what kind of information about those imaginary root vectors
in U;(g) can be read off from the Auslander—Reiten quiver of A, i.e.,
how to interpret those imaginary root vectors in the generic composition
algebra C(A).

In this paper, we answer this question for the special case of the
smallest tame hereditary algebra—the Kronecker algebra, i.e., we provide
a realization of all imaginary root vectors in the generic composition al-
gebra of this algebra. Moreover, an integral PBW-basis of this algebra
is obtained. The importance of the Kronecker algebra lies in the exis-
tence of a full exact embedding from the category of regular modules of
the Kronecker algebra to the category of regular modules of any tame
hereditary algebra with underlining quiver Ay, D, Egs, E; or Fg. The
corresponding quantum group is Ug(slz). Our result is based on the
representation theory of finite dimensional algebras.

The paper is organized as follows. In section 2 we give the defini-
tion of the Ringel-Hall algebra of the Kronecker algebra and recall basic
facts related to this algebra. We define and interpret the imaginary root
vectors of the composition algebra of the Kronecker algebra in section 3.
The main result of this section is the Theorem 3.7. By using a simple
combinatorial method we show that for all regular modules with fixed
dimension type nd = ndim S; + ndim Ss, the elements

Tn = Z u

V regular, dim V=nd

in H(A) coincide with the corresponding imaginary root vectors intro-
duced by Beck, Chari and Pressley [3]|, Gavarini [9], up to the scalar
v~2". In combination with Ringel’s result for preprojective and prein-
jective indecomposable modules, we get a complete set of root vectors in
C(A). Then, in section 4, we describe the commutation relations among
all root vectors based on the Auslander—Reiten quiver of the Kronecker
algebra and show that all coefficients involved belong to Z[v,v~1] and
can be calculated explicitly. In the final section we show the existence of
an integral PBW-basis in C(A).

Let us end this introduction with a summary of related works. The
PBW-basis of U] (slz) are constructed by Damiani in [6]. The imaginary
root vectors involved there are slight modification of E,s, n € N\ {0}, de-
fined in section 3. Zhang |24] constructed a PBW-basis of the untwisted
version of the composition algebra of the Kronecker algebra. Based on the
isomorphism between U(—;(Slg) and the generic composition algebra of the
Kronecker algebra (with respect to the twisted multiplication), we can in-
terpret the root vectors explicitly in terms of A—modules and then obtain
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the integral PBW-basis. Our results and Zhang’s results [24] both are
obtained via the Ringel-Hall algebra approach. Therefore, some of them
are equivalent but are based on different points of view and derived by
different methods. More recently, Baumann and Kassel [2] described the
Ringel-Hall algebra of the category of coherent sheaves on the projective
line and recovered Kapranov’s isomorphism between a certain subalge-
bra of this Ringel-Hall algebra and a certain “positive part” of Ug(sla).
In combination with the isomorphism between the generic composition
algebra C(A) and U/ (sl2), the real root vectors Epsiq, and the imagi-
nary root vectors E,s defined in Section 3 are related to the locally free
coherent sheaf and torsion sheaf, respectively. Some similar formulae are
obtained in this paper too.

After this paper was finished I became aware of Csaba Szanté’s preprint
“Hall polynomials and the Hall algebra of the Kronecker algebra" where
some similar results are obtained.

2. Ringel-Hall algebra of the Kronecker algebra

Most of the material on representation theory of finite dimensional alge-
bras used in this paper can be found in Ringel’s book [15].
From now on, let A be the Kronecker algebra over a finite field k with

the underlying quiver i<:% and let S7 and So be the simple A—modules.
Let P be the set of isomorphism classes of finite dimensional A-modules,
I = {1,2} C P the set of isomorphism classes of simple A-modules. We
choose a representative V, € « for any a € P. Given A—modules M
and N, let

(M, N) = dimg Homp (M, N) — dimy, Ext} (M, N).

Since A is hereditary, (M, N) depends only on the dimension vectors
dim M and dim N. The Euler form on Z[I| (= Go(A)) is defined by
(a, 8) = (Va,Vp), where o, 3 € P. The symmetric Euler form (—,—)
is given by (a, ) = (a, ) + (B,a) on Z[I]. The index set I and the
symmetric Euler form give a realization of a Cartan datum A whose

2 =2
symmetrizable Cartan matrix is <2 9 > .

Let R be a (commutative) integral domain containing Q(v), where
v? = q, ¢ = |k| and Q(v) is the field of rational function of v. The
Ringel-Hall algebra H(A) is by definition the free R—module on a set of
symbols u, (o € P), with an R-bilinear (twisted) multiplication defined
by setting
UqUg = vl®h) Z gé‘(ﬂuk, for all o, 8 € P,
AEP
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where gg 3 is the number of submodules X of V) such that V) /X and X lie
in the isomorphism classes a and (3, respectively. It is easy to verify that
H(A) is an associative N[/]-graded R—algebra with the identity element
ugp.
In Ringel-Hall algebra and quantum group, we use the notations
vt —v"

[n]zil: n—l_i_vn—?)_i_“'_’_v—n—&-l’
v =

) =TT ], and ] = o P

here, n, m are non—negative integers, and m < n.
Ringel [16, 18] has proved that the elements u;, i € I, satisfy the
quantum Serre relations

i {}uu]?’t 0

t=0

for any ¢ # j in I.

We denote by C(A) the R-subalgebra of H(A) which is generated by
ui,t € I: it is called the composition algebra of A.

Let k be the algebraic closure of k. For any n € N, let F(n) be a
subfield of k such that [F(n) : k] = n. If we define A(n) = A®y F(n), then
A(n) is a finite dimensional hereditary F'(n)-algebra corresponding to the
same Cartan datum as that of A. We also have the Ringel-Hall algebra
Hn = Hn(A(n)) of A(n). Define IT = [, ., Hp. Let v = (v,)n € II where
v, = /|F(n)|. Obviously v lies in the center of II and is transcendental
over the rational field Q. Let u; = (u;(n)), € II satisfy that w;(n) is the
element of H(A(n)) corresponding to V;(n), where V;(n) is the simple
A(n)-module which lies in the class i. The generic composition algebra
C(A) of the Cartan datum A is defined to be the subring of II generated
by Q, v, v=! and u; (i € I). Let U;;(;l\g) be the positive part of the
Drinfeld—Jimbo quantum group corresponding to the Cartan datum A.
A fundamental theorem of Green and Ringel concludes that the mapping
n: Ul (slz) — C(A) with n(E;) = u; (i € I) is a bijection of associative
algebras.

In the following, our results are stated only for the composition al-
gebra C(A). Without any changes, the same conclusions hold for the
corresponding generic composition algebra C(A).

For simplifying our notations, in this paper, we will use a; and as to
represent the isomorphism classes of simple modules S7 and Sy respec-
tively. Moreover, we still use a1 and «o as the dimension vectors dim S;
and dim Sy in Z[I]. Put 6 = aq + ag € Z[I].
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The Auslander—Reiten quiver of A consists of one preprojective com-
ponent, one preinjective component and a family of homogeneous tubes of
regular modules parameterized by the set of all monic irreducible polyno-
mials over k. The indecomposable preprojective and preinjective modules
have the dimension vectors nd + a; and nd + as with n € N, respectively.
Moreover, each indecomposable preprojective and preinjective module
can be uniquely determined by its dimension vectors. The indecompos-
able regular modules have the dimension vectors nd with n. € N\ {0}. For
convenience, we put V; =V, and Vo = V,,. So V,,, is simple projective
module and V,, is simple injective module.

Lemma 2.1. For any n, m € N, we have

dimy; Homa (Vistar, Vimsta,) = max{0,m —n+ 1},
dimg Homa (Vistas, Vinstas) = max{0,n—m+ 1},
dimg Exth (Vistar, Vimstay) = max{0,n—1—m},
dimg Exty (Vistas, Vimstan) = max{0,m —1—n}.

Let a, B, A € P. According to Peng [14] and Riedtmann [21], there is
a homological formula to calculate the filtration number 937 E

Lemma 2.2. For any V), V,, Vg € A~mod, we have

o [Exth(Va, Va)y || Auta(VA)]
908 = TRty (Vo) [| At (Vy) [ Homa (Va, V)|

where Ext/l\(VO“Vg)VA is the set of all exact sequences in Exty(Va, Vj)
with maddle term V.

For any A € P, we let ax = |Auty(V))|. The following lemma is
well-known (see [17]):

Lemma 2.3.

(1) Let Vy be an indecomposable A—module with dimy Endp V\ = s and
dimg rad Endp V) =t. Then ay = (¢°~' — 1)q".

(2) Let V) ~ @®i_;siVy, such that V), # Vy; for any i # j. Then
ax = q°Qsy ), @y, where s =37, 585 dimy, Homa (Vy,, V).

(3) Let Vy = sV, with EndyV, = F a field. Then ay = |GLs(F)| =
[Ticres(d® —d'=h), where d = |F| = gl

Ringel has pointed out in [20] that the Auslander—Reiten translates 7
and 77! play very important rule in Ringel-Hall algebras and quantum
groups. Recall that there exist two 7 orbits in the preprojective and
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preinjective component of A, i.e., 771 (Vys10,) =~ Vint2)+a1 T(Vistas) >

Vin+2)s+a, for n € N. For any regular module M, 7¥(M) ~ M. For any

A € P, define 7 (uy) in H(A) to be the element corresponding to X' € P

such that 7%(V3) € X. Moreover, we define 7% (u) = Z extE(uy) for
AEP

any element u = Z cyuy in H(A), where ¢y € R.

AEP
Since A is hereditary, we have the following well-known result:

Lemma 2.4.

(1) If both Vi, and Vg for a, B € P have no projective direct summands,
then in H(A) we have T(uqug) = T(ua)7(ug).

(2) If both Vo, and Vg for o, B € P have no injective direct summands,
then in H(A) we have 771 (uqug) =7 (ua)7 H(ug).

3. Quantum root vectors

According to Ringel [20], we can define the following root vectors in C(A)
which correspond to positive real roots:

El = Eal = u, E2 = EOCQ = Uz,

—dimg Vst aq +dimyg Enda (Vistaq)

Ensia, = v = 0 U544, for any n € N,

,U—dimk Vn5+a2 +dimy Endp (Vn5+a2 )

Erstas = 1)_2"um;+a2 for any n € N.

Note that by using the result of Ringel [20] and the result of Xiao [22],
the braid group actions defined by Lusztig in [12]| can be realized through
BGP-reflection functors. Hence, we know that the above real root vectors
were well-defined. Indeed, we have for i # j € {1,2}

Evnsta, = TiTT - Ti(Ej),
N————
n times
Ensra, = T 'T7 Tyt 17 (By)
n times

where T} and T3 are the braid group operations defined in [12].

Put
Tne = Z u

V regular, dim V=nd

for later use.
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Following Damiani [6] with a slight modification, we define the first
group of imaginary root vectors:

En5 = E(n—1)5+a2E1 — U_2E1E(n_1)5+a2 for n € N.

Later in Lemma 3.9, we will show that they are well defined .

The following two lemmas can be read off directly from the Auslander—
Reiten quiver of the Kronecker algebra without using the braid group
actions.

Lemma 3.1. Eg = EyF) — v 2E By = v 2rs.
Lemma 3.2. For any n € N, we have
[E5, Enotar] = [2Emt1)s+a1s
[En6+a27 E§] = [Q]E(n+1)5+a2‘

For future use, we need the notations of generalized permutations and
partitions.

Definition 3.3. If \; (i = 1,2,--- ,k), A, and [ are k + 2 nonnegative
integers such that Ay + Ao + - -- A = A < [, define

P(l,\)
Pl A, X, J M) i = —————
( s A1y A2y ) k) )\1'>\2‘>\k'
where P(l, \) = ———. For convenience, we write P(l; A\1, A, -+ , \x) =

=N
0 when [ < 0or A\; <O for some 1 <i < k.

We have the following result:

Lemma 3.4. If \; (i =1,2,--- k) and | are k + 1 nonnegative integers

such that | = Z;?:l Aj, then we have

k
P(L A, Agy -+ M) = P = 1A, Mg, oo, A — Lo, ).
j=1
Let IP,, be the set of all partitions of n and let p € IP,, be one partition.

Sometimes we use the notation which indicates the number of times each
integer occurs as a part:

p=(1M2% o)

where exactly A; of the parts of p are equal to ¢ with each \; nonnegative.
For the basic theory of partitions, the reader is referred to |1, 13]. Recall
that the length of the partition p, denoted by I(p), is the number of parts,

Le, I(p) =" N



X. CHEN 45

Lemma 3.5 (see [23]). In H(A), we have

5 _3p4+1 A1, A An
Eps =v™" > c(P)Ty5 754 T8
p=(1*12*2...p7n)cP,

) l(p)—1;)\1,)\2,...,)\j—l,...,)\n).

n
1
where c(p) = (—1)HP)—1 Z
j:
Remark 3.6. In [23], Zhang has calculated the term E(;,_1)54.q,E1 under
the untwisted multiplication. In the above lemma, we rewrite Zhang’s
result under the twisted multiplication in a simple combinatorial form.

Following [3, 9], we introduce another group of imaginary root vectors
E,s in Ringel-Hall algebra H(A) by Eps = 1 and

n—1

1 _
Ens = [ ZU ZE‘n 16E25 ZU Z5E(n 7)o

The following is the main result of this section:
Theorem 3.7. For any n € N\ {0}, in H(A) we have E,s = v~ 2"rs.

Proof. To show the equality in the theorem is true, we only need to find
the coefficient of the term ri‘ng‘g . rig Correspgnding to the partition
p = (1M2%...nM) in each multiplication v_iE(n,i)(;Eig for 0 < i <
n — 1, and then combine all these coefficients.

When i # 0, the term Ej;5 = v~ 2%r;s will contribute one copy of r;s
for the term ri‘g 7‘5\5 rgg Then at first we should find the coefficient of

A1 A2 Ai—1 An s ~ . . .
T15T95 " Tis -rr5in term E,_;)s. For convenience, in the expression

of each term E(n_l)(;, we will consider the index set P,_; as a subset of
P,, by adding (n —)°(n — i+ 1)°---n° to each partition of P,,_;.

. I = :
The coefficient of the term ri\grg‘g . rgg in —v""E_isEis is

]
L iy 23—+ _q)i(p)-2
— ZU iy—3(n—i ( )p
[n]
1711
( 21_v2 (P) =2 A, 0, A — 1 =1, A
7=1
+ 1_“2P(l() 2: A1, A A2,
1—’[]2 p b 17 27"'7"'7 1 AR | n
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When ¢ = 0, the coefficient is

1
Dk

1—
p Bt (L 1)iP)- 121 ”2 (P) = LA, A2y A — 1,y An).
— v

If i(p) > 1, for all 1 < j <n, we will use the following equality

P(p) — LA, Ao, A — 1,000, )
7j—1

= P(l(p)—2;)\1,)\2,...,Ak—1,...,)\j—1,...,)\n)

k=1
+ P(l(p)—2;)\1,)\2,...,)\j—2,...,)\n)
+ P(l(p)—2;)\1,)\2,...,/\]'—1,...,/\k—1,...,>\n)
k=j+1
n—1

1 L
Then in ﬁ Z v "E(n_i)sEis, we cancel all the terms corresponding
n
i=0
to the partitions p € P, with I(p) > 1
The only exception in the calculation is the term r,s corresponding

1 - 1 -
to partition p = (1°2°-..n!) that appears in WE"‘;E% = mEm; only.
It follows that
1 _apq1—02" _
En6 = mv 3n+1 = 1)2 Thns = U 2”7"“5.
O

Corollary 3.8. For anyn, m € N, we have [E [ nés Em(;] = 0= [Ens, Ems]-

Proof. The statement follows immediately from the fact r,57ms = r'msTns-
O

Another immediate consequence of the above theorem is that E,s (or

Tne) is in C(A).
Lemma 3.9. For anyn € N and 0 <1 < n, we have
Eni1)s =Emois+as Bistar — V> Eistor Eni)s+as-

Proof. By definition, we know that E(n+1)5 = EnstanE1 — Vv 2E1Engya,-
If n = 0, the equality is nothing but the definition. Put n > 1. First of
all, we will show

(*) En5+a2E1_U_2E1En6+a2 = E(n—l)(5+a2E(5+a1 _U_2E5+041E(n—1)6+a27
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after that we can apply the Auslander-Reiten translate 7% on both sides
of the above equality. Using Lemma 3.2, we have

Eu-1)6+a3Es+ar — vV Esta1 En-1)6+as

1 - 1 -
- E(”—1)5+a2(mEéE1 - EEIE&)
BBy - LB E
R Ty e
1 - 1 . 1.
— mE(nfl)(;JrazE&El - mEaE(nq)aJraQEl - mEéE(nfl)EJrazEl
1 - 1 -
_EE(”_1)5+Q2E1E(5 - U_2mE6E1E(n—1)6+a2
- 1 ~
+U_2_E1E5E(n—1)5+o¢2 _ U_Q_ElE(n_1)6+a2E6
2] 2]
1 ~
1 L L
= m(E(nfl)éJraQEa - E5E(n71)6+a2)E1 + EEéE(nfl)éJraQEl

1 - G MY
_ CDstay s el -
En-1)s+a, E1Es —v EsE1E(n—1)s+as
2] [2]
1 - -

—2

— — F(F FEs — EsE
2
v o] HEm—1)s+as 6 = EsE(n—1)5+as)

91 ~
+v 27E1E(n—1)5+a2E5

[2]
- En5+a2El - U_2E1En5+a2
1 - _
+EE6(E(TL—1)§+0¢2E1 —v 2E1E(n_1)5+a2)
1 _ -
_E(E(n—l)(s-i-o@El — Vv ?E1E(y 1)51a0) Es
= E E, —v2E\E N L ok
= LDngtas i1 — 15n6+ay T m s L(n—1)5 — m t(n—-1)s

_ 1.~ =
= Bpsyarbr —v 2E1En5+a2 + E[Efs’ E(nfl)é]-
By corollary 3.8, we know that [Eg,EN(n,l)(;] = 0. The equality (%)
follows.
If n > 1 and for any k£ < |%], by Lemma 2.4, we can apply the
Auslander-Reiten translate 7! on the left hand side of the equality (x)



48 ROOT VECTORS OF COMPOSITION ALGEBRA

k times. Then,

T_k(E(n+1)5) = T_k(En(S-l—ongl) -T k( 2E1En5+a2)
= T_k(EmH-az)T_k(El) _U_27-_k( ) k( n5+a2)'

Ifn—1>1and k< {"T_IJ, we can apply 77! on the right hand side
of the equality (%) k times. Then,

T_:(E(n-I—l)E) = T_k(E(n 1)6+a2E5+a1) —77*w _1E5+041E(n—1)6+a2)
= T (E(n—1)5+az) (E5+Ot1) —v7%r (E5+041) a (E(n—1)6+a2)'

Based on the Auslander—Reiten quiver of the Kronecker algebra, it is
easy to see that the following identities hold in the Ringel-Hall algebra
H(A):

T k( (n+1)8 5) = E(n-i—l)é»

T k(E ) = EagotarsT " (Estar) = Eq1ok)stars

T k( n§+o¢z) = E(n 2k)d+az>s when k < \_TLJ

T k( (n—1 (5-1—042) - E(n 1-2k)d+az>s when £ < |_le

According to the above facts, it is immediate to show that

Eni1)s = En-i)stas Pistar = V" Eiston Bin—i)s+as

forany n € Nand 0 <1i¢ < n. O

4. Commutation relations

Lemma 4.1. For any m € N, we have
2
E(m+1)6+a1Em5+a1 = v Em6+a1E(m+1)5+a1
Em6+a2E(m+1)6+a2 - UQE(m+l)5+a2Em6+a2~

Proof. The claim is an immediate consequence of Lemma 2.1, Lemma 2.2
and Lemma 2.3. O

Proposition 4.2. For any n, m € N, and n > m, we have

2
En5+a1Em6+a1 = Z aé 7m)E(m+h)5+oz1E(n7h)6+a17
=0
%5
Em§+a2En6+a2 = aénim)E(nfh)(HazE(m+h)6+a2
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where
aén_m) =2 ifh=0
agn_m) =2t —1) if0<h< S
a,(ln_m) =020 D(2 —1) if0<h=15

3

;
3

Proof. We only prove the first equality, the proof for the second equality
is similar. It is well-known that for the Kronecker algebra, each inde-
composable preprojective module has the dimension vector 1§ + a1 with
l € N. Given any two indecomposable preprojective modules V,54,, and
Vino+a,, the extension of V544, and V514, is a preprojective module
also.

By Lemma 2.1, we have the short exact sequence

0— Vm§+a1 - ‘/(erh)(SJral D v(nvh)6+a1 — Vastas — 0
and the split exact sequence

0— ‘/(nfh)5+a1 - Wm+h)5+a1 D ‘/(nfh)5+a1 - Wm+h)5+a1 —0

where n >m and 0 < h < |57 ].
By definition, we know

Uns+o1 Umd+oq
[75™]
- (né+aq,mé+ai) Z ((m+h)d+a1)@((n—h)é+a1)
= v gn5+o¢1,m6+o¢1 U(m~+h)o+a1B(n—h)d+a
h=0

and

U(mA4-h)s+ar Y(n—h)d+ay
1) ,(n—h)é m+h)d+a1)®((n—h)d+a
v<(m+h) tor Y +a1)ggn+h)t)5+a1f()n—(§z)§+<)n 1)u(m+h)5+ﬂ<1@(n—h)5+a1'
It is easy to check that (nd + a;,md + a1) = —n+m+ 1 and ((m +
h)o + a1, (n—h)d + ) =n—m —2h + 1.
Put V =V in)s+ar © Vin-n)s+a,- By Lemma 2.2, we know that
((m+h)5+ar)@((n—h)é+a1)
nd+aq,mé+aq
_ |EXt11\(Vn5+a1 ) Vm6+a1)VH AUtA(V)‘
| At (Vistan) || Auta (Vinstar ) || Homa (Vastar s Vinotad )|

We know that | Auty(Visiay)| = | Auta(Vinsia,)| = ¢—1 =02 =1
and Homa (Vistays Vins+a,) = 0. By Lemma 2.3, we have
|AutA(V)’ — qdlmk HOm(Vv(m+h)§+o¢1 »Vv(n—h)é-&-al)(q _ 1)(q _ 1)
= ¢ g - 1) (g - 1)



50 ROOT VECTORS OF COMPOSITION ALGEBRA

Since EXt/l\(‘/(erh)éJralv Vin—h)s+a;) = 0, we have

((mth)stan)e((n—h)otan) _ |
(m~+h)d+ai,(n—h)d+aq -5

and thus,

—(n—m—?h—i—l)u

U(m4-h)o+a1®(n—h)d+a; — U (m+h))d+a1 Y(n=h)d+az -

Then, we have

Uns+a; Umd+aq

n

Sy
i g((m+h)5+a1)€9((n—h)6+al)
h=0

L
— v<n5+o¢1,m6+a1)

né+ai,mé+a U(m+h)s+a1®(n—h)d+ai
L%5")
= ,U—n-i-m—I—l Z ’EXt/l\(VmH-OélvVmé-‘roq)V<m+h>6+a1@v(n_h)6+al|
h=0
qnim72h+1u(m+h)5+a1@(nfh)éJral
===
— 'U_”-i-m-f-l Z |EXt/1\(Vn5+O“’Vm6+a1)‘/(m+h)6+a1@v(n—h)6+a1
h=0
g I T g ot U)o
%™
— 1)_2(h—1) Z |EXt}X(Vn6+O¢1,Vm6+a1)‘/(m+h)5+a1@Wn—h)5+a1
h=0

U(m+h))o+a1 Y (n—h)d+a -

If h =0, we have |Extk (Visiar, Vins+ar )y = 1, then aénfm) =02

If 0 < h < 257, we have [Ext} (Vistar Vinstan )y | = ¢ — 20D =
v =1 (p* — 1), then agln_m) = 2Dyt - 1),

If h = %5™, we have |Exth (Vistay s Vinsta1)v| = ¢
v =1 (p2 — 1), then ag%m) = (=D (y2 —1).

Since Eisia, = v 2usiq, for all t > 0, the first equality follows
immediately. O

2(h—1)+1 _ g2(h=1) _

Proposition 4.3. For any n,m € N, we have

En6+a2 Em5+a1

=2 )\1 )\2 >\n+m+l
=0 “Enstar Fnita, + Z CPElé E26 o E(n+m+l)(5

PEPtm+1
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where p = (121222 ... (n 4+ m + 1))‘"“”“) and cp = v~ m(—1)HP)-1.
n+m-+1 1— Uzj

( Z 1 — 2 P(l(p) - 1;)‘17)\27"’ ))\j - 17"‘ ,>\n+m+1)).
7=1

Proof. The clam is an immediate consequence of Lemma 3.5, Theorem 3.7
and Lemma 3.9. O

Proposition 4.4. Let n,m € N. Then,

nod s Em5+a1]

3 —

I
—

U2(k71)(7)2 . 1}72)E(k+m)§+a1E~l(n7k)5 + p2(n=1) [Q]E(m+n)6+a17

I
(]

=

mé+asg Ené]

S

i
L

= VED (0 =07 E_iys Eppmstaz + V2 2B (ntm)staq-

i
I

Proof. To prove the claim, we need to prove the following equalities at
first:

(1) [Ens, B
n—1
= Z v E D (02 =072 Egsyon En_iys + vV (2] Bpstan,
k=1
(2) [En57 E5+a1]
n—1
= Z v ED (2 — v"?) Elet1)54a1 En—kys + UQ(nfl)[2]E(n+1)6+a1=
k=1
(3)  [E2, Ens]
n—1
=> *F VW — 0 ) E s Ersrar + 0" V(2] Ensay,
k=1
(4) [EtH-az: Ené]

n—1
=Y 0 D0 — 0 ) E s Bt )40z + 07D 21 Bt 1)54as-
=1

Then, applying 7—! for (1) and (2) and 7 for (3) and (4), we can
complete the proof. By duality, we only prove (1) and (2). We will prove
them simultaneously by induction on n.

By Lemma 3.9, we have
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[Emia El]

(E(n-2)5+asEstar — v *Estar E(n—2)5+as) E1

—E\(E(n-2)510 EBstar =V Bstar Bin—2)54a5)

En-2)54asV"E1Es 10, — v *Estar (En—1)s + v E1E(n_2)540s)
—(—v*E-1)5 + V¥ En-5+0s E1) Estay + v 20 2 Es oy B1E(-9)61a0
—v ?Esya, E(nq)a + U2E(n4)5E5+a1

UQ[E(nfl)éa Esta,] + (7)2 - 072)E5+a1E~(n71)6

and
[Ens, Esta]
= (Ep-3)5t+asFrstar — v Eastar En—3)5+as) Fotar
—Es 1oy (En-3)5+asFB2+01 — v > Essyay B(n—3)5+as)
= V[Ep-1)s B2star] + (v® = 07%) Basya, En1)s,
from which the claim follows immediately:. O

Proposition 4.5. Let n,m € N. Then,

[Enéa Em6+a1]
n—1 m+n
Z[n +1- k]E(ernfk)éJrunEle N Z [1 —m+ i]Ei5+a1E(m+n*i)57
k=0 i=m+1
[Em5+a27 En&]
n—1 m+n
[0+ 1= KEbEmin—k)star = D (1= m+ il Epmin—isEistas
k=0 i=m-+1

Proof. We only prove the first equality. By using analogous method we
can show the second one. By the same reason as stated in Proposition 4.4,
it is sufficient to prove the following;:

(1) [Ens, B
n—1 n
= Z[TL +1- k]E(n—k)5+a1Ek5 = Z[l + i]Ei5+a1E(n—i)57
k=0

= =1
(2) [En5a E5+Oé1]
n—1 14+n

= n+ 1= KEuin—t)srar Brs = Y i Eis o Ban—is
k=0 i—2
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We will prove (1) by induction on n. The proof of (2) is similar.
By Lemma 3.2, we know that [Es, E1] = [2]Esiq, and [Es, Esiq,] =
[2] E2s4a,- Since Ejs = Ej, the claim is true for n = 1.

1 S

By definition, we know that E,s = m Z VT Eis B

=1

Then, we have that

n

1 I—N[ I
[Ens, En] = ] Z’U [Eis En—i)s: E1]
i=1

1 . )
= mZv’ (Eis[En—)s, E1] + [Eis, B1] E(n_i)s)-
=1

By induction and Proposition 4.4, we obtain that

[E §» El]
1 no n—i—1
= (X 1ok
1=1 k=0
(Z v2(h—1) (Q}z — U_Q)E(h—i—n i— k)5+alE( )6Ek6)>
n—i—1 .
Z V(Y =i+ 1= K V2B ks ay Brs)
k=0
n—i—1 ~
Z v n Z n—i1+1— k]E(n—ifk)5+a1E’i5Ek5)
k=0

n

1
1 . -
+m S oD D = 07?) Bistay B En—iys)

%
=1 =1

Zvl n (= 1) ]Ei5+041E(n—i)5)'

After arranging the index sets of each term appeared in the above
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summation, we have that

[En(57 El]
1 n—1 n—i
= m Z Ei5+041 (
=1 7j=1
i—1

( 2D U= (2 — 7 2) i — t 4 1])Ej5E(n,jfi)5>
t

I
MR

i—1

(O v M2 D 1)) Bisya, Egnlis
=1

+
==

~
||
N

—_

n—i

(i + 1 Eissar (Y 0V EjsEn-j-i)5))
j=1

3

S|~
g

<
Il
_

_l’_

]

3

1« S (i) (20 -2\ F
+m Eisray (Y 000 (0% — 0™ Ejs B j_iys))
i—1 j=1

1 - i—n i—
o7 2o IR Bt i)
=1

n—i

1 Ny
By using E¢, ;)5 = =4 ZU]_(n_Z)Ez‘(sE(n_i)(s, we can simplify
7=1

the above equality. We omit the detail of calculating the coefficient of
each term appeared in the above equality. The coefficient of the term

EisE(n,—i) is [ + 1]. The proof is completed. O

5. An integral Poincaré—Birkhoff-Witt basis

Let us summarize the results of proceeding paragraphs. Firstly, we define
a total order on ®* adapted for the structure of the Auslander-Reiten
quiver of the Kronecker algebra. The order is given by

ap<dt+ap<--<(n—1)0+a<nit+a; < <I<2§<---
<(m=1)<nd< - <nd+ay<(n—1)0+ay < <d+a < as.

t
For any root vector F,, consider the element EL(f) = % These

elements are called divided powers. Let A = Z[v,v~!], and let C,(A) be
the A-subalgebra of C(A) generated by the elements Ei(t). We obtain the

following result.
Theorem 5.1. The set Bt = {Eé:l)Eé?)---Eg:)]n e NG < B <
< < B € DT} ds an A-basis of Cy(A).
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Proof. Tt is more or less the same as Theorem 2 in [3] or Theorem 5.1
in [24]. O

The imaginary root vectors play a very important rule for the canon-
ical basis of quantum groups. Beck, Chari and Pressley [3] gave an alge-
braic characterization of the affine canonical basis by its behavior with
respect to a symmetric bilinear form. They used the theory of symmetric
functions [24] to modify the imaginary root vectors E,s in order to get
the canonical basis. In [19], Ringel defined a symmetric bilinear form on
Ringel-Hall algebra as follows: For o, 3 € P, let

Lol ifq =g
Ug, UG) = o )
(ta ﬁ) 0 otherwise

The coefficients Vi are crucial in Lusztig’s description of the canonical

basis of quantum gzroups. An open problem is how to realize the canonical
basis of the composition algebra of the Kronecker algebra based on the
realization of the imaginary root vectors shown in this paper.
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