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Abstract. According to the canonical isomorphism between

the positive part U+

q
(g) of the Drinfeld–Jimbo quantum group

Uq(g) and the generic composition algebra C(∆) of Λ, where the

Kac–Moody Lie algebra g and the finite dimensional hereditary al-

gebra Λ have the same diagram, in specially, we get a realization

of quantum root vectors of the generic composition algebra of the

Kronecker algebra by using the Ringel–Hall approach. The com-

mutation relations among all root vectors are given and an integral

PBW–basis of this algebra is also obtained.

1. Introduction

According to Lusztig [12], a Cartan datum is a pair ∆ = (I, ( , )) con-
sisting of a finite set I and a symmetric bilinear form on the free abelian
group Z[I]. It is assumed that (a) (i, i) ∈ {2, 4, 6, . . . } for any i ∈ I;

(b) 2 (i,j)
(i,i) ∈ {0,−1,−2, . . . } for any i 6= j in I. Denote aij = 2 (i,j)

(i,i) , then

C = (aij)i,j∈I is a symmetrizable Cartan matrix. Let g be symmetrizable
Kac–Moody Lie algebra of type ∆ = (I, ( , )) (see [11]). We denote by
Φ+ the set of all positive roots of g with respect to a set of simple roots
αi for all i ∈ I.

According to a result of Ringel [19], for any Cartan datum ∆ and any
finite field k, there exists a finite dimensional hereditary k–algebra Λ such
that the isomorphism classes of simple Λ–modules are in bijective with
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the index set I and moreover, together with the symmetric Euler form
( , ) of Λ defined on the Grothendieck group G0(Λ) give a realization
of ∆. By definition, G0(Λ) is the abelian group of all finite dimensional
Λ–modules modulo exact sequences and can be identified with Z[I] in a
natural way. For any Λ–module M , the corresponding element in G0(Λ)
is given by the dimension vector dimM =

∑
i∈I [M : Si]dimSi, where

[M : Si] is the Jordan–Hölder multiplicity of Si in M . It is also known
from [7, 8] that there is a surjective map from the isomorphism classes of
the indecomposable Λ–modules to Φ+, by mapping the isomorphism class
of an indecomposable Λ–module M onto

∑
i∈I [M : Si]αi. This surjection

induces a bijection between the isomorphism classes of indecomposable
Λ–modules of discrete dimension types and the positive real roots. More-
over, there exists a family of non–isomorphic indecomposable Λ–modules
corresponding to the positive imaginary roots of ∆ if ∆ is not of finite
type.

Let Q(v) be the field of rational function in the variable v. The
quantized enveloping algebra Uq(g), q = v2, is defined as the Q(v)–
algebra generated by elements Ei, Fi, Ki and K−i, i ∈ I, with the well–
known defining relations.

According to Lusztig [12], there exists an action of the braid group
corresponding to ∆ on Uq(g). Applying the standard generators Ti, i ∈ I,
of the braid group to the generators of Uq(g) in an admissible order, we
obtain a family of linearly independent elements in U+

q (g). Since those
elements degenerate into a basis of ⊕α∈Φ+

real

gα by the specialization q → 1,

we call these elements the real root vectors of U+
q (g). If ∆ is of finite

type they provide a complete set of root vectors.

Based on Lusztig’s work [12], Green [10] proved that the positive part
U+

q (g) of Uq(g) is isomorphic to the generic composition algebra C(∆) of
Λ (see Section 2 for definition) if g and Λ have the same Cartan datum.

Ringel [20] gave an explanation for the root vectors obtained by
Lusztig’s braid group action in terms of the Ringel–Hall algebra H(Λ).
He showed that for preprojective and preinjective indecomposable Λ–
modules Vλ, the elements uλ in H(Λ) coincide with the corresponding real
root vectors in U+

q (g), up to the scalar v− dimk(Vλ)+dimk EndΛ Vλ . In [5], we
have obtained an algorithm to express those elements in the composition
algebra C(Λ) as linear combination of simple elements.

For affine Kac–Moody Lie algebra g, there exist imaginary roots.
Several authors have introduced imaginary root vectors for Uq(g) (see [3,
4, 6, 9]). Those imaginary root vectors cannot be obtained by Lusztig’s
operations.

Since the Auslander–Reiten quiver is a convenient tool to visualize the
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module category of a finite dimensional algebra, following Ringel [20], we
may ask what kind of information about those imaginary root vectors
in U+

q (g) can be read off from the Auslander–Reiten quiver of Λ, i.e.,
how to interpret those imaginary root vectors in the generic composition
algebra C(∆).

In this paper, we answer this question for the special case of the
smallest tame hereditary algebra–the Kronecker algebra, i.e., we provide
a realization of all imaginary root vectors in the generic composition al-
gebra of this algebra. Moreover, an integral PBW–basis of this algebra
is obtained. The importance of the Kronecker algebra lies in the exis-
tence of a full exact embedding from the category of regular modules of
the Kronecker algebra to the category of regular modules of any tame
hereditary algebra with underlining quiver Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8. The
corresponding quantum group is Uq(ŝl2). Our result is based on the
representation theory of finite dimensional algebras.

The paper is organized as follows. In section 2 we give the defini-
tion of the Ringel–Hall algebra of the Kronecker algebra and recall basic
facts related to this algebra. We define and interpret the imaginary root
vectors of the composition algebra of the Kronecker algebra in section 3.
The main result of this section is the Theorem 3.7. By using a simple
combinatorial method we show that for all regular modules with fixed
dimension type nδ = ndimS1 + ndimS2, the elements

rnδ =
∑

V regular, dim V =nδ

u

in H(Λ) coincide with the corresponding imaginary root vectors intro-
duced by Beck, Chari and Pressley [3], Gavarini [9], up to the scalar
v−2n. In combination with Ringel’s result for preprojective and prein-
jective indecomposable modules, we get a complete set of root vectors in
C(∆). Then, in section 4, we describe the commutation relations among
all root vectors based on the Auslander–Reiten quiver of the Kronecker
algebra and show that all coefficients involved belong to Z[v, v−1] and
can be calculated explicitly. In the final section we show the existence of
an integral PBW–basis in C(∆).

Let us end this introduction with a summary of related works. The
PBW–basis of U+

q (ŝl2) are constructed by Damiani in [6]. The imaginary

root vectors involved there are slight modification of Ẽnδ, n ∈ N\{0}, de-
fined in section 3. Zhang [24] constructed a PBW–basis of the untwisted
version of the composition algebra of the Kronecker algebra. Based on the
isomorphism between U+

q (ŝl2) and the generic composition algebra of the
Kronecker algebra (with respect to the twisted multiplication), we can in-
terpret the root vectors explicitly in terms of Λ–modules and then obtain
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the integral PBW–basis. Our results and Zhang’s results [24] both are
obtained via the Ringel–Hall algebra approach. Therefore, some of them
are equivalent but are based on different points of view and derived by
different methods. More recently, Baumann and Kassel [2] described the
Ringel–Hall algebra of the category of coherent sheaves on the projective
line and recovered Kapranov’s isomorphism between a certain subalge-
bra of this Ringel–Hall algebra and a certain “positive part” of Uq(ŝl2).
In combination with the isomorphism between the generic composition
algebra C(∆) and U+

q (ŝl2), the real root vectors Enδ+α1 and the imagi-
nary root vectors Enδ defined in Section 3 are related to the locally free
coherent sheaf and torsion sheaf, respectively. Some similar formulae are
obtained in this paper too.

After this paper was finished I became aware of Csaba Szántó’s preprint
“Hall polynomials and the Hall algebra of the Kronecker algebra" where
some similar results are obtained.

2. Ringel–Hall algebra of the Kronecker algebra

Most of the material on representation theory of finite dimensional alge-
bras used in this paper can be found in Ringel’s book [15].

From now on, let Λ be the Kronecker algebra over a finite field k with

the underlying quiver
1
•⇐=

2
• and let S1 and S2 be the simple Λ–modules.

Let P be the set of isomorphism classes of finite dimensional Λ–modules,
I = {1, 2} ⊂ P the set of isomorphism classes of simple Λ–modules. We
choose a representative Vα ∈ α for any α ∈ P. Given Λ–modules M
and N , let

〈M, N〉 = dimk HomΛ(M, N) − dimk Ext1Λ(M, N).

Since Λ is hereditary, 〈M, N〉 depends only on the dimension vectors
dimM and dimN. The Euler form on Z[I] (= G0(Λ)) is defined by
〈α, β〉 = 〈Vα, Vβ〉, where α, β ∈ P. The symmetric Euler form (−,−)
is given by (α, β) = 〈α, β〉 + 〈β, α〉 on Z[I]. The index set I and the
symmetric Euler form give a realization of a Cartan datum ∆ whose

symmetrizable Cartan matrix is

(
2 −2
−2 2

)
.

Let R be a (commutative) integral domain containing Q(v), where
v2 = q, q = |k| and Q(v) is the field of rational function of v. The
Ringel–Hall algebra H(Λ) is by definition the free R–module on a set of
symbols uα (α ∈ P), with an R-bilinear (twisted) multiplication defined
by setting

uαuβ = v〈α,β〉
∑

λ∈P

gλ
αβuλ, for all α, β ∈ P,
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where gλ
αβ is the number of submodules X of Vλ such that Vλ/X and X lie

in the isomorphism classes α and β, respectively. It is easy to verify that
H(Λ) is an associative N[I]–graded R–algebra with the identity element
u0.

In Ringel–Hall algebra and quantum group, we use the notations

[n] =
vn − v−n

v − v−1
= vn−1 + vn−3 + · · · + v−n+1,

[n]! =
∏s

r=1 [r] , and
[n
m

]
=

[n]!

[m]![n − m]!
,

here, n, m are non–negative integers, and m < n.
Ringel [16, 18] has proved that the elements ui, i ∈ I, satisfy the

quantum Serre relations

3∑

t=0

(−1)t
[3
t

]
ut

iuju
3−t
i = 0

for any i 6= j in I.
We denote by C(Λ) the R–subalgebra of H(Λ) which is generated by

ui, i ∈ I: it is called the composition algebra of Λ.
Let k̄ be the algebraic closure of k. For any n ∈ N, let F (n) be a

subfield of k̄ such that [F (n) : k] = n. If we define Λ(n) = Λ⊗kF (n), then
Λ(n) is a finite dimensional hereditary F (n)–algebra corresponding to the
same Cartan datum as that of Λ. We also have the Ringel–Hall algebra
Hn = Hn(Λ(n)) of Λ(n). Define Π =

∏
n>0 Hn. Let v = (vn)n ∈ Π where

vn =
√
|F (n)|. Obviously v lies in the center of Π and is transcendental

over the rational field Q. Let ui = (ui(n))n ∈ Π satisfy that ui(n) is the
element of H(Λ(n)) corresponding to Vi(n), where Vi(n) is the simple
Λ(n)–module which lies in the class i. The generic composition algebra
C(∆) of the Cartan datum ∆ is defined to be the subring of Π generated

by Q, v, v−1 and ui (i ∈ I). Let U+
q (ŝl2) be the positive part of the

Drinfeld–Jimbo quantum group corresponding to the Cartan datum ∆.
A fundamental theorem of Green and Ringel concludes that the mapping
η : U+

q (ŝl2) → C(∆) with η(Ei) = ui (i ∈ I) is a bijection of associative
algebras.

In the following, our results are stated only for the composition al-
gebra C(Λ). Without any changes, the same conclusions hold for the
corresponding generic composition algebra C(∆).

For simplifying our notations, in this paper, we will use α1 and α2 to
represent the isomorphism classes of simple modules S1 and S2 respec-
tively. Moreover, we still use α1 and α2 as the dimension vectors dimS1

and dimS2 in Z[I]. Put δ = α1 + α2 ∈ Z[I].
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The Auslander–Reiten quiver of Λ consists of one preprojective com-
ponent, one preinjective component and a family of homogeneous tubes of
regular modules parameterized by the set of all monic irreducible polyno-
mials over k. The indecomposable preprojective and preinjective modules
have the dimension vectors nδ +α1 and nδ +α2 with n ∈ N, respectively.
Moreover, each indecomposable preprojective and preinjective module
can be uniquely determined by its dimension vectors. The indecompos-
able regular modules have the dimension vectors nδ with n ∈ N\{0}. For
convenience, we put V1 = Vα1 and V2 = Vα2 . So Vα1 is simple projective
module and Vα2 is simple injective module.

Lemma 2.1. For any n, m ∈ N, we have

dimk HomΛ(Vnδ+α1 , Vmδ+α1) = max{0, m − n + 1},
dimk HomΛ(Vnδ+α2 , Vmδ+α2) = max{0, n − m + 1},
dimk Ext1Λ(Vnδ+α1 , Vmδ+α1) = max{0, n − 1 − m},
dimk Ext1Λ(Vnδ+α2 , Vmδ+α2) = max{0, m − 1 − n}.

Let α, β, λ ∈ P. According to Peng [14] and Riedtmann [21], there is
a homological formula to calculate the filtration number gλ

α,β :

Lemma 2.2. For any Vλ, Vα, Vβ ∈ Λ–mod, we have

gλ
α,β =

|Ext1Λ(Vα, Vβ)
Vλ
||AutΛ(Vλ)|

|AutΛ(Vα)||AutΛ(Vβ)||HomΛ(Vα, Vβ)|

where Ext1Λ(Vα, Vβ)
Vλ

is the set of all exact sequences in Ext1Λ(Vα, Vβ)
with middle term Vλ.

For any λ ∈ P, we let aλ = |AutΛ(Vλ)|. The following lemma is
well-known (see [17]):

Lemma 2.3.

(1) Let Vλ be an indecomposable Λ–module with dimk EndΛ Vλ = s and
dimk radEndΛ Vλ = t. Then aλ = (qs−t − 1)qt.

(2) Let Vλ ≃ ⊕t
l=1slVλl

such that Vλi
6≃ Vλj

for any i 6= j. Then
aλ = qsas1λ1 · · · astλt

, where s =
∑

i6=j sisj dimk HomΛ(Vλi
, Vλj

).

(3) Let Vλ = sVρ with EndΛ Vρ = F a field. Then aλ = |GLs(F )| =∏
1≤t≤s(d

s − dt−1), where d = |F | = q[F :k].

Ringel has pointed out in [20] that the Auslander–Reiten translates τ
and τ−1 play very important rule in Ringel–Hall algebras and quantum
groups. Recall that there exist two τ orbits in the preprojective and
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preinjective component of Λ, i.e., τ−1(Vnδ+α1) ≃ V(n+2)δ+α1
, τ(Vnδ+α2) ≃

V(n+2)δ+α2
for n ∈ N. For any regular module M , τ±(M) ≃ M . For any

λ ∈ P, define τ±(uλ) in H(Λ) to be the element corresponding to λ′ ∈ P

such that τ±(Vλ) ∈ λ′. Moreover, we define τ±(u) =
∑

λ∈P

cλτ±(uλ) for

any element u =
∑

λ∈P

cλuλ in H(Λ), where cλ ∈ R.

Since Λ is hereditary, we have the following well–known result:

Lemma 2.4.

(1) If both Vα and Vβ for α, β ∈ P have no projective direct summands,
then in H(Λ) we have τ(uαuβ) = τ(uα)τ(uβ).

(2) If both Vα and Vβ for α, β ∈ P have no injective direct summands,
then in H(Λ) we have τ−1(uαuβ) = τ−1(uα)τ−1(uβ).

3. Quantum root vectors

According to Ringel [20], we can define the following root vectors in C(Λ)
which correspond to positive real roots:

E1 = Eα1 = u1, E2 = Eα2 = u2,

Enδ+α1 = v−dimkVnδ+α1
+dimk EndΛ(Vnδ+α1

) = v−2nunδ+α1 for any n ∈ N,

Enδ+α2 = v−dimkVnδ+α2
+dimk EndΛ(Vnδ+α2

) = v−2nunδ+α2 for any n ∈ N.

Note that by using the result of Ringel [20] and the result of Xiao [22],
the braid group actions defined by Lusztig in [12] can be realized through
BGP–reflection functors. Hence, we know that the above real root vectors
were well–defined. Indeed, we have for i 6= j ∈ {1, 2}

Enδ+α1 = T1T2T1 · · ·Ti︸ ︷︷ ︸
n times

(Ej),

Enδ+α2 = T−1
2 T−1

1 T−1
2 · · ·T−1

i︸ ︷︷ ︸
n times

(Ej)

where T1 and T2 are the braid group operations defined in [12].

Put

rnδ =
∑

V regular, dim V =nδ

u

for later use.
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Following Damiani [6] with a slight modification, we define the first
group of imaginary root vectors:

Ẽnδ = E(n−1)δ+α2
E1 − v−2E1E(n−1)δ+α2

for n ∈ N.

Later in Lemma 3.9, we will show that they are well defined .
The following two lemmas can be read off directly from the Auslander–

Reiten quiver of the Kronecker algebra without using the braid group
actions.

Lemma 3.1. Ẽδ = E2E1 − v−2E1E2 = v−2rδ.

Lemma 3.2. For any n ∈ N, we have

[Ẽδ, Enδ+α1 ] = [2]E(n+1)δ+α1
,

[Enδ+α2 , Ẽδ] = [2]E(n+1)δ+α2
.

For future use, we need the notations of generalized permutations and
partitions.

Definition 3.3. If λi (i = 1, 2, · · · , k), λ, and l are k + 2 nonnegative
integers such that λ1 + λ2 + · · ·λk = λ ≤ l, define

P(l; λ1, λ2, · · · , λk) :=
P(l, λ)

λ1!λ2! · · ·λk!

where P(l, λ) =
l!

(l − λ)!
. For convenience, we write P(l; λ1, λ2, · · · , λk) =

0 when l < 0 or λi < 0 for some 1 ≤ i ≤ k.

We have the following result:

Lemma 3.4. If λi (i = 1, 2, · · · , k) and l are k + 1 nonnegative integers
such that l =

∑k
j=1 λj, then we have

P(l; λ1, λ2, · · · , λk) =
k∑

j=1

P(l − 1; λ1, λ2, · · · , λj − 1, · · · , λk).

Let Pn be the set of all partitions of n and let p ∈ Pn be one partition.
Sometimes we use the notation which indicates the number of times each
integer occurs as a part:

p = (1λ12λ2 · · ·nλn)

where exactly λi of the parts of p are equal to i with each λi nonnegative.
For the basic theory of partitions, the reader is referred to [1, 13]. Recall
that the length of the partition p, denoted by l(p), is the number of parts,
i.e., l(p) =

∑n
i=1 λi.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.X. Chen 45

Lemma 3.5 (see [23]). In H(Λ), we have

Ẽnδ = v−3n+1
∑

p=(1λ12λ2 ···nλn )∈Pn

c(p)rλ1
1δ rλ2

2δ · · · r
λn

nδ

where c(p) = (−1)l(p)−1
n∑

j=1

1 − v2j

1 − v2
P(l(p) − 1; λ1, λ2, . . . , λj−1, . . . , λn).

Remark 3.6. In [23], Zhang has calculated the term E(n−1)δ+α2
E1 under

the untwisted multiplication. In the above lemma, we rewrite Zhang’s
result under the twisted multiplication in a simple combinatorial form.

Following [3, 9], we introduce another group of imaginary root vectors
Enδ in Ringel-Hall algebra H(Λ) by E0δ = 1 and

Enδ =
1

[n]

n−1∑

i=0

v−iẼ(n−i)δEiδ =
1

[n]

n∑

i=1

vi−nẼiδE(n−i)δ.

The following is the main result of this section:

Theorem 3.7. For any n ∈ N \ {0}, in H(Λ) we have Enδ = v−2nrnδ.

Proof. To show the equality in the theorem is true, we only need to find
the coefficient of the term rλ1

1δ rλ2
2δ · · · r

λn

nδ corresponding to the partition

p = (1λ12λ2 · · ·nλn) in each multiplication v−iẼ(n−i)δEiδ for 0 ≤ i ≤
n − 1, and then combine all these coefficients.

When i 6= 0, the term Eiδ = v−2iriδ will contribute one copy of riδ

for the term rλ1
1δ rλ2

2δ · · · r
λn

nδ . Then at first we should find the coefficient of

rλ1
1δ rλ2

2δ · · · r
λi−1
iδ · · · rλn

nδ in term Ẽ(n−i)δ. For convenience, in the expression

of each term Ẽ(n−i)δ, we will consider the index set Pn−i as a subset of
Pn by adding (n − i)0(n − i + 1)0 · · ·n0 to each partition of Pn−i.

The coefficient of the term rλ1
1δ rλ2

2δ · · · r
λn

nδ in
1

[n]
v−iẼ(n−i)δEiδ is

1

[n]
v−iv−2iv−3(n−i)+1(−1)l(p)−2

( i−1∑

j=1

1 − v2j

1 − v2
P(l(p) − 2; λ1, λ2, . . . , λj − 1, . . . , λi − 1, . . . , λn)

+
1 − v2i

1 − v2
P(l(p) − 2; λ1, λ2, . . . , . . . , λi − 2, . . . , λn)

+

n∑

j=i+1

1 − v2j

1 − v2
P(l(p) − 2; λ1, λ2, . . . , λi − 1, . . . , λj − 1, . . . , λn)

)
.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.46 Root vectors of composition algebra

When i = 0, the coefficient is

1

[n]
v−3n+1(−1)l(p)−1

n∑

j=1

1 − v2j

1 − v2
P(l(p) − 1; λ1, λ2, . . . , λj − 1, . . . , λn).

If l(p) > 1, for all 1 ≤ j ≤ n, we will use the following equality

P(l(p) − 1; λ1, λ2, . . . , λj − 1, . . . , λn)

=

j−1∑

k=1

P(l(p) − 2; λ1, λ2, . . . , λk − 1, . . . , λj − 1, . . . , λn)

+ P(l(p) − 2; λ1, λ2, . . . , λj − 2, . . . , λn)

+
n∑

k=j+1

P(l(p) − 2; λ1, λ2, . . . , λj − 1, . . . , λk − 1, . . . , λn)

Then in
1

[n]

n−1∑

i=0

v−iẼ(n−i)δEiδ, we cancel all the terms corresponding

to the partitions p ∈ Pn with l(p) > 1.
The only exception in the calculation is the term rnδ corresponding

to partition p = (1020 · · ·n1) that appears in
1

[n]
ẼnδE0δ =

1

[n]
Ẽnδ only.

It follows that

Enδ =
1

[n]
v−3n+1 1 − v2n

1 − v2
rnδ = v−2nrnδ.

Corollary 3.8. For any n, m ∈ N, we have [Ẽnδ, Ẽmδ] = 0 = [Enδ, Emδ].

Proof. The statement follows immediately from the fact rnδrmδ = rmδrnδ.

Another immediate consequence of the above theorem is that Enδ (or
rnδ) is in C(Λ).

Lemma 3.9. For any n ∈ N and 0 ≤ i ≤ n, we have

Ẽ(n+1)δ = E(n−i)δ+α2
Eiδ+α1 − v−2Eiδ+α1E(n−i)δ+α2

.

Proof. By definition, we know that Ẽ(n+1)δ = Enδ+α2E1 − v−2E1Enδ+α2 .
If n = 0, the equality is nothing but the definition. Put n ≥ 1. First of
all, we will show

(⋆) Enδ+α2E1−v−2E1Enδ+α2 = E(n−1)δ+α2
Eδ+α1−v−2Eδ+α1E(n−1)δ+α2

,
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after that we can apply the Auslander-Reiten translate τ−1 on both sides
of the above equality. Using Lemma 3.2, we have

E(n−1)δ+α2
Eδ+α1 − v−2Eδ+α1E(n−1)δ+α2

= E(n−1)δ+α2
(

1

[2]
ẼδE1 −

1

[2]
E1Ẽδ)

−v−2(
1

[2]
ẼδE1 −

1

[2]
E1Ẽδ)E(n−1)δ+α2

=
1

[2]
E(n−1)δ+α2

ẼδE1 −
1

[2]
ẼδE(n−1)δ+α2

E1 +
1

[2]
ẼδE(n−1)δ+α2

E1

−
1

[2]
E(n−1)δ+α2

E1Ẽδ − v−2 1

[2]
ẼδE1E(n−1)δ+α2

+v−2 1

[2]
E1ẼδE(n−1)δ+α2

− v−2 1

[2]
E1E(n−1)δ+α2

Ẽδ

+v−2 1

[2]
E1E(n−1)δ+α2

Ẽδ

=
1

[2]
(E(n−1)δ+α2

Ẽδ − ẼδE(n−1)δ+α2
)E1 +

1

[2]
ẼδE(n−1)δ+α2

E1

−
1

[2]
E(n−1)δ+α2

E1Ẽδ − v−2 1

[2]
ẼδE1E(n−1)δ+α2

−v−2 1

[2]
E1(E(n−1)δ+α2

Ẽδ − ẼδE(n−1)δ+α2
)

+v−2 1

[2]
E1E(n−1)δ+α2

Ẽδ

= Enδ+α2E1 − v−2E1Enδ+α2

+
1

[2]
Ẽδ(E(n−1)δ+α2

E1 − v−2E1E(n−1)δ+α2
)

−
1

[2]
(E(n−1)δ+α2

E1 − v−2E1E(n−1)δ+α2
)Ẽδ

= Enδ+α2E1 − v−2E1Enδ+α2 +
1

[2]
ẼδẼ(n−1)δ −

1

[2]
ẼδẼ(n−1)δ

= Enδ+α2E1 − v−2E1Enδ+α2 +
1

[2]
[Ẽδ, Ẽ(n−1)δ].

By corollary 3.8, we know that [Ẽδ, Ẽ(n−1)δ] = 0. The equality (⋆)
follows.

If n > 1 and for any k ≤ ⌊n
2 ⌋, by Lemma 2.4, we can apply the

Auslander–Reiten translate τ−1 on the left hand side of the equality (⋆)
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k times. Then,

τ−k(Ẽ(n+1)δ) = τ−k(Enδ+α2E1) − τ−k(v−2E1Enδ+α2)

= τ−k(Enδ+α2)τ
−k(E1) − v−2τ−k(E1)τ

−k(Enδ+α2).

If n− 1 > 1 and k ≤ ⌊n−1
2 ⌋, we can apply τ−1 on the right hand side

of the equality (⋆) k times. Then,

τ−k(Ẽ(n+1)δ) = τ−k(E(n−1)δ+α2
Eδ+α1) − τ−k(v−2Eδ+α1E(n−1)δ+α2

)

= τ−k(E(n−1)δ+α2
)τ−k(Eδ+α1) − v−2τ−k(Eδ+α1)τ

−k(E(n−1)δ+α2
).

Based on the Auslander–Reiten quiver of the Kronecker algebra, it is
easy to see that the following identities hold in the Ringel–Hall algebra
H(Λ):

τ−k(Ẽ(n+1)δ) = Ẽ(n+1)δ,

τ−k(E1) = E2kδ+α1 , τ
−k(Eδ+α1) = E(1+2k)δ+α1

,

τ−k(Enδ+α2) = E(n−2k)δ+α2
, when k ≤ ⌊n

2 ⌋,

τ−k(E(n−1)δ+α2
) = E(n−1−2k)δ+α2

, when k ≤ ⌊n−1
2 ⌋.

According to the above facts, it is immediate to show that

Ẽ(n+1)δ = E(n−i)δ+α2
Eiδ+α1 − v−2Eiδ+α1E(n−i)δ+α2

for any n ∈ N and 0 ≤ i ≤ n.

4. Commutation relations

Lemma 4.1. For any m ∈ N, we have

E(m+1)δ+α1
Emδ+α1 = v2Emδ+α1E(m+1)δ+α1

Emδ+α2E(m+1)δ+α2
= v2E(m+1)δ+α2

Emδ+α2 .

Proof. The claim is an immediate consequence of Lemma 2.1, Lemma 2.2
and Lemma 2.3.

Proposition 4.2. For any n, m ∈ N, and n > m, we have

Enδ+α1Emδ+α1 =

⌊n−m
2

⌋∑

h=0

a
(n−m)
h E(m+h)δ+α1

E(n−h)δ+α1
,

Emδ+α2Enδ+α2 =

⌊n−m
2

⌋∑

h=0

a
(n−m)
h E(n−h)δ+α2

E(m+h)δ+α2
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where
a

(n−m)
h = v2 if h = 0

a
(n−m)
h = v2(h−1)(v4 − 1) if 0 < h < n−m

2

a
(n−m)
h = v2(h−1)(v2 − 1) if 0 < h = n−m

2

Proof. We only prove the first equality, the proof for the second equality
is similar. It is well–known that for the Kronecker algebra, each inde-
composable preprojective module has the dimension vector lδ + α1 with
l ∈ N. Given any two indecomposable preprojective modules Vnδ+α1 and
Vmδ+α1 , the extension of Vnδ+α1 and Vmδ+α1 is a preprojective module
also.

By Lemma 2.1, we have the short exact sequence

0 → Vmδ+α1 → V(m+h)δ+α1
⊕ V(n−h)δ+α1

→ Vnδ+α1 → 0

and the split exact sequence

0 → V(n−h)δ+α1
→ V(m+h)δ+α1

⊕ V(n−h)δ+α1
→ V(m+h)δ+α1

→ 0

where n > m and 0 ≤ h ≤ ⌊n−m
2 ⌋.

By definition, we know

unδ+α1umδ+α1

= v〈nδ+α1,mδ+α1〉

⌊n−m
2

⌋∑

h=0

g
((m+h)δ+α1)⊕((n−h)δ+α1)
nδ+α1,mδ+α1

u(m+h)δ+α1⊕(n−h)δ+α1

and

u(m+h)δ+α1
u(n−h)δ+α1

= v〈(m+h)δ+α1,(n−h)δ+α1〉g
((m+h)δ+α1)⊕((n−h)δ+α1)
(m+h)δ+α1,(n−h)δ+α1

u(m+h)δ+α1⊕(n−h)δ+α1
.

It is easy to check that 〈nδ + α1, mδ + α1〉 = −n + m + 1 and 〈(m +
h)δ + α1, (n − h)δ + α1〉 = n − m − 2h + 1.

Put V = V(m+h)δ+α1
⊕ V(n−h)δ+α1

. By Lemma 2.2, we know that

g
((m+h)δ+α1)⊕((n−h)δ+α1)
nδ+α1,mδ+α1

=
|Ext1Λ(Vnδ+α1 , Vmδ+α1)V ||AutΛ(V )|

|AutΛ(Vnδ+α1)||AutΛ(Vmδ+α1)||HomΛ(Vnδ+α1 , Vmδ+α1)|
.

We know that |AutΛ(Vnδ+α1)| = |AutΛ(Vmδ+α1)| = q − 1 = v2 − 1
and HomΛ(Vnδ+α1 , Vmδ+α1) = 0. By Lemma 2.3, we have

|AutΛ(V )| = qdimk Hom(V(m+h)δ+α1
,V(n−h)δ+α1

)(q − 1)(q − 1)
= qn−m−2h+1(q − 1)(q − 1)
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Since Ext1Λ(V(m+h)δ+α1
, V(n−h)δ+α1

) = 0, we have

g
((m+h)δ+α1)⊕((n−h)δ+α1)
(m+h)δ+α1,(n−h)δ+α1

= 1,

and thus,

u(m+h)δ+α1⊕(n−h)δ+α1
= v−(n−m−2h+1)u(m+h))δ+α1

u(n−h)δ+α1
.

Then, we have

unδ+α1umδ+α1

= v〈nδ+α1,mδ+α1〉

⌊n−m
2

⌋∑

h=0

g
((m+h)δ+α1)⊕((n−h)δ+α1)
nδ+α1,mδ+α1

u(m+h)δ+α1⊕(n−h)δ+α1

= v−n+m+1

⌊n−m
2

⌋∑

h=0

|Ext1Λ(Vnδ+α1 , Vmδ+α1)V(m+h)δ+α1
⊕V(n−h)δ+α1

|

qn−m−2h+1u(m+h)δ+α1⊕(n−h)δ+α1

= v−n+m+1

⌊n−m
2

⌋∑

h=0

|Ext1Λ(Vnδ+α1 , Vmδ+α1)V(m+h)δ+α1
⊕V(n−h)δ+α1

|

qn−m−2h+1v−(n−m−2h+1)u(m+h))δ+α1
u(n−h)δ+α1

= v−2(h−1)

⌊n−m
2

⌋∑

h=0

|Ext1Λ(Vnδ+α1 , Vmδ+α1)V(m+h)δ+α1
⊕V(n−h)δ+α1

|

u(m+h))δ+α1
u(n−h)δ+α1

.

If h = 0, we have |Ext1Λ(Vnδ+α1 , Vmδ+α1)V | = 1, then a
(n−m)
0 = v2.

If 0 < h < n−m
2 , we have |Ext1Λ(Vnδ+α1 , Vmδ+α1)V | = q2h − q2(h−1) =

v4(h−1)(v4 − 1), then a
(n−m)
h = v2(h−1)(v4 − 1).

If h = n−m
2 , we have |Ext1Λ(Vnδ+α1 , Vmδ+α1)V | = q2(h−1)+1−q2(h−1) =

v4(h−1)(v2 − 1), then a
(n−m)
h = v2(h−1)(v2 − 1).

Since Etδ+α1 = v−2tutδ+α1 for all t ≥ 0, the first equality follows
immediately.

Proposition 4.3. For any n, m ∈ N, we have

Enδ+α2Emδ+α1

= v−2Emδ+α1Enδ+α2 +
∑

p∈Pn+m+1

cpEλ1
1δ Eλ2

2δ · · ·E
λn+m+1

(n+m+1)δ
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where p = (1λ12λ2 · · · (n + m + 1)λn+m+1) and cp = v−n−m(−1)l(p)−1 ·

( n+m+1∑

j=1

1 − v2j

1 − v2
P(l(p) − 1; λ1, λ2, · · · , λj − 1, · · · , λn+m+1)

)
.

Proof. The clam is an immediate consequence of Lemma 3.5, Theorem 3.7
and Lemma 3.9.

Proposition 4.4. Let n, m ∈ N. Then,

[Ẽnδ, Emδ+α1 ]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)E(k+m)δ+α1
Ẽ(n−k)δ + v2(n−1)[2]E(m+n)δ+α1

,

[Emδ+α2 , Ẽnδ]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)Ẽ(n−k)δE(k+m)δ+α2
+ v2(n−1)[2]E(n+m)δ+α2

.

Proof. To prove the claim, we need to prove the following equalities at
first:

(1) [Ẽnδ, E1]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)Ekδ+α1Ẽ(n−k)δ + v2(n−1)[2]Enδ+α1 ,

(2) [Ẽnδ, Eδ+α1 ]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)E(k+1)δ+α1
Ẽ(n−k)δ + v2(n−1)[2]E(n+1)δ+α1

,

(3) [E2, Ẽnδ]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)Ẽ(n−k)δEkδ+α2 + v2(n−1)[2]Enδ+α2 ,

(4) [Eδ+α2 , Ẽnδ]

=
n−1∑

k=1

v2(k−1)(v2 − v−2)Ẽ(n−k)δE(k+1)δ+α2
+ v2(n−1)[2]E(n+1)δ+α2

.

Then, applying τ−1 for (1) and (2) and τ for (3) and (4), we can
complete the proof. By duality, we only prove (1) and (2). We will prove
them simultaneously by induction on n.

By Lemma 3.9, we have
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[Ẽnδ, E1]

= (E(n−2)δ+α2
Eδ+α1 − v−2Eδ+α1E(n−2)δ+α2

)E1

−E1(E(n−2)δ+α2
Eδ+α1 − v−2Eδ+α1E(n−2)δ+α2

)

= E(n−2)δ+α2
v2E1Eδ+α1 − v−2Eδ+α1(Ẽ(n−1)δ + v−2E1E(n−2)δ+α2

)

−(−v2Ẽ(n−1)δ + v2E(n−2)δ+α2
E1)Eδ+α1 + v−2v−2Eδ+α1E1E(n−2)δ+α2

= −v−2Eδ+α1Ẽ(n−1)δ + v2Ẽ(n−1)δEδ+α1

= v2[Ẽ(n−1)δ, Eδ+α1 ] + (v2 − v−2)Eδ+α1Ẽ(n−1)δ

and

[Ẽnδ, Eδ+α1 ]

= (E(n−3)δ+α2
E2δ+α1 − v−2E2δ+α1E(n−3)δ+α2

)Eδ+α1

−Eδ+α1(E(n−3)δ+α2
E2δ+α1 − v−2E2δ+α1E(n−3)δ+α2

)

= v2[Ẽ(n−1)δ, E2δ+α1 ] + (v2 − v−2)E2δ+α1Ẽ(n−1)δ,

from which the claim follows immediately.

Proposition 4.5. Let n, m ∈ N. Then,

[Enδ, Emδ+α1 ]

=
n−1∑

k=0

[n + 1 − k]E(m+n−k)δ+α1
Ekδ =

m+n∑

i=m+1

[1 − m + i]Eiδ+α1E(m+n−i)δ,

[Emδ+α2 , Enδ]

=

n−1∑

k=0

[n + 1 − k]EkδE(m+n−k)δ+α2
=

m+n∑

i=m+1

[1 − m + i]E(m+n−i)δEiδ+α2

Proof. We only prove the first equality. By using analogous method we
can show the second one. By the same reason as stated in Proposition 4.4,
it is sufficient to prove the following:

(1) [Enδ, E1]

=
n−1∑

k=0

[n + 1 − k]E(n−k)δ+α1
Ekδ =

n∑

i=1

[1 + i]Eiδ+α1E(n−i)δ,

(2) [Enδ, Eδ+α1 ]

=
n−1∑

k=0

[n + 1 − k]E(1+n−k)δ+α1
Ekδ =

1+n∑

i=2

[i]Eiδ+α1E(1+n−i)δ
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We will prove (1) by induction on n. The proof of (2) is similar.
By Lemma 3.2, we know that [Ẽδ, E1] = [2]Eδ+α1 and [Ẽδ, Eδ+α1 ] =
[2]E2δ+α1 . Since Ẽδ = Eδ, the claim is true for n = 1.

By definition, we know that Enδ =
1

[n]

n∑

i=1

vi−nẼiδE(n−i)δ.

Then, we have that

[Enδ, E1] =
1

[n]

n∑

i=1

vi−n[ẼiδE(n−i)δ, E1]

=
1

[n]

n∑

i=1

vi−n(Ẽiδ[E(n−i)δ, E1] + [Ẽiδ, E1]E(n−i)δ).

By induction and Proposition 4.4, we obtain that

[Enδ, E1]

=
1

[n]

n∑

i=1

vi−n
( n−i−1∑

k=0

[n − i + 1 − k] ·

( i−1∑

h=1

v2(h−1)(v2 − v−2)E(h+n−i−k)δ+α1
Ẽ(i−h)δEkδ

))

+
1

[n]

n∑

i=1

vi−n
( n−i−1∑

k=0

[n − i + 1 − k]v2(i−1)[2]E(n−k)δ+α1
Ekδ

)

+
1

[n]

n∑

i=1

vi−n
( n−i−1∑

k=0

[n − i + 1 − k]E(n−i−k)δ+α1
ẼiδEkδ

)

+
1

[n]

n∑

i=1

vi−n
( i−1∑

l=1

v2(l−1)(v2 − v−2)Elδ+α1Ẽ(i−l)δE(n−i)δ

)

+
1

[n]

n∑

i=1

vi−n
(
v2(i−1)[2]Eiδ+α1E(n−i)δ

)
.

After arranging the index sets of each term appeared in the above
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summation, we have that

[Enδ, E1]

=
1

[n]

n−1∑

i=1

Eiδ+α1

( n−i∑

j=1

·

( i−1∑

t=1

v2(t−1)v(j+t−n)(v2 − v−2)[i − t + 1]
)
ẼjδE(n−j−i)δ

)

+
[2]

[n]

n∑

i=2

( i−1∑

t=1

v(i−t−n)v2(i−t−1)[t + 1]
)
Eiδ+α1E(n−i)δ

+
1

[n]

n−1∑

i=1

[i + 1]Eiδ+α1

( n−i∑

j=1

v(j−n)ẼjδE(n−j−i)δ)
)

+
1

[n]

n−1∑

i=1

Eiδ+α1

( n−i∑

j=1

v(i+j−n)v(2i−1)(v2 − v−2)ẼjδE(n−j−i)δ)
)

+
1

[n]

n∑

i=1

vi−n
(
v2(i−1)[2]Eiδ+α1E(n−i)δ

)
.

By using E(n−i)δ =
1

[n − i]

n−i∑

j=1

vj−(n−i)ẼiδE(n−i)δ, we can simplify

the above equality. We omit the detail of calculating the coefficient of
each term appeared in the above equality. The coefficient of the term
ẼiδE(n−i)δ is [i + 1]. The proof is completed.

5. An integral Poincaré–Birkhoff-Witt basis

Let us summarize the results of proceeding paragraphs. Firstly, we define
a total order on Φ+ adapted for the structure of the Auslander–Reiten
quiver of the Kronecker algebra. The order is given by

α1 < δ + α1 < · · · < (n − 1)δ + α1 < nδ + α1 < · · · < δ < 2δ < · · ·
< (n − 1)δ < nδ < · · · < nδ + α2 < (n − 1)δ + α2 < · · · < δ + α2 < α2.

For any root vector Eα, consider the element E
(t)
α = Et

α

[t]! . These

elements are called divided powers. Let A = Z[v, v−1], and let C⋆(∆) be

the A–subalgebra of C(∆) generated by the elements E
(t)
i . We obtain the

following result.

Theorem 5.1. The set B+ = {E
(r1)
β1

E
(r2)
β2

· · ·E
(rn)
βn

|n ∈ N, β1 < β2 <

· · · < βn ∈ Φ+} is an A–basis of C⋆(∆).
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Proof. It is more or less the same as Theorem 2 in [3] or Theorem 5.1
in [24].

The imaginary root vectors play a very important rule for the canon-
ical basis of quantum groups. Beck, Chari and Pressley [3] gave an alge-
braic characterization of the affine canonical basis by its behavior with
respect to a symmetric bilinear form. They used the theory of symmetric
functions [24] to modify the imaginary root vectors Enδ in order to get
the canonical basis. In [19], Ringel defined a symmetric bilinear form on
Ringel–Hall algebra as follows: For α, β ∈ P , let

(uα, uβ) =

{
|Vα|
aα

if α = β

0 otherwise

The coefficients |Vi|
ai

are crucial in Lusztig’s description of the canonical
basis of quantum groups. An open problem is how to realize the canonical
basis of the composition algebra of the Kronecker algebra based on the
realization of the imaginary root vectors shown in this paper.
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