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Abstract. We consider the sequence of 2-state Mealy au-

tomata over the finite alphabets, that have polynomial growth or-

ders and define the infinitely presented automatic transformation

semigroups.

1. Introduction

The notion of growth was introduced in the middle of last century [12, 19]
and was applied to various geometrical and algebraic objects [1, 20].
Growth of Mealy automata have been studied since the 80th of last cen-
tury [4, 6], and it is close interrelated with growth of automatic transfor-
mation semigroups (groups), defined by Mealy automata [6].

Mainly, attention of researchers are attracted to investigations of
growth of invertible Mealy automata (see, for example, [3, 7, 8, 10]).
Invertibility of the Mealy automaton allows to consider automatic trans-
formation group, defined by this automaton. Investigations of growth of
arbitrary Mealy automata (see, for example, [17], [13], and the research
of all 2-state Mealy automata over the 2-symbol alphabet [15]) produce
results, which show principal distinctions between the cases of invertible
and arbitrary Mealy automata.

For example, there was found the smallest possible Mealy automaton
of intermediate growth, which has 2 states and is considered over the
2-symbol alphabet [18], [15]. On the other hand, the smallest invertible
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Mealy automata of intermediate growth either have 3 states or is consid-
ered over the 3-symbol alphabet [2, 3]. There were found Mealy automata
of polynomial growth such, that growth functions of the automaton and
the automatic transformation semigroup have different growth orders [15].
There was constructed the set of Mealy automata, which define the free
semigroup [14].

As follows from [9] (see also [10]), the automatic transformation group,
defined by any invertible Mealy automaton of the polynomial growth or-
der, is “virtually nilpotent” and cannot be infinitely presented. In the pa-
per we consider the sequence {Am, m ≥ 3} of 2-state Mealy automata of
polynomial growth, which define the infinitely presented automatic trans-
formation semigroups for all m ≥ 4. These automata were announced on
IV International Algebraic Conference in Ukraine, Lviv, 2003 [16].

In section 2 we formulate theorem 1, where presentations of the
automatic transformation semigroups, defined by the automata from
{Am, m ≥ 3}, are described, and theorem 2, where the growth functions
are described. Some numerical properties of the growth functions are
proved in corollary 1. In section 3 necessary definitions and properties of
Mealy automata, finitely generated semigroups and growth functions are
provided. Section 4 is devoted to the investigation of the automatic trans-
formations, defined by Am, and to the proof of theorem 1. Theorem 2
and corollary 1 are proved in section 5.

Another sequence {Bm, m ≥ 3} of Mealy automata of polynomial
growth such that for all m ≥ 3 the automaton Bm has the polynomial
growth order

[
nm−2

]
and defines the infinitely presented semigroup, is

provided in section 6. Hence, for any positive integer d > 0 there exist
Mealy automata of growth order

[
nd

]
, which define infinitely presented

automatic transformation semigroups.

2. Main results

Let Xm = {x0, x1, . . . , xm−1} be the m-symbol alphabet, and let Q2 =
{q0, q1} be the 2-element set of internal states. Let Am = (Xm, Q2, πm, λm),
m ≥ 3, be the 2-state Mealy automaton over the m-symbol alphabet (fig-
ure 1), and the transition function πm and the output function λm are
defined in the following way:

πm(x0, qj) = q0, πm(x1, qj) = q1, πm(xi, qj) = q0,

λm(x0, qj) = x0, λm(x1, qj) = xj , λm(xi, qj) = xi−j ,

where i = 2, 3, . . . , m − 1 and j = 0, 1. Let us denote Sm the automatic
transformation semigroup, defined by Am, and let γAm and γSm are the
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Figure 1: The automaton Am

growth functions of the automaton Am and the semigroup Sm, respec-
tively.

Theorem 1. For any m ≥ 3 the semigroup Sm has the following presen-
tation:

Sm =

〈
f0, f1

f1f
p1
0 f1

m−2∏
i=2

(fpi

0 f1) = f
p1+1
0 f1

m−2∏
i=2

(fpi

0 f1)

p1 = 1, 2; p2, p3, . . . , pm−2 ≥ 0

〉
. (1)

All semigroups Sm for m ≥ 4 are infinitely presented.

Theorem 2. For m ≥ 3 the growth functions γAm and γSm are defined
by the following equalities:

γAm(n) =
m−1∑

i=0

(
n

i

)
, (2)

γSm(n) =
m∑

i=0

(
n + 1

i

)
− 2, (3)

for all n ≥ 1.

Corollary 1. 1. For all m ≥ 3 the functions γAm and γSm have the
growth orders

[
nm−1

]
and [nm], respectively.

2. The pointwise limit of the sequence {γAm , m ≥ 3} of polynomial
growth functions is the exponential function 2n, that is for any pos-
itive integer n ≥ 1 the equality holds

lim
m→∞

γAm(n) = 2n.
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3. The growth functions γAm satisfy the equalities:

γAm(n) = 2 +
n−1∑

i=1

γAm−1(i),

where m ≥ 4, n ≥ 1.

3. Preliminaries

3.1. Growth functions

Let us consider the set of positive non-decreasing functions of a natural
argument γ : N → N; in further such functions will be called the growth
functions.

Definition 1. Let γi : N → N, i = 1, 2, are growth functions. The
function γ1 has no greater growth order (notation γ1 ¹ γ2) than the
function γ2, if there exist numbers C1, C2, N0 ∈ N such that

γ1(n) ≤ C1γ2(C2n)

for any n ≥ N0.

Definition 2. The growth functions γ1 and γ2 are equivalent or have the
same growth order (notation γ1 ∼ γ2), if the following inequalities hold:

γ1 ¹ γ2 and γ2 ¹ γ1.

The equivalence class of the function γ is called the growth order and
is denoted by the symbol [γ]. The growth order [γ] is called polynomial,
if [γ] =

[
nd

]
for some d > 0.

3.2. Mealy automata

Let us denote the set of all finite words over Xm, including the empty
word ε, by the symbol X∗

m, and denote the set of all infinite (to right)
words by the symbol Xω

m.

Let A = (Xm, Qn, π, λ) be a non-initial Mealy automaton with finite
set of states Qn = {q0, q1, . . . , qn−1}, input and output alphabets are the
same and are equal to Xm, π : Xm × Qn → Qn and λ : Xm × Qn → Xm

are its transition and output functions, respectively. The function λ can
be extended in a natural way to the mapping λ : X∗

m × Qn → X∗

m or to
the mapping λ : Xω

m × Qn → Xω
m (see, for example, [5], etc).
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Definition 3 ([5]). For any state q ∈ Qn the transformation fq : X∗

m →
X∗

m (fq : Xω
m → Xω

m), defined by the equality

fq(u) = λ(u, q),

where u ∈ X∗

m (u ∈ Xω
m), is called the automatic transformation, defined

by A at the state q.

Let us consider the transformation σq over the alphabet Xm, q ∈ Qn,
defined by the output function λ:

σq =
(

λ(x0, q) λ(x1, q) . . . λ(xm−1, q)
)
.

Let q be an arbitrary state. The image of the word u = u0u1u2 . . . ∈
Xω

m under the action of the automatic transformation fq can be written
in the following way:

fq(u0u1u2 . . .) = λ(u0, q) · fπ(u0,q)(u1u2 . . .) = σq(u0) · fπ(u0,q)(u1u2 . . .).

It means that fq acts on the first symbol of u by the transformation
σq over Xm, and acts on the rest of the word without first symbol by
the transformation fπ(u0,q). Therefore the transformations defined by the
automaton A can be written in the unrolled form:

fqi
=

(
fπ(x0,qi), fπ(x1,qi), . . . , fπ(xm−1,qi)

)
σqi

,

where i = 0, 1, . . . , n − 1.
The Mealy automaton A = (Xm, Qn, π, λ) defines the set

FA =
{
fq0 , fq1 , . . . , fqn−1

}

of automatic transformations over Xω
m. The Mealy automaton A is called

invertible if all transformations from the set FA are bijections. It’s easy
to show (see, for example, [7]) that A is invertible if and only if the
transformation σq is a permutation of Xm for each state q ∈ Qn.

Definition 4 ([5]). The Mealy automata Ai = (Xm, Qn, πi, λi), i = 1, 2,
such that there exist permutations ξ, ψ ∈ Sym(Xm) and θ ∈ Sym(Qn)
such, that the following equalities hold

θπ1(x, q) = π2(ξx, θq), ψλ1(x, q) = λ2(ξx, θq)

for all x ∈ Xm and q ∈ Qn, are called isomorphic automata.

Definition 5 ([5]). The Mealy automata Ai = (Xm, Qni
, πi, λi), i = 1, 2,

are called equivalent, if FA1 = FA2.
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Theorem 3 ([5]). Each class of equivalent Mealy automata over the
alphabet Xm contains, up to isomorphism, a unique reduced or minimal
(by the number of states) automaton.

The minimal automaton can be found using standard algorithm of
minimization.

Definition 6 ([4]). Let Ai = (Xm, Qni
, πi, λi), i = 1, 2, be arbitrary

Mealy automata. The automaton A = (Xm, Qn1 × Qn2 , π, λ) such that
its transition and output functions are defined in the following way:

π(x, (q1, q2)) = (π1(λ2(x, q2), q1), π2(x, q2)),

λ(x, (q1, q2)) = λ1(λ2(x, q2), q1),

where x ∈ Xm, (q1, q2) ∈ Qn1 ×Qn2 , is called the product of the automata
A1 and A2.

Proposition 1 ([4]). For any states q1 ∈ Qn1 , q2 ∈ Qn2 and an arbitrary
word u ∈ X∗

m (u ∈ Xω
m) the following equality holds:

f(q1,q2),A(u) = fq1,A1(fq2,A2(u)).

It follows from proposition 1 that for the transformations fq1,A1 and
fq2,A2 , q1 ∈ Qn1 , q2 ∈ Qn2 , the unrolled form of the product f(q1,q2),A1×A2

is defined by the equality:

f(q1,q2),A1×A2
= fq1,A1fq2,A2 = (g0, g1, . . . , gm−1) σq1,A1σq2,A2 ,

where gi = f
π1(σq2,A2

(xi),q1),A1
fπ2(xi,q2),A2

, i = 0, 1, . . . , m − 1.

The power An is defined for any automaton A and any positive integer
n. Let us denote A(n) the minimal Mealy automaton, equivalent to An.

It follows from definition 6, that
∣∣∣QA(n)

∣∣∣ ≤ |QA |
n.

Definition 7. [6] The function γA of a natural argument, defined by

γA(n) =
∣∣∣QA(n)

∣∣∣ , n ∈ N,

is called the growth function of the Mealy automaton A.

3.3. Semigroups

Let S be a semigroup with the finite set of generators G = {s0, s1, . . . , sk−1}.
Let us denote the free semigroup with the set G of generators by the sym-
bol G+. Obviously (see, for example, [11]), if the semigroup S does not
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contain the identity, then S is a homomorphic image of the free semi-
group G+. Similarly, the monoid S = sg (G) is a homomorphic image of
the free monoid G∗.

The elements of the free semigroup G+ are called semigroup words.
In the sequel, we identify them with corresponding elements of S. The
semigroup words s1 and s2 are called [11] equivalent relative to the system
G of generators in the semigroup S, if in S the equality s1 = s2 holds.

Definition 8. Let s be an arbitrary element of S. The length `(s) of s is
the minimal possible number of the generators in decomposition

s = si1si2si3 . . . sil ,

where sij ∈ G, 1 ≤ j ≤ l, l > 0.

Let us sort the generators of S according to their index; and introduce
a linear order on the set of elements of G+: semigroup words are ranked on
length, and then words of the same length are arranged lexicographically.
The representative of the class of the introduced above equivalence is the
minimal semigroup word in the sense of this order.

Definition 9. Let s ∈ S be an arbitrary element. The normal form of this
element is the representative of the class of the equivalence of semigroup
words, which is mapped on the element s.

Definition 10. The function γS of a natural argument such that

γS(n) =
∣∣{ s ∈ S `(s) ≤ n

}∣∣ , n ∈ N,

is called the growth function of S relative to the system G of generators.

Definition 11. The function
_
γS of a natural argument such that

_
γS(n) =

∣∣{ s ∈ S s = si1si2 . . . sin , sij ∈ G, 1 ≤ j ≤ n
}∣∣ , n ∈ N,

is called the spherical growth function of S relative to the system G of
generators.

Definition 12. The function δS of a natural argument such that

δS(n) =
∣∣{ s ∈ S `(s) = n

}∣∣ , n ∈ N,

is called the word growth function of S relative to the system G of gener-
ators.

The following proposition is well-known, and is proved in many papers
(see, for example, [7]).
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Proposition 2. Let S be an arbitrary finitely generated semigroup, and
let G1 and G2 be systems of generators of S. Let us denote the growth
function of S relative to the set Gi of generators by the symbol γSi

, i =
1, 2. Then [γS1 ] = [γS2 ].

From the definitions 10, 11 and 12, the following inequalities hold for
n ∈ N:

δS(n) ≤
_
γS(n) ≤ γS(n) =

n∑

i=0

δS(i). (4)

Proposition 3. Let S be an arbitrary finitely generated monoid. Then

[γS ] =
[

_
γS

]
≥ [δS ].

Let S be a semigroup without the identity. Then the growth function
and the spherical growth function may have different growth orders. For
example, let S = N be the additive semigroup, S = sg (1). Then γS(n) =
n,

_
γS(n) = 1, and these functions have different growth orders, [1] < [n].

There are many results concerning the growth of groups. For refer-
ences see the survey [7], the book [10], other papers.

3.4. Growth of Mealy automata

Definition 13. Let A = (Xm, Qn, π, λ) be a Mealy automaton. The
semigroup

SA = sg
(
fq0 , fq1 , . . . , fqn−1

)

is called the semigroup of automatic transformations, defined by A.

For an invertible Mealy automaton, let us examine the group of trans-
formations it defines.

Let A be the Mealy automaton, γA be its growth function; let SA be
the semigroup, defined by A, and γSA

and
_
γSA

are the growth function
and the spherical growth function of SA , respectively. From definition 13
it follows that

Proposition 4 ([6]). For any n ∈ N the value γA(n) equals the number
of those elements of SA, that can be presented as a product of length n of
the generators

{
fq0 , fq1 , . . . , fqn−1

}
, i.e.

γA(n) =
_
γSA

(n), n ∈ N.

From this proposition and (4) it follows, that γA(n) ≤ γSA
(n) for any

n ∈ N.
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4. Semigroups SAm
, m ≥ 3

Let us fix the number m ≥ 3 in this section.

4.1. Automatic transformations, defined by Am

Let us denote the automatic transformations fq0 and fq1 , defined by the
automaton Am, by the symbols f0 and f1, and let us study their proper-
ties. Their unrolled forms are the following:

f0 = (f0, f1, f0, f0, . . . , f0) (x0, x0, x2, x3, . . . xm−1) ,

f1 = (f0, f1, f0, f0, . . . , f0) (x0, x1, x1, x2, . . . xm−2) .
(5a)

For any integer p > 0 from (5a) it follows

f
p
0 =

(
f

p
0 , f

p−1
0 f1, f

p
0 , f

p
0 , . . . , f

p
0

)
(x0, x0, x2, x3, . . . xm−1) ,

and, similarly, for 0 < p ≤ m − 2 we have

f
p
1 =

(
f

p
0 , f

p
1 , f

p−1
1 f0, f

p−2
1 f2

0 , . . . , f1f
p−1
0 , f

p
0 , f

p
0 , f

p
0 , . . . , f

p
0

)

(x0, x1, x1, x1, . . . , x1, x1, x2, x3, . . . xm−1−p) .

Thus for any numbers p1, p2, p3 such that p1, p3 > 0 and 0 < p2 ≤ m− 2,
the following equalities hold:

f
p1
0 f

p2
1 =

(
f

p1+p2
0 , f

p1−1
0 f

p2+1
1 , f

p1−1
0 f

p2
1 f0, f

p1−1
0 f

p2−1
1 f2

0 ,

. . . , f
p1−1
0 f1f

p2
0 , f

p1+p2
0 , f

p1+p2
0 , . . . , f

p1+p2
0

)

(x0, x0, x0, x0, . . . , x0, x2, x3, . . . xm−1−p2) , (5b)

f
p2
1 f

p3
0 =

(
f

p2+p3
0 , f

p2+p3−1
0 f1, f

p2−1
1 f

p3+1
0 , f

p2−2
1 f

p3+2
0 ,

. . . , f1f
p2+p3−1
0 , f

p2+p3
0 , f

p2+p3
0 , f

p2+p3
0 , . . . , f

p2+p3
0

)

(x0, x0, x1, x1, . . . , x1, x1, x2, x3, . . . xm−1−p2) ,

f
p1
0 f

p2
1 f

p3
0 =

(
f

p1+p2+p3
0 , f

p1+p2+p3−1
0 f1, f

p1−1
0 f

p2
1 f

p3+1
0 , f

p1−1
0 f

p2−1
1 f

p3+2
0 ,

. . . , f
p1−1
0 f1f

p2+p3
0 , f

p1+p2+p3
0 , f

p1+p2+p3
0 , . . . , f

p1+p2+p3
0

)

(x0, x0, x0, x0, . . . , x0, x2, x3, . . . xm−1−p2) .

From these equations for arbitrary integers p1, p3 ≥ 0, p2 > 0 the
equality follows

f
p1
0 f

p2
1 f

p3
0 (x∗

2) = x
p1
0 x

p2
1 x∗

2. (5c)
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Proposition 5. In the semigroup Sm the following relations hold:

f1f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 = f
1+p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 , (6)

where k ≥ 1, pi > 0, 1 ≤ i ≤ 2k,
k∑

i=1
p2i = m − 2.

Proof. Let s = f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f0

p2k−1f
p2k

1 be an arbitrary element of
Sm such, that parameters pi, 1 ≤ i ≤ 2k, satisfy the requirements of the
proposition. As s defines some automatic transformation over Xω

m, then
there exist elements sx0 , sx1 , . . . , sxm−1 , that for any word u ∈ Xω

m the
equalities hold:

s(xiu) = s(xi) · sxi
(u),

where i = 0, 1, . . . , m − 1. Moreover, from (5a) the equalities follow

fj(x0u) = x0 · f0(u),

where j = 0, 1. Let us consider the transformation σs over Xm. Using

the requirement
k∑

i=1
p2i = m − 2 and equation (5b), we have

σs = (x0, x0, . . . , x0, x2, x3, . . . xm−1−p2) ·

·(x0, x0, . . . , x0, x2, x3, . . . xm−1−p4)·. . .·(x0, x0, . . . , x0, x2, x3, . . . xm−1−p2k
) =

=


x0, x0, . . . , x0, x2, x3, . . . x(

m−1−
k∑

i=1
p2i

)


 = (x0, x0, . . . x0) ,

where transformations are applied right-to-left. Thus, for an arbitrary
word u = u0u1u2 . . . ∈ Xω

m holds

fi s(u0u1u2 . . .) = fi(σs(u0) · su0(u1u2 . . .)) =

= fi(x0 · su0(u1u2 . . .)) = x0 · f0 su0(u1u2 . . .),

where i = 0, 1. Hence,

f1f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f0

p2k−1f
p2k

1 (u) = f
p1+1
0 f

p2
1 f

p3
0 f

p4
1 . . . f0

p2k−1f
p2k

1 (u).

Proposition 6. The relations (6) in the semigroup Sm follow from the
relations

f1f
1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 = f2
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 ,

f1f
2
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 = f3
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 ,
(7)

where k ≥ 1, pi > 0, 2 ≤ i ≤ 2k,
k∑

i=1
p2i = m − 2.
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Proof. Let us prove the proposition by an induction on p1. For p1 = 1
and p1 = 2 the assertion of the proposition immediately follows from
proposition 5. Let us assume that the proposition is proved for p1 ≥ 2.
Using the induction hypothesis, for (p1 + 1) we have

f1f
p1+1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 =

= f1f0 · f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 =

= f1f0 · f1f
p1−1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 =

= f1f0f1f
p1−1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−2

1 f
p2k−1

0 f
p2k−1
1 · f1 =

= f0
2 · f1f

p1−1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 =

= f
2+1+p1−1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 =

= f
p1+2
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 .

Proposition 7. For any m ≥ 4 the infinite system (7) of relations is
irreducible, that is no one of relations follows from others.

Proof. Let r1 and r2 are arbitrary relations of (7):

r1 : f1f
j1
0 f1s1f1 = f

j1+1
0 f1s1f1,

r2 : f1f
j2
0 f1s2f1 = f

j2+1
0 f1s2f1,

where j1, j2 ∈ {1, 2}, s1, s2 are semigroup words, which includes (m − 4)
symbols f1. Relation r1 can be applied to r2 if and only if s1 = s2 and
j1 = 1, j2 = 2. From relation r1 the equalities follow

f2
1 f1

0 f1s2f1 = f1f
2
0 f1s2f1, f0f1f0f1s2f1 = f3

0 f1s2f1,

but the relation r2 is necessary, because it sets up the equality between
left and right equations. Hence, no one relation of (7) can be output from
other relations.

4.2. Proof of theorem 1

Proposition 8. An arbitrary element s ∈ Sm admits a unique minimal-
length representation as a word of the form

f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 f0
p2k+1 , (8)

where at k = 0 let p1 > 0, and at k ≥ 1 let pi > 0, 2 ≤ i ≤ 2k,

p1, p2k+1 ≥ 0,
k∑

i=2
p2i ≤ m − 3.
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Proof. Let s ∈ Sm be an arbitrary element. It can be written as a product
of the generators of Sm, that is

s = f
p1
0 f

p2
1 f

p3
0 . . . f

p2l−1

0 f
p2l

1 f
p2l+1

0 ,

where l ≥ 0, p1, p2l+1 ≥ 0, pi > 0, 1 < i ≤ 2l, and
2l+1∑
i=1

pi = `(s) > 0.

If the semigroup word s contains no great than (m − 3) symbols f1

or s has been already written as (8), then the relations (7) can not be
applied and the assertion of the proposition is true. Let us assume that
the semigroup word s contains at least (m − 2) symbols f1 and is not
written in the form (8). Then let us find in s the maximal right subword

s̃ = f
p2i+1

0 f
p2i+2

1 f
p2i+3

0 f
p2i+4

1 . . . f
p2l−1

0 f
p2l

1 f
p2l+1

0

such that it has the form (8), that is

l∑

j=i+2

p2j ≤ m − 3,

l∑

j=i+1

p2j ≥ m − 2.

Let us note, that the word s̃ can not be reduced by the relations (7).
From the proof of proposition 6 and the condition p2i+1 > 0 it follows
that

s = f
p1
0 f

p2
1 . . . f

p2i−1

0 f
p2i

1 · s̃ = f

2i+1∑
i=1

pi

0 f
p2i+2

1 f
p2i+3

0 f
p2i+4

1 . . . f
p2l−1

0 f
p2l

1 f
p2l+1

0 .

Hence, s can be reduced to the form (8).

Let s = f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 f0
p2k+1 be an arbitrary element of

Sm, written in the form (8), and let us denote P b
a =

b∑
i=a

pi and Rb
a =

b∑
i=a

p2i. Let us write the unrolled form of s by using the equations (5*).
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If the requirement Rk
1 < m − 2 is satisfied, then

s =

(
f

P 2k+1
1

0 , f
P 2k+1

1 −1
0 f1,

f
P 2k−1

1 −1
0 f

p2k

1 f
P 2k+1

2k+1 +1

0 , f
P 2k−1

1 −1
0 f

p2k−1
1 f

P 2k+1
2k+1 +2

0 , . . . ,

f
P 2k−1

1 −1
0 f1f

P 2k+1
2k+1 +p2k

0 ,

f
P 2k−3

1 −1
0 f

p2k−2

1 f
P 2k+1

2k−1 +1

0 , f
P 2k−3

1 −1
0 f

p2k−2−1
1 f

P 2k+1
2k−1 +2

0 , . . . ,

f
P 2k−3

1 −1
0 f1f

P 2k+1
2k−1 +p2k−2

0 ,

. . .

f
P 1

1 −1
0 f

p2
1 f

P 2k+1
3 +1

0 , f
P 1

1 −1
0 f

p2−1
1 f

P 2k+1
3 +2

0 , . . . , f
P 1

1 −1
0 f1f

P 2k+1
3 +p2

0 ,

f
P 2k+1

1
0 , f

P 2k+1
1

0 , . . . , f
P 2k+1

1
0

)

(
x0, x0, x0, . . . , x0, x2, x3, . . . , xm−1−Rk

1

)
.

(9a)
Otherwise, if Rk

1 ≥ m − 2, we have

s =

(
f

P 2k+1
1

0 , f
P 2k+1

1 −1
0 f1,

f
P 2k−1

1 −1
0 f

p2k

1 f
P 2k+1

2k+1 +1

0 , f
P 2k−1

1 −1
0 f

p2k−1
1 f

P 2k+1
2k+1 +2

0 , . . . ,

f
P 2k−1

1 −1
0 f1f

P 2k+1
2k+1 +p2k

0 ,

f
P 2k−3

1 −1
0 f

p2k−2

1 f
P 2k+1

2k−1 +1

0 , f
P 2k−3

1 −1
0 f

p2k−2−1
1 f

P 2k+1
2k−1 +2

0 , . . . ,

f
P 2k−3

1 −1
0 f1f

P 2k+1
2k−1 +p2k−2

0 ,

. . .

f
P 1

1 −1
0 f

p2
1 f

P 2k+1
3 +1

0 , f
P 1

1 −1
0 f

p2−1
1 f

P 2k+1
3 +2

0 , . . . ,

f
P 1

1 −1
0 f

p2−(m−3−Rk
2)

1 f
P 2k+1

3 +m−2−Rk
2

0

)

(x0, x0, x0, . . . , x0) .

(9b)

Proof of theorem 1.
In proposition 6 is proved, that the relations (7) hold in the semigroup

Sm. Using these relations, an arbitrary element s ∈ Sm can be reduced
to the form (8). It is necessary to prove, that two semigroup elements,
written in different forms (8), define different transformations over Xω

m.
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Then the system (7) of the relations is the set of the defining relations,
and the semigroup Sm has the presentation by generators and defining
relations (1).

Let s1 and s2 are arbitrary semigroup elements, which have different
forms (8),

s1 = f
p1
0 f

p2
1 f

p3
0 f

p4
1 . . . f

p2k−1

0 f
p2k

1 f0
p2k+1 ,

s2 = f t1
0 f t2

1 f t3
0 f t4

1 . . . f
t2l−1

0 f
t2l

1 f0
t2l+1 .

(10)

Let us assume by contradiction, that the elements s1 and s2 define the
same transformation over Xω

m, but have different values of the parameters
in (10). Then for any word u ∈ Xω

m the equality

s1(u) = s2(u) (11)

holds. Let us keep notations P b
a , Rb

a, and denote T b
a =

b∑
i=a

ti.

From equations (9*) and (5*) follows, that for word u1 = x0x
∗

1 the
equalities hold:

s1(x0x
∗

1) = x0 · f
P 2k+1

1
0 (x∗

1) = x2
0 · f

P 2k+1
1 −1

0 f1(x
∗

1) = . . . =

= x
P 2k+1

1 +1
0 · f

P 2k+1
1

1 (x∗

1) = x
P 2k+1

1 +1
0 x∗

1,

s2(x0x
∗

1) = x0 · f
T 2l+1
1

0 (x∗

1) = x2
0 · f

T 2l+1
1 −1

0 f1(x
∗

1) = . . . =

= x
T 2l+1
1 +1

0 · f
T 2l+1
1

1 (x∗

1) = x
T 2l+1
1 +1

0 x∗

1.

Using the assumption s1(u1) = s2(u1), we obtain the requirement

`(s1) =
2k+1∑

i=1

pi =
2l+1∑

i=1

ti = `(s2).

Not restricting a generality let us assume, that k ≥ l.

Let l = 0. Then s2 = f t1
0 , but k ≥ 1; and from (9*) and (5c) for the

word u2 = x∗

2 we have

s1(x
∗

2) = x0 · f
P 2k−1

1 −1
0 f

p2k

1 f
p2k+1+1
0 (x∗

2) = x
P 2k−1

1
0 x

p2k

1 x∗

2,

s2(x
∗

2) = f t1
0 (x∗

2) = x∗

2,

that contradicts the assumption (11).

Let now l ≥ 1. As elements s1 and s2 have the same length, then let us
choice the minimal possible index i, 0 ≤ i < 2l, such that p2k−i 6= t2l−i,
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and denote i0 =
[

i
2

]
, i1 = i − 2i0. Obviously, the equality

l∑

h=l−i0+1

t2h =
k∑

h=k−i0+1

p2h = Rk
k−i0+1,

hold. As the elements s1 and s2 are written in the form (8), then Rk
k−i0+1 ≤

m−3, and from equations (9*) and (5c) for the word u3 = x(
2+Rk

k−i0+1

)x∗

2

follows

s1

(
x(

2+Rk
k−i0+1

)x∗

2

)
= x0 · f

P
2k−2i0−1
1 −1

0 f
p2k−2i0
1 f

P 2k+1
2k−2i0+1+1

0 (x∗

2) =

= x
P

2k−2i0−1
1

0 x
p2k−2i0
1 x∗

2,

s2

(
x(

2+Rk
k−i0+1

)x∗

2

)
= x0 · f

T
2l−2i0−1
1 −1

0 f
t2l−2i0
1 f

T 2l+1
2l−2i0+1+1

0 (x∗

2) =

= x
T

2l−2i0−1
1

0 x
t2l−2i0
1 x∗

2.

From the assumption (11) it follow the equalities p2k−2i0 = t2l−2i0 and

2k−2i0−1∑

h=1

ph =

2l−2i0−1∑

h=1

th. (12)

If i is the even integer, then i1 = 0, i = 2i0, and we obtain an incon-
sistency with the choice of i. Now let i be the odd number, i1 = 1. If
i = 2l − 1, then in the case k = l the choice of i contradicts with the
requirement (12). In sequel, let it be either i < 2l − 1 or k > l. As s1 is
written in the form (8), then

l∑

h=l−i0

t2h =
k∑

h=k−i0

p2h = Rk
k−i0

≤ m − 3.

Similarly to the previous speculations, for the word u4 = x(
2+Rk

k−i0

)x∗

2

we have

s1

(
x(

2+Rk
k−i0

)x∗

2

)
= x0 · f

P
2k−2i0−3
1 −1

0 f
p2k−2i0−2

1 f
P 2k+1

2k−2i0−1+1

0 (x∗

2) =

= x
P 2k−i−2

1
0 x

p2k−i−1

1 x∗

2,

s2

(
x(

2+Rk
k−i0

)x∗

2

)
= x0 · f

T
2l−2i0−3
1 −1

0 f
t2l−2i0−2

1 f
T 2l+1
2l−2i0−1+1

0 (x∗

2) =

= x
T 2l−i−2
1

0 x
t2l−i−1

1 x∗

2,
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whence follows the requirements

2k−i−2∑

h=1

ph =
2l−i−2∑

h=1

th and p2k−i−1 = t2l−i−1. (13)

Joining the requirements (12) and (13), it is follows the equality of the
parameters p2k−i = t2l−i, that contradicts the choice of the index i.

In proposition 7 it is proved that for all m ≥ 4 the set of defining
relations of the semigroup Sm is irreducible. Hence, the semigroup Sm is
infinitely presented.

5. Growth functions

Proof of theorem 2. Let us fix m ≥ 3, and calculate the growth functions
of the automaton Am and the semigroup Sm. Using the proved in section
4, for any n ∈ N the value δSm(n) is equal to the number of elements in

the form (8) such, that
2k+1∑
i=1

pi = n. Let us separate the set of elements

of the form (8) into three subsets:

f
p1
0 , p1 > 0, (14a)

f
p1
0 f

p2
1 , p1 ≥ 0, p2 > 0 (14b)

and

f
p1
0 f

p2−1
1 (f1f

p3
0 ) (f1f

p4
0 ) . . .

(
f1f

pl−1

0

)
(f1f

pl

0 ) , (14c)

where 3 ≤ l ≤ m, p1 ≥ 0, p2, p3 > 0, pi ≥ 0, 3 ≤ i ≤ l. There is a unique
word fn

0 of length n, which has the form (14a); the count of semigroup

elements of sort (14b) of length n equals

(
n − 1 + 1

1

)
, and the count

of elements of sort (14c) of length n equals

m∑

l=3

(
n − (1 + l − 2) + (l − 1)

l − 1

)
=

m−1∑

l=2

(
n

l

)
.

Thus, for any n ∈ N the equality hold:

δSm(n) = 1 +

(
n

1

)
+

m−1∑

l=2

(
n

l

)
=

m−1∑

l=0

(
n

l

)
.
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As the defining relations of the semigroup Sm do not change the length
of semigroup words, then

γAm(n) = δSm(n) =
m−1∑

i=0

(
n

i

)
,

and

γSm(n) =
n∑

j=1

δSm(j) =
m−1∑

i=0

n∑

j=1

(
j

i

)
=

=

m−1∑

i=0

(
n + 1
i + 1

)
−

m−1∑

i=0

(
1

i + 1

)
=

m∑

i=0

(
n + 1

i

)
− 2,

that holds for all n ≥ 1. The theorem 2 is completely proved.

Proof of corollary 1. 1. For all n ≥ m from (2) it follows, that the value

γAm(n) includes the largest binomial coefficient

(
n

m − 1

)
, which gives

the polynomial growth order
[
nm−1

]
. Similarly, for the growth function

of Sm from (3) it follows, that γSm has the polynomial growth order [nm].

2. Let us fix n ≥ 1. From (2) it follows, that for m ≥ n + 1 the
equality holds

γAm(n) =
m−1∑

i=0

(
n

i

)
=

n∑

i=0

(
n

i

)
= 2n,

whence

lim
m→∞

γAm(n) = 2n.

3. Let us fix m ≥ 4. From the properties of binomial coefficients and
the formula (2) it follows

2 +
n−1∑

i=1

γAm−1(i) = 2 +
n−1∑

i=1

m−2∑

j=0

(
i

j

)
=

2 +
m−2∑

j=0

((
n

j + 1

)
−

(
1

j + 1

))
=

m−1∑

j=0

(
n

j

)
= γAm(n),

that completes the proof of corollary 1.
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Figure 2: The automaton Bm

6. Sequence {Bm, m ≥ 3}

As was mentioned in introduction, let us consider the sequence
{Bm, m ≥ 3} of 2-state Mealy automata, where the automaton Bm,
m ≥ 3, is shown on figure 2 by its Moore diagram. The following theorem
describes the main properties of the automaton Bm.

Theorem 4. For any m ≥ 3 the automaton Bm has the growth or-
der

[
nm−2

]
and defines the infinitely presented automatic transformation

semigroup.

Theorem 4 may be proved similarly to theorems 1 and 2, but its proof
is required a bit more technical details. Indeed, we have

Proposition 9. In the semigroup SBm, defined by Bm, the following
relations hold:

fm−1
1 f0 = fm−2

1 f2
0 ,

f
p1
1

m−p1∏

i=2

(fpi

0 f1) = f
p1−1
1 f0

m−p1∏

i=2

(fpi

0 f1) ,
(15)

where 0 < p1 ≤ m − 2, 0 < p2, 0 ≤ p3, p4, . . . , pm−p1.

On the one hand, the set of relations (15) is not irreducible system of
relations. For example, for m = 3 these relations are

f2
1 f0 = f1f

2
0 ,

f1f
p2
0 f1 = f

p2+1
0 f1,

where p2 ≥ 1. They can be reduced to the irreducible system of relations

f2
1 f0 = f1f

2
0 ,

f1f
2p

0 f1 = f2p+1
0 f1,
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where p > 0.
On the other hand, for all m ≥ 3 the relations (15) includes infinite

irreducible set of relations, and therefore semigroup SBm is infinitely pre-
sented. Moreover, the growth functions of the automaton Bm and the
semigroup SBm are described in the following proposition.

Proposition 10. For m ≥ 3 the growth functions γBm and γSBm
are

defined by the following equalities:

γBm(n) =

m−2∑

i=0

(
n

i

)
+ max (0, n − m + 2),

γSBm
(n) =

m−1∑

i=0

(
n + 1

i

)
− 2 +

1

2
max (0, (n − m + 2)(n − m + 3)),

for all n ≥ 1.

Obviously, the growth functions γBm and γSBm
have polynomial growth

orders.

References

[1] I.K. Babenko, The problems of the growth and the rationality in algebra and

topology, Uspehi Math. Nauk 41, (1986), 95-142

[2] Laurent Bartholdi, Croissance de groupes agissant sur des arbres, University of
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