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Abstract. Criterion of embedding of finite groups into the

automorphism groups of a homogenous rooted tree of a spherical

index n is formulated. The sets of natural numbers which are the

lengths of all orbits of finite groups acting on the boundary of tree

are described.

1. Introduction

Let X be a finite set such that |X| = n. We put Xm = X × · · · × X
(m times) for m ∈ N and X0 = {∅}. The elements of these sets we
call vertices and vertex ∅ we call root. Now we organize the vertices
as follows: the vertex (x1, x2, . . . , xm−1, xm) ∈ Xm we connect with the
vertex (x1, x2, . . . , xm−1) for m ∈ N \ {1} and all vertices x1 ∈ X1 we
connect with the root. In this way we obtain the graph TX which is a
homogenous rooted tree of the spherical index n. Now we denote by ∂TX

the boundary of the tree TX , that is ∂TX = Xω. We denote by GX the
automorphisms group of the tree TX . Obviously the group GX operates
on ∂TX .

Theorem 1. A finite group G has a faithful representation by automor-
phisms of the tree TX if and only if G has a subnormal series

G = G1 B G2 B · · · B Gk+1 = {1}
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such that for every i, 1 ≤ i ≤ k, the quotient Gi/Gi+1 can be faithful
represented by permutations of the set X.

Recall that orbits of an action of a group G on a set A are classes of
the equivalence relation ∼G defined by the condition

x ∼G y ⇔ ∃g ∈ G : xg = y; x, y ∈ A.

The length of an orbit is its cardinality. If the group G is finite, then
the cardinality of every its orbit is a divisor of its order. By the symbol
Orb(G, A) we denote the set of all orbit lengths of the group G on the set
A. For a finite group G the set Orb(G, A) is obviously finite. A positive
integer is called n−number if for any its prime divisor p the inequality
p ≤ n holds true. The set of all n−numbers will be denoted by En.

Theorem 2.

1) A positive integer number k belongs to the set Orb(G, ∂TX) for some
finite subgroup G < GX if and only if k is a n−number.

2) For any finite subset D ⊂ En there exists a finite subgroup G < GX

such that Orb(G, ∂TX) = D.

Theorems 1, 2 can be generalized to the case of spherically homoge-
nous rooted trees (for definitions see [5]).

2. Preliminaries

Here we state the well-known facts about the group GX .

Lemma 1. For any X the group GX is isomorphic to the infinite wreath
power of symmetric groups Sn, |X| = n, that is

GX '
∞

o
i=1

S(i)
n , S(i)

n = Sn.

Proof see, for example, in [4].
The definition of a finitely or infinitely iterated wreath product we can
find in [2],[3]. According to [3] every element u of the wreath product
∞

o
i=1

S
(i)
n is defined by infinite tuple of the type

u = [u1, u2(x1), u3(x1, x2), . . . ],



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.88 Dynamics of finite groups acting on...

where u1 ∈ Sn, ui(x1, . . . , xi−1) ∈ S
Xi−1

n for i > 1. Following [3] we call
such a tuple a tableau. The action of the tableau u on a sequence x ∈ Xω,
is defined by the equality

xu = (x1, x2, x3, . . . )
u =

(

xu1

1 , x
u2(x1)
2 , x

u3(x1,x2)
3 , . . .

)

.

We denote by GX,m the subgroup of GX which contains all automor-
phisms u ∈ GX of the type

[u1, u2(x1), . . . , um(x1, . . . , xm−1), ε, ε, . . . ].

It is clear that GX,1 6 GX,2 6 . . . . Let FGX =
∞
⋃

m=1
GX,m.

Lemma 2. The subgroup FGX is a locally finite π-group, where π is the
set of prime divisors of n.

Proof. For every m the group GX,m is isomorphic to the wreath product
m

o
i=1

S
(i)
n . Since the symmetric group Sn is π-group, is both GX,m and

FGX are π-groups. Obviously for any m the group GX,m is finite and

FGX =
∞
⋃

m=1
GX,m is locally finite.

We use also two statements about wreath product of permutation
groups.

Lemma 3. Let (Vi, Xi) be a subgroup of a permutation group (Ui, Xi)

for i = 1, 2, . . . , k. Then the wreath product
k

o
i=1

Ui contains a subgroup

isomorphic to
k

o
i=1

Vi.

Proof. According [3] each element of wreath product
k

o
i=1

Ui can be pre-

sented by a tableau of the type

[u1, u2(x1), . . . , uk(x1, . . . , xk−1)],

where u1 ∈ U1, ui(x1 . . . , ki−1) ∈ U
X1×···×Xi−1

i for 2 ≤ i ≤ k.
The set of tableaus

[v1, v2(x1), . . . , vk(x1, . . . , xk−1)]

such that v1 ∈ V1, vi(x1, . . . , xi−1) ∈ V
X1×···×Xi−1

i , 2 ≤ i ≤ k forms a

subgroup of the wreath product
k

o
i=1

Ui which is isomorphic to
k

o
i=1

Vi.
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The following statement is well known Kaloujnine-Krasner’s theorem
for finitely iterated wreath products [2].

Lemma 4. Let a group G have a subnormal series G = G1 B G2 B · · ·B
Gk+1 = {1}, with the quotients being Gi/Gi+1 = Hi (i = 1, . . . , k). If
Hi can be faithful represented by permutation of the set X for all i =
1, 2, . . . , k, then the group G can be embedded into the wreath product
k

o
i=1

Hi of permutation groups (H1, X), (H2, X), . . . , (Hk, X).

3. Proof of Theorem 1

1) Let G have a subnormal series G = G1 B G2 B · · · B Gk+1 = {1} such
that for every i = 1, . . . , k, the quotient group Gi/Gi+1 = Hi can be faith-
ful represented by permutations of the set X. By Kaloujnine-Krasner’s
theorem the group G is isomorphically embedded into the wreath product
k

o
i=1

Hi of permutation groups (H1, X), (H2, X), . . . , (Hk, X). By lemma

3 the wreath product
k

o
i=1

Hi is isomorphic to a subgroup of the wreath

power
k

o
i=1

S
(i)
n of symmetric groups of degrees n. Hence, we have the

sequence of embeddings

G ↪→
k

o
i=1

Hi ↪→
k

o
i=1

S(i)
n ' GX,k ↪→ FGX

and hence the group G is embedded into FGX .
2) We first prove that every finite group G which is embeddable in GX

can be embedded into a subgroup FGX . Let G = {u1, . . . , um} be a finite
subgroup of GX , where

uk = [u1,k, u2,k(x1), . . . , um,k(x1, . . . , xm−1), . . . ] , 1 ≤ k ≤ m.

For every l ∈ N we construct the group G(l) =
{

u
(l)
1 , . . . , u

(l)
m

}

, where

u
(l)
k = [u1,k, u2,k(x1), . . . , ul,k(x1, . . . , xl−1)] .

In this way we obtain a sequence of finite groups G(1), G(2), . . . such that

|G(1)| 6 |G(2)| 6 . . . .

Since the group G is finite, there exists k ∈ N such that for i > k we have
|G(i)| = |G|. For every l the group G(l) is a homomorphic image of G
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(the natural projection of the longer wreath power
∞

o
i=1

S
(i)
n into shorter

ones
l

o
i=1

S
(i)
n ). Hence, for i ≥ k the group G(i) is isomorphic to G. But

G(i) is embedded into FGX in the natural way.
Let G be a finite subgroup of FGX . There exists m ∈ N such that
G is a subgroup of GX,m, i.e. G is embedded into the wreath power
m

o
i=1

S
(i)
n = W . Denote by Wi the i-th base of W . Then W = W1 B W2 B

· · ·BWm BWm+1 = {1} and Ui = Wi/Wi+1 ' Sn×· · ·×Sn (ni−1 times).
For any i (1 ≤ i ≤ m) denote by

Ui,1, Ui,2, . . . , Ui,ni−1 , Ui,ni−1+1

subgroup series of Ui such that

Ui,k = {(1, . . . , 1, σk, . . . , σni−1)|σk, . . . , σni−1 ∈ Sn} , 1 ≤ k ≤ ni−1 + 1.

Then Ui = Ui,1, Ui,k+1 CUi,k for k = 1, . . . , ni−1. We construct a subnor-
mal series for G which quotients can be faithful represented by permuta-
tions of X in the following way.
Let Hi = G ∩ Wi. Then

G = H1 B H2 B · · · B Hm B Hm+1 = {1}. (1)

Without loss of generality, we can suppose that Hi 6= Hi+1, i = 1, . . . , m.
For any i (1 ≤ i ≤ m) we have the natural embedding

Ki = Hi/Hi+1 ↪→ Wi/Wi+1.

Hence, we can define subgroups Ki,l = Ki ∩ Ui,l, (l ≤ i ≤ m + 1). Let
Ki,l be a inverse image of Ki,l in Hi. Then for all i (1 ≤ i ≤ m) we have
subnormal series

Hi = Ki,1 B Ki,2 B · · · B Ki,m B Ki,m+1 = Hi+1. (2)

Now we can extend the subnormal series (1) by (2). Which completes
the proof.

4. Proof of Theorem 2

1) If G < GX , |G| < ∞, then by theorem 1 the group G is embedded

into
k

o
i=1

S
(i)
n for some k ∈ N. Moreover, |G| ∈ En because

∣

∣

∣

∣

k

o
i=1

S
(i)
n

∣

∣

∣

∣

∈ En.

The length of an orbit of G on ∂TX is a divisor of G and consequently is
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a n−number.
On the other hand, let m ∈ En. Then m = m1 · m2 · · ·mk, where
mi|n (1 ≤ i ≤ k). Let X = {1, 2, . . . , n}, αi be a cyclic permutation
(1, 2, . . . , mi) ∈ Sn. We construct the automorphism

v = [v1, v2(x1), . . . , vk(x1, . . . , xk−1), ε, ε, . . . ] ∈ GX

as follows: v1 = α1,

vi(x1, . . . , xi−1) =

{

αi for (x1, . . . , xi−1) = (1, . . . , 1)
ε

for 2 ≤ i ≤ k. We can directly check that v has the order m and v has a
cycle C of the length m on ∂TX . Let G be the cyclic group generated by
v. Then C is an orbit of G, and hence |C| = m, m ∈ Orb(G, ∂TX) and
1) is proved.

2) Let D be a finite set of n−numbers. Then by [1] there exists an
automorphism f ∈ GX such that the set of the cycle lengths of f is equal
to D. Since D is finite, the cyclic group 〈f〉 = H is finite as well. Every
orbit of the group H coincides with the set of elements of some cycle of
the automorphism f . Hence, Orb(H, ∂TX) = D and theorem 2 is proved.

Remark. From the proof follows that for every finite subgroup G < GX

there exists finite cyclic subgroup H < GX such that Orb(G, ∂Tx) =
Orb(H, ∂Tx).
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