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Abstract. A ballean B is a set X endowed with some family

of subsets of X which are called the balls. We postulate the prop-

erties of the family of balls in such a way that a ballean can be

considered as an asymptotic counterpart of a uniform topological

space. Using slow oscillating functions from X to {0, 1}, we define

a zero-dimensional compact space which is called a binary corona

of B. We define a class of binary normal ballean and, for every bal-

lean from this class, give an intrinsic characterization of its binary

corona. The class of binary normal balleans contains all balleans

of graph. We show that a ballean of graph is a projective limit of

some sequence of C̆ech-Stone compactifications of discrete spaces.

The obtained results witness that a binary corona of balleans can

be interpreted as a "generalized space of ends" of ballean.

§1. Introduction

A ball structure is a triple B = (X, P, B), where X, P are nonempty sets
and, for any x ∈ X, α ∈ P , B(x, α) is a subset of X which is called a
ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X,
α ∈ P . A set X is called a support of B, P is called a set of radiuses.
Given any x ∈ X, A ⊆ X, α ∈ P , put

B?(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A, α) =
⋃

a∈A

B(a, α).
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A ball structure B = (X, P, B) is called lower symmetric if, for any
α, β ∈ P , there exist α′, β′ ∈ P such that

B?(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B?(x, β)

for every x ∈ X.
A ball structure B = (X, P, B) is called upper symmetric if, for any

α, β ∈ P , there exist α′, β′ ∈ P such that

B(x, α) ⊆ B?(x, α′), B?(x, β) ⊆ B(x, β′)

for every x ∈ X.
A ball structure B = (X, P, B) is called lower multiplicative if, for any

α, β ∈ P , there exists γ ∈ P such that

B(B(x, γ), γ) ⊆ B(x, α)
⋂

B(x, β)

for every x ∈ X.
A ball structure B = (X, P, B) is called upper multiplicative if, for any

α, β ∈ P , there exists γ ∈ P such that

B(B(x, α), β) ⊆ B(x, γ)

for every x ∈ X.
Let B = (X, P, B) be lower symmetric , lower multiplicative ball

structure. Then the family

{
⋃

x∈X

(B(x, α) × B(x, α)) : α ∈ P}

is a fundamental system of entourages for some (uniquely determined)
uniform topological space [1] . On the other hand, if X is a uniform
topological space with the uniformity U ⊆ X×X, then the ball structure
(X,U , B) is lower symmetric and lower multiplicative, where B(x,U) =
{y ∈ X : (x, y) ∈ U} for every U ∈ U . Thus, the lower symmetric,
lower multiplicative ball structures could be identified with the uniform
topological spaces.

A ball structure B is called a ballean if B is upper symmetric and
upper multiplicative.

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping
f : X1 −→ X2 is called a ≺-mapping if, for every α ∈ P1, there exists
β ∈ P2 such that

f(B1(x, α)) ⊆ B2(f(x), β)

for every x ∈ X1. A bijection f : X1 −→ X2 is called an isomorphism if
f and f−1 are ≺-mappings.
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Let B1, B2 be balleans with common support X. We say that B1 ⊆ B2

if the identity mapping f : X −→ X is a ≺-mapping of B1 to B2. If
B1 ⊆ B2 and B2 ⊆ B1, we write B1 = B2.

Given a metric space (X, d), denote by B(X, d) the ballean (X, R+, Bd),
where Bd(x, r) = {y ∈ X : d(x, y) ≤ r}. A ballean B is called metrizable
if B is isomorphic to B(X, d) for an appropriate metric space (X, d). A
characterization of metrizable ballean is given in [7]. For approximation
of an arbitrary balleans via metrizable ballean see [8].

A metric space is called perfect if every ball Bd(x, r) is compact. Ac-
tually, the balleans of perfect metric spaces arose in geometrical group
theory [4, Chapter IV] and are intensively investigating (under the name
coarse space) in asymptotic topology [3].

For every perfect metric space X, there exists a compact space X
such that X is dense in X and every continuous slow oscillating function
h : X −→ [0, 1] can be extended to X. The space X is called a Higson’s
compactification of X and the reminder X \X is called a Higson’s corona
of X. For connections between asymptotic properties of X and topolog-
ical properties of its Higson’s corona see the survey [3]. Note only that
Higson’s corona of X is very complicated even for X = R

n.
In this paper, for every ballean B = (X, P, B) and every compact

metric space K, we define a K-corona of B, using ultrafilters and slow
oscillating functions from X to K. In the case K = [0, 1] this corona is
a direct generalization of Higson’s corona of perfect metric space. In the
case K = {0, 1} this corona is called a binary corona of ballean B. A
binary corona could be much more coarser than a Higson’s corona, but
it admits an explicit description for some class of balleans and reflects
some essential features of balleans . Our main results concern the binary
coronas of graphs and show that a binary corona of an arbitrary ballean
can be considered as its "space of ends".

§2. Slow oscillating mappings, coronas,

quasi-isomorphisms

Let B = (X, P, B) be a ballean, (Y,U) be a uniform topological space.
A mapping h : X −→ Y is called slow oscillating if, for every entourage
U ∈ U and every α ∈ P , there exists a bounded subset V of X such that

(h(B(x, α)), h(B(x, α))) ⊆ U

for every x ∈ X \ V . A subset V is called bounded if there exist x0 ∈ X,
β ∈ P such that V ⊆ B(x0, β).

Fix a ballean B = (X, P, B), endow X with discrete topology and
consider the Stone-C̆ech compactification βX of X. We take the points
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of βX to be the ultrafilters on X with the points of X identifying with
the principal ultrafilters. The topology of βX can be defined by stating
that the sets of the form {p ∈ βX : A ∈ p}, where A is a subset of X, are
a base for the open sets. We note that the sets of this form are clopen
and that, for any p ∈ βX and any A ⊆ X, A ∈ p if and only if p ∈ A,
where A is the closure of A in βX.

We say that an ultrafilter p ∈ βX is unbounded if every member
A ∈ p is unbounded. Denote by X# the set of all unbounded ultrafilters.
Clearly, X# is closed in βX.

Let K be a compact Hausdorff space, h : X −→ K. Then there exists
unique continuous extension hβ : βX −→ K.

Let (K, d) be compact metric space, r, q ∈ X#. We say that r ∼K q
if hβ(p) = hβ(q) for every slow oscillating mapping h : X −→ (K, d).
Clearly, ∼K is a closed (in X#×X#) equivalence on X#. A factor-space
X#/ ∼K is called a K-corona of B and is denoted by γ(B, K).

In the case K = [0, 1] we say that γ(B, [0, 1]) is a Higson’s corona of B.
In the case K = {0, 1} we say that γ(B, {0, 1}) is a binary corona of B.

For r, q ∈ X#, we say that r ‖ q if there exists α ∈ P such that
B(R, α) ∈ q for every R ∈ r. By [8, Lemma 4.1], ‖ is an equivalence
on X#. Denote by ∼ the minimal (by inclusion) closed (in X# × X#)
equivalence on X# such that ‖⊆∼. A compact Hausdorff space X#/ ∼
is called a corona of B, it is denoted by γ(B).

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans, f : X1 −→ X2

be a ≺-mapping. By analogy with topology, we say that f is a perfect
mapping if f−1(V ) is bounded for every bounded subset V ⊆ X2.

A pair of perfect mappings f1 : X1 −→ X2, f2 : X2 −→ X1 is called a
quasi-isomorphism between B1 and B2 if there exist α ∈ P1, β ∈ P2 such
that

(i) B2(f1(X1, β) = X2, B1(f2(X2, β) = X1;
(ii) f2f1(x) ∈ B1(x, α), f1f2(y) ∈ B2(y, β) for all x ∈ X1, y ∈ X2.
This notion of quasi-isomorphism between balleans is a generalization

of the notion of quasi-isometry between metric spaces [4, Chapter IV].
We omit routine verification of the following relations between the

above notions.

• Let B = (X, P, B) be a ballean, K be a compact metric space,
r, q ∈ X#. Then r ‖ q implies r ∼K q. It follows that γ(B, K) is a
continuous image of γ(B).

• Let B = (X, P, B) be a ballean, K be a compact metric space, M
be a closed subspace of K, r, q ∈ X#. Then r ∼K q implies r ∼M

q. It follows that γ(B, M) is a continuous image of γ(B, K). In
particular, binary corona is a continuous image of Higson’s corona.
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• Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans, f : X1 −→

X2 be a perfect mapping, r, q ∈ X#
1 . Then fβ(X#

1 ) ⊆ X#
2 , r ‖ q

implies fβ(r) ‖ fβ(q), r ∼ q implies fβ(r) ∼ fβ(q). Moreover, if
there exists β ∈ P2 such that B2(f(X1), β) = X2, then γ(B2) is a
continuous image of γ(B1).

• Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans, f : X1 −→
X2 be a perfect mapping. Let (Y,U) be a uniform, topological
space, h : X2 −→ Y be a slow oscillating mapping. Then hf :
X1 −→ Y is a slow oscillating mapping.

• Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans, f : X1 −→

X2 be a perfect mapping, K a compact metric space, r, q ∈ X#
1 .

Then r ∼K q implies fβ(r) ∼K fβ(q). Moreover, if there exists
β ∈ P2 such that B2(f(X1), β) = X2, then γ(B2, K) is a continuous
image of γ(B1, K).

• Let B1, B2 be quasi-isomorphic balleans, K be a compact metric
space. Then γ(B1) is homeomorphic to γ(B2), γ(B1, K) is homeo-
morphic to γ(B2, K).

§3. Binary normal spaces: intrinsic description of binary

coronas

Let B = (X, P, B) be a ballean, K be a compact metric space.

• Which pairs of ultrafilters are identified via the equivalence ∼K?

• Which subsets of γ(B, K) form topology of corona?

To answer these questions for binary corona we modify an intrinsic
description of Higson’s corona of normal ballean from [9].

The subsets Y, Z of X are called asymptotically disjoint in B if, for
every α ∈ P , there exists a bounded subset U ⊆ X such that

B(Y \Uα, α)
⋂

B(Z\Uα, α) = ∅.

We say that Y, Z are asymptotically separated if, for every α ∈ P ,
there exists a bounded subset Uα ⊆ X such that

B(Y \Uα, α)
⋂

B(Z\Uβ , β) = ∅

for all α, β ∈ P .
A ballean B is called normal if any two asymptotically disjoint subsets

of X are asymptotically separated. By [9, Theorem 2.2], a ballean B is
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normal if and only if, for every subset Y ⊆ X and every slow oscillating
function h : Y −→ [0, 1], there exists a slow oscillating extension g :
X −→ [0, 1] of h.

Let B be a normal ballean, K = [0, 1], r, q ∈ X#. By [9, Lemma 4.2],
the following statements are equivalent

(i) r ∼K q;

(ii) r ∼ q;

(iii) for any R ∈ r, Q ∈ q, there exists α ∈ P such that B(R, α)
⋂

B(Q, α)
is unbounded.

Hence, (i) ⇐⇒ (iii) gives answer to the first question and (i) ⇐⇒ (ii)
states that γ(B) = γ(B, [0, 1]) for every normal ballean B.

To answer the second question (in the case K = [0, 1]) we use the
following definition from [8]. Let B = (X, P, B) be ballean, Y ⊆ X and
let {Uα : α ∈ P} be a family of bounded subsets of X. A set

Ŷ =
⋃

α∈P

B(Y \ Uα, α)

is called a pyramid with the core Y determined by the family {Uα : α ∈
P}.

A ballean B = (X, P, B) is called connected if, for any x, y ∈ X, there
exists α ∈ P such that y ∈ B(x, α). Now suppose that B is connected
and normal, r ∈ X#, [r] = {q ∈ X# : r ∼ q}. For every R ∈ r, denote by
=(R) the set of all pyramids with the core R and put =(r) =

⋃
R∈r =(R).

Then the family of subsets {[q] : q ∈ F}, where F runs over =, is a
fundamental system of neighborhoods of the element [r] ∈ γ(B).

Now we adopt these constructions to the case of binary coronas. Let
B = (X, P, B) be a ballean. Given any subsets Y, V of X and α ∈ P , we
define a subset Λ(Y, V, α) by the rule:

x ∈ Λ(Y, V, α) if and only if there exist the elements x1, x2, ..., xn ∈
X \ V such that x1 ∈ Y , xn = x and xi+1 ∈ B(xi, α) for every i ∈
{1, 2, ..., n − 1}.

Let Y ⊆ X, {Vα : α ∈ P} be a family of bounded subsets of X. A
subset ⋃

α∈P

Λ(Y, Vα, α)

is called a path pyramid with the core Y determined by the family {Vα :
α ∈ P}.

Let Y ⊆ X, Z ⊆ X. We say that Y is asymptotically path disjoint
from Z if there exists a family {Vα : α ∈ P} of bounded subsets of X such
that Λ

⋂
Z = ∅, where Λ is a path pyramid with the core Y determined

by the family {Vα : α ∈ P}. In this case, Z is also asymptotically path



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.56 Binary coronas of balleans

disjoint from Y , so we can say that Y, Z are asymptotically path disjoint.
We say that Y, Z are asymptotically path separated if there exist disjoint
path pyramids with the cores Y, Z.

Lemma 1. Let B = (X, P, B) be a ballean h : X −→ {1, 0} be a slow
oscillating function. If Y0, Y1 ⊆ X and h |Y0

≡ 0, h |Y1
≡ 1, then Y0, Y1

are asymptotically path separated.

Proof. We may suppose that X = Y0
⋃

Y1. For every α ∈ P , choose a
bounded subset Vα such that diam B(h(x), α) = 0 for every x ∈ X\Vα.
Then

Λ(Y0, Vα, α) ⊆ Y0, Λ(Y1, Vα, α) ⊆ Y1.

Denote by Λ0 and Λ1 the pyramids with the cores Y0, Y1 determined by
the family {Vα : α ∈ P}. Then Λ0 ⊆ Y0, Λ1 ⊆ Y1 and Λ0

⋂
Λ1 = ∅.

A ballean B = (X, P, B) is called binary normal if for any disjoint,
asymptotically path disjoint subsets Y0, Y1 of X, there exists a slow
oscillating function h : X −→ 0, 1 such that h |Y0

≡ 0, h |Y1
≡ 1. By

Lemma 1, in this case Y0, Y1 are asymptotically path separated.

Given an arbitrary ballean B = (X, P, B) , we say that the subsets Y0,
Y1 of X are asymptotically path connected if Y0, Y1 are not asymptotically
path disjoint.

Lemma 2. Let B = (X, P, B) be a binary normal ballean, D = {0, 1},
r, q ∈ X#. Then the following statements are equivalent

(i) r ∼D q;

(ii) any two subsets R ∈ r, Q ∈ q are asymptotically path connected;

(iii) Λ ∈ q for every subset R ∈ r and every path pyramid Λ with the
core R.

Proof. (i) =⇒ (ii) follows from definition of binary normal space.

(ii) =⇒ (iii). Suppose the contrary. Since q is an ultrafilter, then
there exist Q ∈ q and R ∈ r such that Λ

⋂
Q = ∅ for some path pyramid

Λ with the core R. It follows that R, Q are asymptotically path disjoint,
a contradiction.

(iii) =⇒ (i) follows from Lemma 1.

Lemma 3. Let B = (X, P, B) be a connected binary normal ballean,
D = {0, 1}, r, q ∈ X#, x0 ∈ X. Then the following statements are
equivalent

(i) r ∼D q;

(ii) for any subsets R ∈ r, Q ∈ q there exists α ∈ P such that
Q

⋂
Λ(R, B(x0, β), α) is unbounded for every β ∈ P .
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Proof. (i) =⇒ (ii) Suppose the contrary and choose R ∈ r, Q ∈ q such
that, for every α ∈ P , there exists β(α) ∈ P such that the subset

H(α) = Q
⋂

Λ(R, B(x0, β(α)), α)

is bounded. Since B is connected, there exists γ(α) ∈ P such that γ(α) ≥
β(α) and H(α) ⊆ B(x0, γ(α)). Denote by Λ a pyramid with the core R
determined by the family {B(x0, γ(α)) : α ∈ P}. Then Λ

⋂
Q = ∅,

contradicting the equivalence (i) =⇒ (iii) of Lemma 2.
(ii) =⇒ (i) follows from the implication (iii) =⇒ (i) of Lemma 2.

Lemmas 2, 3 give us an explicit description of elements of the binary
corona of a binary normal ballean. Now we describe the topology of
binary corona.

Let B = (X, P, B) be a ballean, D = {0, 1}. For any R ⊆ X, r ∈ X#,
put

[r]D = {q ∈ X# : q ∼D r}, [R]D = {[q] : q ∈ X#, R ∈ q}.

Denote by H the set of all slow oscillating functions h : X −→ D.
For every h ∈ H, denote by Dh a copy of D and consider a mapping

f : γ(B, D) −→
∏

h∈H

Dh,

defined by the rule f([r]D) = (hβ(r))h∈H . It is easy to check that f is
a homeomorphic embedding of γ(B, D) into

∏
h∈H Dh endowed with the

product topology, so γ(B, D) is a compact zero-dimensional space.
Fix an arbitrary h ∈ H, put Y0 = h−1(0), Y1 = h−1(1) and assume

that hβ(r) = 0. By Lemma 1, there exists a pyramid Λ with the core Y0

such that
f([Λ]) ⊆ {y ∈

∏

h′∈H

Dh′ : prhy = 0}.

On the other hand, fix an arbitrary path pyramid Λ with the core
R ∈ r. By Lemma 2, q /∈ [r]D for every q ∈ (X \ Λ)#. For every
q ∈ (X \ Λ)#, choose Qq ∈ q, a path pyramid Λq with the core Rq ∈ r
and a slow oscillating function hq : X −→ D such that hq | Λq ≡ 0,

hq | Λq ≡ 0, hq | Qq ≡ 1. Consider a cover {Q#
q : q ∈ (X \ A)#} and

choose its finite subcover Q#
q1

, ..., Q#
qn

. Then

{y ∈ f(γ(B, D)) : prh1
y = 0, ..., prhn

y = 0} ⊆ f([Λ]).

Thus, we have shown that the family of subsets of the form [Λ], where
Λ runs over all pyramids with the core R ∈ r, is a fundamental system
of neighborhoods of the element [r] ∈ γ(B, D).
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§4. Binary coronas of graph balleans

Let Gr(V, E) be a connected graph with the set of vertices V and the set
of edges E. Given any x, y ∈ V , n ∈ ω denote by d(x, y) a length of the
shortest path between x, y and put B(x, n) = {v ∈ V : d(x, v) ≤ n}. A
ballean of the metric space (V, d) is denoted by B(Gr). A ballean B is
called a graph ballean if B is isomorphic to B(Gr) for an appropriate graph
Gr. By [6, Theorem 1], B = (X, P, B) is a graph ballean if and only if B

is metrizable and there exist α ∈ P and f : P −→ ω such that, for any
x, y ∈ X, β ∈ P with y ∈ B(x, β), there exist the elements x1, x2, ..., xn

from X, n ≤ f(β) such that x1 = x, xn = y and xi+1 ∈ B(xi, α) for
every i ∈ {1, ..., n − 1}.

Lemma 4. Let Gr(V, E) be a connected graph, x0 ∈ V , h : V −→ {0, 1}.
Then the following statements are equivalent

(i) h is slow oscillating;
(ii) there exists m ∈ ω such that diam h(B(x, 1)) = 0 for every

x ∈ V \ B(x0, m).

Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (i). If k ∈ ω then diam h(B(x, k)) = 0 for every x ∈

V \ B(x0, m + k).

Lemma 5. Every graph ballean B(Gr) is binary normal.

Proof. Let Y, Z be disjoint, asymptotically path disjoint subsets of V ,
x0 ∈ V . Choose m ∈ ω such that

Z
⋂

Λ(Y, B(x0, m), 1) = ∅

and put

h(x) =

{
0, x ∈ Y

⋃
Λ(Y, B(x0, m), 1);

1, otherwise.

If x ∈ V \ B(x0, m + 1), then diam h(B(x, 1)) = 0. By Lemma 4, h
is slow oscillating.

Now, assume that a graph Gr(V, E) is unbounded, i.e. V 6= B(x, n)
for all x ∈ V , n ∈ ω. For every A ⊆ V , denote by Gr[A] a graph with
the set of vertices A and the set of edges E

⋂
(A × A). Fix x0 ∈ V and,

for every n ∈ ω, denote by Pn the set of all connected components of
the graph Gr[V \ B(x0, n)]. Every element y of Pn+1 belongs to some
(uniquely determined) element πn(y) ∈ Pn. Endow Pn with the discrete

topology and consider the Stone-Čech extension πβ
n : βPn+1 −→ βPn
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of the mapping πn : Pn+1 −→ Pn. Thus, we have defined a projective
sequence of compact topological spaces < βPn, πβ

n >n∈ω .

Theorem 1. For every unbounded graph Gr(V, E), the binary corona

γ(B(Gr), {0, 1}) is a projective limit of the sequence < βPn, πβ
n >n∈ω .

Proof. For every n ∈ ω, define a mapping fn : V \ B(x0, n) −→ Pn

assigning to every x ∈ V \ B(x0, n) the connected component fn(x)
of Gr[V \ B(x0, n)] containing the vertex x. Since πnfn+1 = fn and

πβ
nfβ

n+1 = fβ
n , there exists a mapping

f : V # −→ lim
←

< βPn, πβ
n >n∈ω

such that prnf = fβ
n . Since every mapping fβ

n is continuous, f is also
continuous.

Show that ker f =∼D. Let r, q ∈ V # and q /∈ [r]. By Lemmas 5,3,
there exist R ∈ r, Q ∈ q and m ∈ ω such that

Q
⋂

Λ(R, B(x0, m), 1) = ∅.

Then fβ
n (q) 6= fβ

n (r). On the other hand, if [r] = [q], by Lemma 2,

fβ
n (r) = fβ

n (q) for every n ∈ ω. Thus, f/ ker f is a homeomorphism
between γ(B(Gr), D) and

lim
←

< βPn, πβ
n >n∈ω .

Theorem 2. Let < Xn >n∈ω be a sequence of discrete spaces, πn :
Xn+1 −→ Xn. Then there exists a tree Tr(V, E) such that γ(B(Tr), {0, 1})
is homeomorphic to

lim
←

< Xβ
n , πβ

n >n∈ω .

Proof. Put V =
⋃

n∈ω Xn, E = {(x, πn(x)) : x ∈ Xn+1, n ∈ ω}. Identify
Pn with the set Xn+1 and apply Theorem 1.

Corollary 1. For every unbounded graph Gr, there exists a tree Tr such
that γ(B(Gr), {0, 1}) and γ(B(Tr), {0, 1}) are homeomorphic.

Corollary 2. For every zero-dimensional compact space K of countable
weight, there exists a tree Tr such that γ(Tr, {0, 1}) is homeomorphic to
K.

Proof. To apply Theorem 1 note that K is a projective limit of some
sequence of finite spaces.
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Now we consider a relation between a binary corona of graph ballean
and a set of ends of graph. An injective sequence < vn >n∈ω of vertices
of a connected graph Gr(V, E) is called a ray if d(xn, xn+1) = 1 for every
n ∈ ω. Two rays R1, R2 are called end equivalent if there exists a ray R
which meets both R1 and R2 infinitely often. Let E(Gr) denote the set
of the corresponding equivalence classes, the ends of Gr. Suppose that
Gr(V, E) is a tree, x0 ∈ V . Then E(Gr) can be identified with the set of
all rays starting from the root x0. Assume that Gr(V, E) is locally finite
tree, i.e. every ball B(x, 1), x ∈ V is finite. Then Pn can be identified

with the set {x ∈ V : d(x0, x) = n + 1} and Pβ
n = Pn. By Theorem 1,

γ(B(Gr), {0, 1}) can also be described as a set of all rays starting from
x0. Thus, in the case of locally finite tree the binary corona is naturally
identified with the set of ends. Now we extend this correspondence to all
locally finite graphs.

For every tree Tr with the root x0, there exists a partial ordering on
the set of vertices defined by the rule: x ≤ y if and only if the path from
x0 to y goes over x. A rooted spanning tree Tr of a connected graph Gr
is called normal if every pair of adjacent vertices of Gr is comparable in
the partial ordering defined by Tr. Every locally finite connected graph
has a normal rooted spanning tree (see [2, Chapter 6], [6, Section 4]).

If Tr is a spanning tree of Gr and R1, R2 are end equivalent rays in
Tr, then clearly R1, R2 are also end equivalent in Gr. We therefore have
a natural mapping E(Tr) −→ E(Gr) assigning to each end of Tr the end
of Gr containing it. In general this mapping needs not to be neither one-
to-one nor onto; if it is both, then Tr is called end-faithful. Every normal
rooted spanning tree of a connected locally finite graph is end faithful.

Theorem 3. Let Gr(V, E) be an infinite locally finite connected graph,
x0 ∈ V , Tr be its normal x0-rooted spanning tree.

Then

(i) γ(B(Gr), {0, 1}) and γ(B(Tr), {0, 1}) are homeomorphic;

(ii) |γ(B(Gr), {0, 1})| = |E(Gr)|.

Proof. (i) It suffices to show that a mapping h : V −→ {0, 1} is slow
oscillating with respect to B(Gr) if and only if h is slow oscillating with
respect to B(Tr). For any x ∈ V , m ∈ ω, denote by B(x, m) and B′(x, m)
the balls of radius m around x in Gr and Tr.

Suppose that h is slow oscillating with respect to B(Gr) and choose
m ∈ ω such that diam h(B(x, 1)) = 0 for every x ∈ V \ B(x, m). Since
Gr is locally finite, there exist n ∈ ω such that B(x0, m) ⊆ B′(x0, m).
Then diam h(B′(x, 1)) = 0 for every x ∈ V \ B′(x0, n) and, by Lemma
4, h is slow oscillating with respect to B(Tr).
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Assume that h is slow oscillating with respect to B(Tr) and choose
m ∈ ω such that diam h(B′(x, 1)) = 0 for every x ∈ V \ B′(x0, m).
Choose n ∈ ω such that B(B′(x0, m), 1) ⊆ B(x0, n). Take an arbitrary
x ∈ V \B(x0, n). Since B(x, 1) lies on the rays in Tr starting from x0 and
going over x, diam h(B(x, 1)) = 0, so h is slow oscillating with respect
to B(Gr).

(ii) Since Tr is end-faithful, |E(Gr)| = |E(Tr)|. Apply (i).

Every countable connected graph also has a normal rooted spanning
tree [2, Chapter 6], but Theorem 3 can not be extended to all countable
connected graph. Let X, Y be countable disjoint subsets x0 ∈ X, Y =
{yn : n ∈ ω}. Consider a graph Gr with the set of vertices V = X

⋃
Y

and the set of edges

E = {(x, x′) : x, x′ ∈ X, x 6= x′}
⋃

{(yn, yn+1) : n ∈ ω}
⋃

{(x0, y0)}.

By Theorem 1, |γ(B(Gr), {0, 1})| = 1, but Gr has two ends.

§5. Binary coronas of cellular balleans

Given any ballean B = (X, P, B), x, y ∈ X and α ∈ P , we say that x, y
are α-path connected if there exist the elements x0, x1, ..., xn from X such
that x = x0, y = xn and xi+1 ∈ B(xi, α) for every i ∈ {0, 1, ..., n − 1}.
For any x ∈ X, α ∈ P , put

B¤(x, α) = {y ∈ X : x, y are α -path connected}.
A ballean B¤ = (X, P, B¤) is called a cellularization of B. If B = B

¤,
we say that B is cellular. By [7, Theorem 3], a ballean of metric space
(X, d) is cellular if and only if (X, d) is non-Archimedian.

Suppose that B = (X, P, B) is a cellular, binary normal ballean and
show that B is normal. It suffices to check only that, for every subset Y
of X and every pyramid Ŷ =

⋃
α∈P B(Y \Uα, α) defined by the family of

bounded subsets {Uα : α ∈ P}, there exists a path pyramid Λ with the
core Y such that Λ ⊆ Ŷ . We may assume that B¤(x, α) = B(x, α) for
all x ∈ X, α ∈ P . Put Vα = B(Uα, α) and

Λ =
⋃

α∈P

Λ(Y, Vα, α).

Then Λ(Y, Vα, α) ⊆ B(Y \Uα, α), so Λ ⊆ Ŷ .

For every ballean B = (X, P, B), there is a standard preodering ≤ on
P defined by the rule: α ≤ β if and only if B(x, α) ⊆ B(x, β) for all
x ∈ X. A subset P ′ ⊆ P is called cofinal if, for every α ∈ P , there exists
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β ∈ P ′ such that β ≥ α. A cofinality cf B is the minimal cardinality of
cofinal subsets of P .

A connected ballean B = (X, P, B) is called ordinal if there exists a
cofinal, well-ordered by ≤ subset of P . Clearly, every metrizable ballean
is ordinal. By [8, § 3], every ordinal ballean is normal and every ordinal
ballean of uncountable cofinality is cellular.

Theorem 4. Every cellular ordinal ballean B = (X, P, B) is binary nor-
mal and binary corona of B coincides with Higson’s corona of B.

Proof. It suffices to show that, for any disjoint, asymptotically disjoint
subsets Y0, Y1 of X, there exists a slow oscillating function h : X −→
{0, 1} such that h|Y0

≡ 0, h|Y1
≡ 1. We may suppose that P is well-

ordered and B¤(x, α) = B(x, α) for all x ∈ X, α ∈ P . Since Y0, Y1 are
asymptotically disjoint, there exists an increasing family {Uα : α ∈ P} of
bounded subsets such that

B(Y0\Uα, α)
⋂

Y1 = ∅

for every α ∈ P . For every x ∈ X, put h(x) = 0 if and only if

x ∈ Y0

⋃ ⋃

α∈P

B(Y0\Uα, α).

If x ∈ X\B(Uα, α) and h(x) = 0, then h |B(x,α)≡ 0, so h is slow
oscillating.

Now we consider another class of balleans with equal binary and Hig-
son’s coronas.

A connected ballean B = (X, P, B) is called pseudodiscrete if, for every
α ∈ P , there exists a bounded subset Uα of X such that B(x, α) = {x}
for every x ∈ X\Uα.

Let X be a set, ϕ be a filter on X such that
⋂

ϕ = ∅. For any x ∈ X,
F ∈ ϕ, put

Bϕ(x, F ) =

{
X\F, if x /∈ F ;
{x}, if x ∈ F ;

A ballean B(X, ϕ) = (X, ϕ, Bϕ) is called a a ballean of filter ϕ.
Clearly, B(X, ϕ) is cellular and pseudodiscrete.

Theorem 5. B = (X, P, B) be a pseudodiscrete ballean. Then

(i) there exists a filter ϕ on X such that B = B(X, ϕ);

(ii) γ(B, {0, 1}) = X#.
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Proof. (i) Put ϕ = {F ⊆ X : X \ F is bounded in B}. Since B is
connected, ϕ is a filter on X and

⋂
ϕ = ∅. Take an arbitrary F ∈ ϕ and

choose α ∈ P such that X \ F ⊆ B(x, α) for every x ∈ X \ F . Then

Bϕ(x, F ) ⊆ B(x, α)

for every x ∈ X. Fix an arbitrary α ∈ P and choose a bounded in B subset
Uα such that B(x, α) = {x} for every x ∈ X \ Uα. Put F = B(Uα, α).
Then

B(x, α) ⊆ Bϕ(x, F )

for every x ∈ X. Thus, B = B(X, ϕ).
(ii) Observe that X# = ϕ, where ϕ = {r ∈ βX : ϕ ⊆ r}, X is

endowed with discrete topology. Let r, q ∈ X#, r 6= q. we have to define
a slow oscillating function h : X −→ {0, 1} such that hβ(r) 6= hβ(q).
Choose R ∈ r such that R /∈ q and put h(x) = 0 if and only if x ∈ R. Since
Bϕ(x, F ) = {x} for every x ∈ X \F , h is slow oscillating in B(X, ϕ).

Corollary 3. Every pseudodiscrete ballean is binary normal and its bi-
nary corona coincides with Higson’s corona.

Corollary 4. Let X be a discrete space and let H be a closed subspace of
βX \X. Then there exists a pseudodiscrete ballean B such that its binary
corona is homeomorphic to H.

Proof. To apply Theorem 5, it suffice to note that H = ϕ for some filter
ϕ on X such that

⋂
ϕ = ∅.

§6. Comments and open questions

Is every metrizable ballean B binary normal? This is so if B is either a
graph ballean (Lemma 5) or a cellular metrizable ballean (Theorem 4).
However, M. Zarichniy constructed a counterexample in general case.

Example. For every n ∈ ω, put Ln = {(x, n2) : x ∈ R}, L+
n = {(x, n2) :

x > 0}, L−

n = {(x, n2) : x < 0}. Endow X =
⋃

n∈ω Ln with Euclidian
metric and consider a ballean B = B(X, d). Fix any n ∈ ω and note that

Λ(L+
0 , B(0, n + 1), n) ⊆ L+

0

⋃
L+

1

⋃
. . .

⋃
L+

n ,

so L+
0 , L−

0 are disjoint and asymptotically path disjoint. Suppose that
B is binary normal and take a slow oscillating function h : X −→ {0, 1}
such that h|L+

0

≡ 1, h|L−

0

≡ 0. Choose a bounded subset V of X so that

diam h(B(x, 1)) = 0 for every x ∈ X \ V . Then there exists m ∈ ω
such that Lm

⋂
V = 0, so h|Lm

≡ const. Since h|L+

0

≡ 1, h|L−

0

≡ 0, we

conclude that h is not slow oscillating, a contradiction.
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Question 1. Characterize a class of metric spaces with binary normal
balleans.

Question 2. Is every cellular normal ballean binary normal?

Let us say that a ballean B = (X, P, B) is path normal if any two dis-
joint, asymptotically path disjoint subsets are asymptotically path sepa-
rated.

By Lemma 1, every binary normal ballean is path normal. It is easy
to verify, that every metrizable ballean is path normal, so Zarichniy’s
example shows that a class of path normal balleans is wider that a class
of binary normal balleans.

Question 3. Characterize a class of metric spaces (X, d) such that every
two asymptotically disjoint subsets of X are asymptotically path disjoint.

Note that this class contains all non-Archimedian metric spaces.

Question 4. Let Gr be a connected graph. Does there exist a spanning
tree Tr of Gr such that the binary coronas of Gr and Tr coincide?

In view of Theorem 1, the next question concerns a purely topological
characterization of the class of binary coronas of graph balleans.

Question 5. Find necessary and sufficient conditions under which, for
a compact zero-dimensional space K, there exists a projective sequence
< Xn, πn >n∈ω of discrete spaces such that K is homeomorphic to

lim
←

< βXn, πβ
n >n∈ω .

We conclude the paper with another look at the binary coronas of
balleans.

Let B = (X, P, B) be a ballean. A subset Y ⊆ X is called almost
invariant if B(Y, α) \ Y is bounded for every α ∈ P . A filter ϕ on X
is called almost invariant if every member of ϕ is an almost invariant
subset of X. A filter ϕ on X which is a maximal (by inclusion) element
in the family of all almost invariant filters is called an end. Denote by X̂
a family of all ends of X. We identify the elements of X with principal
filters, so X ⊆ X̂. Given an arbitrary almost invariant subset F of X,
put F̂ = {ϕ ∈ X̂ : F ∈ ϕ}. Then the family of all these subsets F̂ forms
a base of compact topology on X̂ and X̂ \X is homeomorphic to binary
corona of B.

This approach is going from Freudental-Hopf compactification of
groups [5]. A subset A of a group G is called almost invariant if gA \ A
is finite for every g ∈ G. A set of all maximal almost invariant filters
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on G with the standard topology is a Freudental-Hopf compactification
of a group (or a space of ends). This particular case can be easily in-
cluded to the ballean’s scheme. Indeed, every group G defines a ballean
B(G) = (G,=e, B), where =e is a family of all finite subsets of G with the
identity e, B(g, F ) = gF . Thus, a binary corona of B(G) is a remainder
of Freudental-Hopf compactification of G.

Let G be an infinite, finitely generated group. By Freudental-Hopf
theorem [4], G has 1,2 or infinitely many ends.

Question 6. Let G be an infinite, finitely generated group with infinitely
many ends. Is a binary corona of B(G) homeomorphic to {0, 1}ω?

References

[1] Bourbaki N., Obschaya topologiya. Ispol’sovanie veschestvennih chisel v obschey

topologii, M., "Nauka", 1975.

[2] Diestel R., Graph Decomposition. A Study in Infinite Graphs, Clarendon Press,
Oxford, 1990.

[3] Dranishnikov A., Asymptotic topology, Russian Math. Surveys, 55, (2000), N (6),
71-116

[4] Harpe P., Topics in Geometrical Group Theory, University Chicago Press, 2000

[5] Houghton C.H., Ends of groups and the associated first cohomology groups, J.
London Math. Soc., 6 (1972), 81-92

[6] Protasov I., Banakh T., Ball structures and Colorings of Graphs and Groups, Mat.
Stud. Monogr. Ser, Vol 9, VNTL, Lviv, 2003

[7] Protasov I.V., Metrizable ball structures, Algebra and Discrete Math., 1, (2002),
130-141

[8] Protasov I.V., Uniform ball structures, Algebra and Discrete Math., 2, (2003),
84-93

[9] Protasov I.V., Normal ball structures, Mat. Stud. 20, (2003), 3-16

Contact information

I. V. Protasov Department Cybernetics, Kyiv State Uni-
versity, Volodimirska 64, Kyiv 01033,
Ukraine
E-Mail: kseniya@profit.net.ua


