On faithful actions of groups and semigroups by orientation-preserving plane isometries

Yaroslav Vorobets
Communicated by V. M. Usenko

Dedicated to R. I. Grigorchuk on the occasion of his 50th birthday

Abstract. Feitful representations of two generated free groups and free semigroups by orientation-preserving plane isometries constructed.

Let \mathcal{G}_{+}denote the group of orientation-preserving isometries of Euclidean plane. \mathcal{G}_{+}is a locally compact Lie group, it consists of rotations and translations. Let G be a countable group or semigroup. An action of the (semi)group G on the plane by orientation-preserving isometries is a homomorphism $d: G \rightarrow \mathcal{G}_{+}$. Let x be a point in the plane. The orbit of x under the action d is the sequence $O_{d}(x)=\{d(g) x\}_{g \in G}$ indexed by elements of G. Suppose G is finitely generated and g_{1}, \ldots, g_{k} is some fixed set of its generators. Then the action d is uniquely determined by isometries $A_{1}=d\left(g_{1}\right), \ldots, A_{k}=d\left(g_{k}\right)$, and we denote it by $G\left[A_{1}, \ldots, A_{k}\right]$. In general, the action $G\left[A_{1}, \ldots, A_{k}\right]$ may not exist for some k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ of isometries. It does exist in the case G is the free semigroup $F S G_{k}$ or the free group $F G_{k}$ with k generators.

The action d is called faithful if it is a monomorphism. Suppose $d\left(g_{1}\right) x=d\left(g_{2}\right) x$ for some $g_{1}, g_{2} \in G$ and a point x. If $g_{1} \neq g_{2}$ and the action d is faithful, then $d\left(g_{1}\right) d\left(g_{2}\right)^{-1}$ is a nontrivial rotation and x is its fixed point. Thus d is faithful implies there exists a countable subset S_{d} of the plane such that for any $x \notin S_{d}$ all points of the orbit $O_{d}(x)$ are distinct.

[^0]Theorem 1. For a generic pair $(A, B) \in \mathcal{G}_{+}^{2}$ (both in the sense of measure and of category), the action $F S G_{2}[A, B]$ is faithful.

Theorem 2. Suppose A is a nonzero translation and B is a rotation by an angle φ. Then the action $F S G_{2}[A, B]$ is faithful if and only if $\cos \varphi$ is a transcendent number.

The action $F G_{2}[A, B]$ can never be faithful for the following reason. For any group G, let G^{\prime} denote the commutant of G, that is, the group generated by commutators $X Y X^{-1} Y^{-1}$, where $X, Y \in G$. By $G^{\prime \prime}$ we denote the commutant of G^{\prime}. It is easy to see that the group \mathcal{G}_{+}^{\prime} consists of translations, hence the group $\mathcal{G}_{+}^{\prime \prime}$ is trivial. Therefore every action of the group $F G_{2}$ of the form $F G_{2}[A, B]$ descends to an action of the group $G_{2}=F G_{2} / F G_{2}^{\prime \prime}$ (the free 2-step-solvable group with two generators).
Theorem 3. For a generic pair $(A, B) \in \mathcal{G}_{+}^{2}$ (both in the sense of measure and of category), the action $G_{2}[A, B]$ is faithful.

We proceed to the proofs of Theorems 1,2 , and 3 .
A finite sequence $x_{0}, x_{1}, \ldots, x_{k}$ of points of the lattice \mathbb{Z}^{2} is called a path if $x_{0}=(0,0)$ and $\left|x_{j}-x_{j-1}\right|=1$ for $j=1, \ldots, k$. Ordered pairs $\left(x_{j-1}, x_{j}\right), 1 \leq j \leq k$, are called links of the path. The set of all paths is denoted by P. A path $x_{0}, x_{1}, \ldots, x_{k}$ is closed if its endpoint x_{k} coincides with x_{0}. The set of all closed paths is denoted by P^{\prime}.

Let x_{1} and x_{2} be neighboring points of the lattice \mathbb{Z}^{2} and $\gamma \in P$. Denote by $n_{\gamma}\left(x_{1}, x_{2}\right)$ the number of times when the pair $\left(x_{1}, x_{2}\right)$ occurs as a link of the path γ. Let $P^{\prime \prime}$ be the set of paths $\gamma \in P$ such that $n_{\gamma}\left(x_{1}, x_{2}\right)=n_{\gamma}\left(x_{2}, x_{1}\right)$ for any $x_{1}, x_{2} \in \mathbb{Z}^{2},\left|x_{2}-x_{1}\right|=1$. Clearly, $P^{\prime \prime} \subset P^{\prime}$.

Now let us assign a path $\gamma(g) \in P$ to an arbitrary element $g \in F G_{2}$. Let a and b be generators of $F G_{2}$. Introduce vectors $e_{a}=(1,0), e_{a^{-1}}=$ $(-1,0), e_{b}=(0,1), e_{b^{-1}}=(0,-1)$. Every element $g \in F G_{2}$ can be represented in the form $c_{k} c_{k-1} \ldots c_{1}$, where $c_{j} \in\left\{a, b, a^{-1}, b^{-1}\right\}, j=$ $1,2, \ldots, k$. Choose $\gamma(g)$ to be the path $x_{0}, x_{1}, \ldots, x_{k}$ such that $x_{0}=(0,0)$ and $x_{j}-x_{j-1}=e_{c_{j}}, 1 \leq j \leq k$. Obviously, each path $\gamma \in P$ is assigned to a unique element of the group $F G_{2}$. However the path $\gamma(g)$ is not determined in a unique way by g. Still, some crucial features of $\gamma(g)$ depend only on an element $g \in F G_{2}$. These are the endpoint of $\gamma(g)$ and differences $n_{\gamma(g)}\left(x_{1}, x_{2}\right)-n_{\gamma(g)}\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in \mathbb{Z}^{2},\left|x_{1}-x_{2}\right|=1$. Given $g \in F G_{2}$, the set of paths assigned to g contains a unique path of the shortest length. The number of links in this shortest path is called the length of g.

Lemma 1. Suppose $g \in F G_{2}$. Then $g \in F G_{2}^{\prime}$ if and only if $\gamma(g) \in P^{\prime}$, and $g \in F G_{2}^{\prime \prime}$ if and only if $\gamma(g) \in P^{\prime \prime}$.

Proof. Let $g, h \in F G_{2}$. Suppose $x_{0}, x_{1}, \ldots, x_{k}$ is the path $\gamma(g)$ and y_{0}, \ldots, y_{m} is the path $\gamma(h)$. Then the sequence $x_{0}, x_{1}, \ldots, x_{k}, x_{k}+y_{1}, \ldots$, $x_{k}+y_{m}$ is the path $\gamma(h g)$ and $x_{0}=x_{k}-x_{k}, x_{k-1}-x_{k}, \ldots, x_{0}-x_{k}=-x_{k}$ is the path $\gamma\left(g^{-1}\right)$. Let $N_{1}: F G_{2} \rightarrow \mathbb{Z}^{2}$ be the map taking each $g \in F G_{2}$ to the endpoint of the path $\gamma(g)$. It is easy to observe that N_{1} is a homomorphism. Let H_{1} denote the kernel of N_{1}. Then $g \in H_{1}$ if and only if $\gamma(g) \in P^{\prime}$. Clearly, H_{1} is a normal subgroup of $F G_{2}$ and $F G_{2}^{\prime} \subset H_{1}$. Take any element $g \in H_{1}$ of positive length. The element g is uniquely represented as $c_{k} c_{k-1} \ldots c_{1}$, where $c_{j} \in\left\{a, b, a^{-1}, b^{-1}\right\}, 1 \leq j \leq k$, and k is the length of g. Since $g \in H_{1}$, we have $c_{m}=c_{1}^{-1}$ for some m, $1<m \leq k$. By construction, $m>2$. Set $h=c_{m-1} c_{m-2} \ldots c_{2}$. Then the element $g_{1}=g c_{1}^{-1} h^{-1} c_{1} h=c_{k} \ldots c_{m+1} c_{m-1} \ldots c_{2}$ is of length at most $k-2$. Moreover, $g_{1} \in H_{1}$ since $c_{1}^{-1} h^{-1} c_{1} h \in F G_{2}^{\prime}$. The inductive argument yields that $H_{1}=F G_{2}^{\prime}$.

Let L denote the set of ordered pairs $\left(x_{1}, x_{2}\right)$ such that $x_{1}, x_{2} \in$ \mathbb{Z}^{2} and $\left|x_{1}-x_{2}\right|=1$. For any path $\gamma \in P$ the collection of numbers $n_{\gamma}\left(x_{1}, x_{2}\right)-n_{\gamma}\left(x_{2}, x_{1}\right),\left(x_{1}, x_{2}\right) \in L$, can be considered as an element of the group \mathbb{Z}^{L}. Since differences $n_{\gamma(g)}\left(x_{1}, x_{2}\right)-n_{\gamma(g)}\left(x_{2}, x_{1}\right)$ depend only on $g \in F G_{2}$, we have a well-defined map $N_{2}: F G_{2} \rightarrow \mathbb{Z}^{L}$. The restriction of the map N_{2} to the subgroup $H_{1}=F G_{2}^{\prime}$ is a homomorphism. By H_{2} denote the kernel of this restriction. Clearly, $g \in H_{2}$ if and only if $\gamma(g) \in P^{\prime \prime}$. It is easy to observe that H_{2} is a normal subgroup of $F G_{2}$ and $F G_{2}^{\prime \prime} \subset H_{2}$. We claim that $H_{2}=F G_{2}^{\prime \prime}$, i.e., any element $g \in H_{2}$ belongs to $F G_{2}^{\prime \prime}$. The claim is proved by induction on the length k of the element g. In the case $k=0$, there is nothing to prove. Now let $k>0$ and suppose the claim is true for all elements of length less than k. There is a unique representation $g=c_{k} c_{k-1} \ldots c_{1}$ such that $c_{j} \in\left\{a, b, a^{-1}, b^{-1}\right\}, 1 \leq j \leq k$. Denote by γ the path $x_{0}, x_{1}, \ldots, x_{k}$ such that $x_{0}=(0,0)$ and $x_{j}-x_{j-1}=e_{c_{j}}, 1 \leq j \leq k$. Then $\gamma \in P^{\prime \prime}$ since $g \in H_{2}$. In particular, there exists an index $l>0$ such that the points $x_{0}, x_{1}, \ldots, x_{l-1}$ are distinct while $x_{l}=x_{m}$ for some $m<l$. Set $g_{1}=$ $c_{m-1} \ldots c_{1} c_{k} \ldots c_{m}$. Then $g_{1}=c_{m-1} \ldots c_{1} g\left(c_{m-1} \ldots c_{1}\right)^{-1} \in H_{2}$ and the length of g_{1} is at most k. The path $\gamma\left(g_{1}\right)$ can be chosen as $y_{0}, y_{1}, \ldots, y_{k}$, where $y_{i}=x_{i+m}-x_{m}$ for $0 \leq i \leq k-m$ and $y_{i}=x_{i-k+m}-x_{m}$ for $i>k-m$. Since $\gamma\left(g_{1}\right) \in P^{\prime \prime}$, there exists $n>0$ such that $y_{n-1}=y_{1}$ and $y_{n}=y_{0}$. By construction, the points $y_{0}, y_{1}, \ldots, y_{l-m-1}$ are distinct and $y_{l-m}=y_{0}$, hence $n>l-m$. The sequences $y_{0}, y_{1}, \ldots, y_{l-m}$, and y_{l-m}, \ldots, y_{n}, and y_{n}, \ldots, y_{k} are closed paths. They are assigned to some elements $h_{1}, h_{2}, h_{3} \in F G_{2}^{\prime}$, respectively. Clearly, $g_{1}=h_{3} h_{2} h_{1}$. Since $y_{n-1}=y_{1}$, the element $g_{2}=h_{3} h_{1} h_{2}$ is of length at most $k-2$. Moreover, $g_{2}=g_{1} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} \in H_{2}$ as $h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} \in F G_{2}^{\prime \prime}$. By the inductive
assumption, $g_{2} \in F G_{2}^{\prime \prime}$. Then $g_{1} \in F G_{2}^{\prime \prime}$. Since g and g_{1} are conjugated, we have $g \in F G_{2}^{\prime \prime}$. The claim is proved.

Let $P_{1}^{\prime \prime}$ denote the set of paths $\gamma \in P$ such that $n_{\gamma}\left(x, x+e_{a}\right)=$ $n_{\gamma}\left(x+e_{a}, x\right)$ for every $x \in \mathbb{Z}^{2}$ and $P_{2}^{\prime \prime}$ denote the set of paths $\gamma \in P$ such that $n_{\gamma}\left(x, x+e_{b}\right)=n_{\gamma}\left(x+e_{b}, x\right)$ for every $x \in \mathbb{Z}^{2}$.

Lemma 2. $P_{1}^{\prime \prime} \cap P^{\prime}=P_{2}^{\prime \prime} \cap P^{\prime}=P^{\prime \prime}$.
Proof. Obviously, $P^{\prime \prime}=P_{1}^{\prime \prime} \cap P_{2}^{\prime \prime}$. For every path $\gamma \in P^{\prime}$ and every $x \in \mathbb{Z}^{2}$ we have the equality $n_{\gamma}\left(x, x+e_{a}\right)+n_{\gamma}\left(x, x-e_{a}\right)+n_{\gamma}\left(x, x+e_{b}\right)+$ $n_{\gamma}\left(x, x-e_{b}\right)=n_{\gamma}\left(x+e_{a}, x\right)+n_{\gamma}\left(x-e_{a}, x\right)+n_{\gamma}\left(x+e_{b}, x\right)+n_{\gamma}\left(x-e_{b}, x\right)$. If, moreover, $\gamma \in P_{1}^{\prime \prime}$, then $n_{\gamma}\left(x, x+e_{a}\right)=n_{\gamma}\left(x+e_{a}, x\right)$ and $n_{\gamma}(x, x-$ $\left.e_{a}\right)=n_{\gamma}\left(x-e_{a}, x\right)$, hence $n_{\gamma}\left(x, x+e_{b}\right)=n_{\gamma}\left(x+e_{b}, x\right)$ if and only if $n_{\gamma}\left(x-e_{b}, x\right)=n_{\gamma}\left(x, x-e_{b}\right)$. By the inductive argument we obtain that the equalities $n_{\gamma}\left(x, x+e_{b}\right)=n_{\gamma}\left(x+e_{b}, x\right)$ and $n_{\gamma}\left(x+k e_{b}, x+(k+1) e_{b}\right)=$ $n_{\gamma}\left(x+(k+1) e_{b}, x+k e_{b}\right)$ are equivalent for any $\gamma \in P_{1}^{\prime \prime} \cap P^{\prime}$, any $x \in \mathbb{Z}^{2}$, and any integer k. Since $n_{\gamma}\left(x+k e_{b}, x+(k+1) e_{b}\right)=n_{\gamma}\left(x+(k+1) e_{b}, x+\right.$ $\left.k e_{b}\right)=0$ for large k, the equality $n_{\gamma}\left(x, x+e_{b}\right)=n_{\gamma}\left(x+e_{b}, x\right)$ holds. Thus, $P_{1}^{\prime \prime} \cap P^{\prime} \subset P_{2}^{\prime \prime}$. The relation $P_{2}^{\prime \prime} \cap P^{\prime} \subset P_{1}^{\prime \prime}$ is established in the same way. The lemma is proved.

Let $A, B \in \mathcal{G}_{+}$be noncommuting (counterclockwise) rotations by angles φ and ψ, respectively. We assume that the angles φ and ψ are not multiples of 2π.

Lemma 3. Suppose the action $G_{2}[A, B]$ is not faithful. Then there exists a nonzero polynomial Q in two variables with integer coefficients such that $Q\left(e^{i \varphi}, e^{i \psi}\right)=0$.

Proof. Let x_{0} be the fixed point of the rotation B. Let R_{α} denote the rotation by an angle α around the point x_{0}. Let $T(y)$ denote the translation by a vector $y \in \mathbb{R}^{2}$. We have $B=R_{\psi}$ and $A=R_{\varphi} T(z)$, where z is a nonzero vector. Set $d=F G_{2}[A, B]$. Given an element $g \in F G_{2}$, let (m, k) be the endpoint of the path $\gamma(g)$. It is easy to observe that $d(g)=R_{m \varphi+k \psi} T(y)$ for some $y \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
d(a g) & =A d(g)
\end{aligned}=R_{(m+1) \varphi+k \psi} T\left(y+R_{-m \varphi-k \psi} z\right), ~=A_{(m-1) \varphi+k \psi} T\left(y-R_{-(m-1) \varphi-k \psi} z\right), ~=R_{m \varphi+(k+1) \psi} T(y),
$$

These relations along with the inductive argument allow us to calculate the isometry $d(g)$ for every $g \in F G_{2}$. We obtain $d(g)=R_{m_{1} \varphi+k_{1} \psi} T(y)$,
where $\left(m_{1}, k_{1}\right)$ is the endpoint of the path $\gamma(g)$ and
$y=\sum_{(m, k) \in \mathbb{Z}^{2}}\left(n_{\gamma(g)}((m, k),(m+1, k))-n_{\gamma(g)}((m+1, k),(m, k))\right) R_{-m \varphi-k \psi} z$.
Suppose the isometry $d(g)$ is the identity. Then $m_{1} \varphi+k_{1} \psi$ is a multiple of 2π and $y=0$. The first condition is equivalent to the equality $e^{i\left(m_{1} \varphi+k_{1} \psi\right)}=1$. Since z is a nonzero vector, the condition $y=0$ is equivalent to the equality
$\sum_{(m, k) \in \mathbb{Z}^{2}}\left(n_{\gamma(g)}((m, k),(m+1, k))-n_{\gamma(g)}((m+1, k),(m, k))\right) e^{-i(m \varphi+k \psi)}=0$.
If $\gamma(g) \notin P^{\prime} \cap P_{1}^{\prime \prime}$, then the two equalities imply there exists a nonzero polynomial Q in two variables with integer coefficients such that $Q\left(e^{i \varphi}, e^{i \psi}\right)=0$. On the other hand, if $\gamma(g) \in P^{\prime} \cap P_{1}^{\prime \prime}$, then $g \in F G_{2}^{\prime \prime}$ due to Lemmas 1 and 2.

Finally, we can guarantee that at least one of the following conditions holds: (i) there exists a nonzero polynomial Q in two variables with integer coefficients such that $Q\left(e^{i \varphi}, e^{i \psi}\right)=0$; (ii) the isometry $F G_{2}[A, B](g)$ is the identity if and only if $g \in F G_{2}^{\prime \prime}$. The condition (ii) means the action $G_{2}[A, B]$ is faithful.

Lemma 4. There exist F_{σ}-sets $S_{1}, S_{2} \in \mathbb{R}^{2}$ such that:
(i) the section $\left\{\beta \mid(\alpha, \beta) \in S_{1}\right\}$ is at most countable for any $\alpha \in \mathbb{R}$,
(ii) the section $\left\{\alpha \mid(\alpha, \beta) \in S_{2}\right\}$ is at most countable for any $\beta \in \mathbb{R}$, (iii) the action $G_{2}[A, B]$ is faithful whenever $(\varphi, \psi) \notin S_{1} \cup S_{2}$.

Proof. Let Q be a nonzero polynomial in two variables with integer coefficients. Clearly, the set $Z(Q)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid Q\left(z_{1}, z_{2}\right)=0\right\}$ is closed. The expression $Q\left(z_{1}, z_{2}\right)$ is uniquely represented in the form

$$
p_{0}\left(z_{2}\right) z_{1}^{m}+p_{1}\left(z_{2}\right) z_{1}^{m+1}+\cdots+p_{m-1}\left(z_{2}\right) z_{1}+p_{m}\left(z_{2}\right)
$$

where $p_{0}, p_{1}, \ldots, p_{m}(m \geq 0)$ are polynomials in one variable with integer coefficients and, moreover, p_{0} is a nonzero polynomial. Set $P(Q)=$ $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid p_{0}\left(z_{2}\right)=0\right\}, Z_{1}(Q)=Z(Q) \cap P(Q)$, and $Z_{2}(Q)=$ $Z(Q) \backslash Z_{1}(Q)$. Since p_{0} is a nonzero polynomial, the set $P(Q)$ is the union of a finite number of parallel planes in \mathbb{C}^{2}. Then the set $Z_{1}(Q)$ is closed and the section $\left\{z_{2} \mid\left(z_{1}, z_{2}\right) \in Z_{1}(Q)\right\}$ is at most finite for any $z_{1} \in \mathbb{C}$. Given $\epsilon>0$, let $P_{\epsilon}(Q)$ denote ϵ-neighborhood of the set $P(Q)$. Obviously, the set $Z_{2}(Q) \backslash P_{\epsilon}(Q)$ is closed for any $\epsilon>0$, therefore $Z_{2}(Q)$ is an F_{σ}-set. Take any $z_{2} \in \mathbb{C}$. If $p_{0}\left(z_{2}\right) \neq 0$, then the section
$\left\{z_{1} \mid\left(z_{1}, z_{2}\right) \in Z_{2}(Q)\right\}=\left\{z_{1} \mid\left(z_{1}, z_{2}\right) \in Z(Q)\right\}$ contains at most m elements. If $p_{0}\left(z_{2}\right)=0$, then the section $\left\{z_{1} \mid\left(z_{1}, z_{2}\right) \in Z_{2}(Q)\right\}$ is empty.

Set $Z_{1}=\bigcup_{Q} Z_{1}(Q)$ and $Z_{2}=\bigcup_{Q} Z_{2}(Q)$, where both unions are over all nonzero polynomials in two variables with integer coefficients. Since there are only countably many such polynomials, it follows from the above that Z_{1} and Z_{2} are $F_{\sigma^{-}}$-sets. Moreover, for any $z_{1} \in \mathbb{C}$ the section $\left\{z_{2} \mid\left(z_{1}, z_{2}\right) \in Z_{1}\right\}$ is at most countable, and for any $z_{2} \in \mathbb{C}$ the section $\left\{z_{1} \mid\left(z_{1}, z_{2}\right) \in Z_{2}\right\}$ is at most countable.

Define a map $E: \mathbb{R}^{2} \rightarrow \mathbb{C}^{2}$ by the relation $E(\alpha, \beta)=\left(e^{i \alpha}, e^{i \beta}\right)$ for any $\alpha, \beta \in \mathbb{R}^{2}$. Set $S_{1}=E^{-1}\left(Z_{1}\right)$ and $S_{2}=E^{-1}\left(Z_{2}\right)$. The map E is continuous and the preimage $E^{-1}(z)$ of any point $z \in \mathbb{C}^{2}$ is at most countable. It follows that S_{1} and S_{2} are F_{σ}-sets satisfying conditions (i) and (ii).

Recall that A and B are noncommuting rotations by the angles φ and ψ, respectively. Suppose $(\psi, \varphi) \notin S_{1} \cup S_{2}$. Then $Q\left(e^{i \varphi}, e^{i \psi}\right) \neq 0$ for each nonzero polynomial Q in two variables with integer coefficients. By Lemma 3, the action $G_{2}[A, B]$ is faithful. Thus condition (iii) holds.

Proof of Theorem 3

Let x_{0} be a point in Euclidean plane. For any $\alpha \in \mathbb{R}$ and any $y \in \mathbb{R}^{2}$, let R_{α} denote the (counterclockwise) rotation by the angle α around the point x_{0} and $T(y)$ denote the translation by the vector y. Define a map $D: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathcal{G}_{+}$by the relation $(\alpha, y) \mapsto R_{\alpha} T(y)$. The map D descends to a map $D_{0}: \mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R}^{2} \rightarrow \mathcal{G}_{+}$, which is a diffeomorphism. Let $S_{1}, S_{2} \subset \mathbb{R}^{2}$ be F_{σ}-sets satisfying conditions (i), (ii), and (iii) of Lemma 4. We can assume without loss of generality that S_{1} and S_{2} are invariant under translations from $(2 \pi \mathbb{Z})^{2}$. Set $S_{0}=\mathbb{R}^{2} \backslash\left(S_{1} \cup S_{2}\right)$. It follows from the conditions (i) and (ii) that S_{0} is a G_{δ}-subset of \mathbb{R}^{2} which is dense and of full measure. Finally, let \mathcal{S} denote the set of pairs $(A, B) \in \mathcal{G}_{+}^{2}$ such that $A=R_{\varphi} T(y)$ and $B=R_{\psi} T(z)$, where $(\varphi, \psi) \in S_{0}, \varphi$ and ψ are not multiples of 2π, and $y \neq z$. Since D_{0} is a diffeomorphism, it follows that \mathcal{S} is a dense G_{δ}-subset of full measure of \mathcal{G}_{+}^{2}. This means that a pair $(A, B) \in \mathcal{S}$ is generic both in the sense of measure and of category. By construction, A and B are nontrivial rotations that do not commute. By Lemma 4, the action $G_{2}[A, B]$ is faithful.

Lemma 5. Generators of the group $F G_{2} / F G_{2}^{\prime \prime}$ generate a free subsemigroup.

Proof. Let a and b be generators of the group $F G_{2}$. By H denote the semigroup generated by a and b. Suppose $g_{1}, g_{2} \in H$. We have to prove that $g_{2}^{-1} g_{1} \in F G_{2}^{\prime \prime}$ only if $g_{1}=g_{2}$. Let $x_{0}, x_{1}, \ldots, x_{k}$ be the path $\gamma\left(g_{1}\right)$
and $y_{0}, y_{1}, \ldots, y_{n}$ be the path $\gamma\left(g_{2}\right)$. Without loss of generality it can be assumed that all links $\left(x_{j-1}, x_{j}\right)$ and $\left(y_{j-1}, y_{j}\right)$ are of the form $\left(x, x+e_{a}\right)$ or $\left(x, x+e_{b}\right)$. If $g_{2}^{-1} g_{1} \in F G_{2}^{\prime}$, then $n=k, x_{k}=y_{k}$, and $x_{0}, x_{1}, \ldots, x_{k}=$ $y_{k}, \ldots, y_{1}, y_{0}$ is the path $\gamma\left(g_{2}^{-1} g_{1}\right)$. Obviously, $n_{\gamma\left(g_{2}^{-1} g_{1}\right)}\left(x_{j-1}, x_{j}\right)=1$ for any $j=1, \ldots, k$, while $n_{\gamma\left(g_{2}^{-1} g_{1}\right)}\left(x_{j}, x_{j-1}\right)=1$ only if $\left(x_{j-1}, x_{j}\right)$ is a link of the path $\gamma\left(g_{2}\right)$. It follows from Lemma 1 that $g_{2}^{-1} g_{1} \in F G_{2}^{\prime \prime}$ only if $g_{1}=g_{2}$.

Proof of Theorem 1

Let a and b be generators of the free group $F G_{2}$. Let $p: F G_{2} \rightarrow G_{2}=$ $F G_{2} / F G_{2}^{\prime \prime}$ be the natural projection. The elements $p(a)$ and $p(b)$ are generators of the group G_{2}. By Lemma 5, the semigroup generated by $p(a)$ and $p(b)$ is free. It follows easily that for any $A, B \in \mathcal{G}_{+}$the action $F S G_{2}[A, B]$ is faithful whenever the action $G_{2}[A, B]$ is faithful. Thus Theorem 1 is a corollary of Theorem 3.

Proof of Theorem 2

Let x_{0} be the fixed point of the rotation B. Denote by R_{α} the rotation by an angle α around the point x_{0}. Denote by $T(y)$ the translation by a vector $y \in \mathbb{R}^{2}$. We have $B=R_{\varphi}$ and $A=T(z)$, where z is a nonzero vector. Let a and b be generators of the semigroup $F S G_{2}$. An arbitrary element $g \in F S G_{2}$ can be uniquely represented in the form $b^{m_{k}} a b^{m_{k-1}} a \ldots b^{m_{1}} a b^{m_{0}}$, where $m_{0}, m_{1}, \ldots, m_{k}$ are nonnegative integers. It is easy to observe that $F S G_{2}[A, B](g)=R_{\alpha_{g}} T\left(y_{g}\right)$, where $\alpha_{g}=\varphi \sum_{j=0}^{k} m_{j}$ and

$$
y_{g}=R_{-m_{0} \varphi} z+R_{-\left(m_{0}+m_{1}\right) \varphi} z+\cdots+R_{-\left(m_{0}+m_{1}+\cdots+m_{k-1}\right) \varphi} z
$$

Let $h=b^{l_{s}} a b^{l_{s-1}} a \ldots b^{l_{1}} a b^{l_{0}}$ be an element of $F S G_{2}$ different from g. Suppose that $F S G_{2}[A, B](h)=F S G_{2}[A, B](g)$. Then $\alpha_{h}-\alpha_{g}$ is a multiple of 2π and $y_{h}=y_{g}$. The first condition is equivalent to the equality $e^{i\left(l_{0}+l_{1}+\cdots+l_{s}\right) \varphi}=e^{i\left(m_{0}+m_{1}+\cdots+m_{k}\right) \varphi}$, while the second condition is equivalent to the equality

$$
\begin{aligned}
& e^{-i l_{0} \varphi}+e^{-i\left(l_{0}+l_{1}\right) \varphi}+\cdots+e^{-i\left(l_{0}+\cdots+l_{s-1}\right) \varphi}= \\
& e^{-i m_{0} \varphi}+e^{-i\left(m_{0}+m_{1}\right) \varphi}+\cdots+e^{-i\left(m_{0}+\cdots+m_{k-1}\right) \varphi}
\end{aligned}
$$

Since the sequences $m_{0}, m_{1}, \ldots, m_{k}$ and $l_{0}, l_{1}, \ldots, l_{s}$ are different, the two equalities imply $e^{-i \varphi}$ is an algebraic number. Thus the action $F S G_{2}[A, B]$ can be not faithful only if the number $e^{-i \varphi}$ is algebraic.

Now suppose $e^{-i \varphi}$ is an algebraic number. Then there exist two different nondecreasing sequences $m_{0}, m_{1}, \ldots, m_{k}$ and $l_{0}, l_{1}, \ldots, l_{s}$ of nonnegative integers such that

$$
e^{-i m_{0} \varphi}+e^{-i m_{1} \varphi}+\cdots+e^{-i m_{k} \varphi}=e^{-i l_{0} \varphi}+e^{-i l_{1} \varphi}+\cdots+e^{-i l_{s} \varphi}
$$

Choose a positive integer M such that $m_{k} \leq M$ and $l_{s} \leq M$. We can observe that $F S G_{2}[A, B](g)=F S G_{2}[A, B](h)$, where

$$
\begin{aligned}
g & =b^{M-m_{k}} a b^{m_{k}-m_{k-1}} a \ldots b^{m_{1}-m_{0}} a b^{m_{0}} \\
h & =b^{M-l_{s}} a b^{l_{s}-l_{s-1}} a \ldots b^{l_{1}-l_{0}} a b^{l_{0}} .
\end{aligned}
$$

The elements g and h of the semigroup $F S G_{2}$ are different, therefore the action $F S G_{2}[A, B]$ is not faithful.

It remains to observe that, given a real number α, the numbers $e^{-i \alpha}$, $\sin \alpha$ and $\cos \alpha$ are either all algebraic or all transcendent.

Contact information

Y. Vorobets
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of Ukrainian NAS, Lviv, Ukraine E-Mail: vorobets@lviv.litech.net

[^0]: 2000 Mathematics Subject Classification: 20E05, 20F32, 20M05, 20M30.
 Key words and phrases: free groups, free semigroups, plane isometries, group actions, semigroup actions.

