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Abstract. A representation of homogeneous symmetric
groups by hierarchomorphisms of spherically homogeneous rooted
trees are considered. We show that every automorphism of a ho-
mogeneous symmetric (alternating) group is locally inner and that
the group of all automorphisms contains Cartesian products of ar-
bitrary finite symmetric groups.

The structure of orbits on the boundary of the tree where inves-
tigated for the homogeneous symmetric group and for its automor-
phism group. The automorphism group acts highly transitive on
the boundary, and the homogeneous symmetric group acts faith-
fully on every its orbit. All orbits are dense, the actions of the
group on different orbits are isomorphic as permutation groups.

1. Introduction

The problem of classifications and investigation of direct limits of finite
symmetric groups in certain sense are model problems for theory of locally
finite groups. A number of results on such groups is contained in the
last chapter of the monograph [KW], and later results are mentioned in
survey of B.Hartley [Har]. A. E. Zalesskii in [Zal] introduced a certain
class of embeddings of finite symmetric and alternative groups, the so
called diagonal embeddings. He showed that they play an important role
in investigation of the lattice of ideals in the group rings of direct limits
of alternating groups (see also [Zal2], [HZ]).
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In the papers [KS1], [KS2] a certain type of diagonal embeddings
was distinguished, namely strictly diagonal embeddings, and a full classi-
fication of direct limits of finite symmetric and alternating groups with
respect to such embeddings was done. Such limits are called homoge-
neous symmetric (resp. alternating) groups. In the papers [KS1], [KS2] a
number of properties of homogeneous symmetric and alternating groups
were obtained. This includes their normal structure, description of the
conjugacy classes and the centralizers of elements.

Although a number of problems concerning the structure of such
groups are still open. In particular, professor O. Kegel and professor
A. Zalesskii drew attention of the authors to the problem of charac-
terization of the automorphism groups of homogeneous symmetric and
alternating groups.

We approach this problem in our paper using a new technique of repre-
senting homogeneour symmetric group by hierarchomorphisms of spher-
ically homogeneous rooted trees. A notion of spherical hierarchomor-
phisms of a spherically homogeneous rooted tree is introduced. We show
that spherical hierarchomorphisms act on the boundary of the tree by
local isometries and prove that the group of local isometries of a rooted
tree is a product of two its subgroups. One is isomorphic to the homo-
geneous symmetric group defined by the tree type, and the second one is
the group of all isometries of the tree boundary (i.e., the automorphism
group of the tree).

Using result of M. Rubin [Rub], we prove that the automorphism
group of the homogeneous symmetric group coincides with its normal-
izer in the homeomorphism group of the tree boundary. Making use of
this fact we get (Theorem 13) that every automorphism of an arbitrary
homogeneous symmetric (alternating) group is locally inner. We also
get that the group of all automorphisms of a homogeneous symmetric
group contains Cartesian products of arbitrary finite symmetric groups,
i.e., an arbitrary countable residually finite group is embedded into the
automorphism group.

The structure of orbits of the described action of the homogeneous
symmetric group and of its automorphism group on the tree boundary is
also investigated. In particular it is proved that automorphism group acts
highly transitively on the tree boundary. The homogeneous symmetric
group acts faithfully on every its orbit, all orbits are dense in the tree
boundary, the actions of the group on different orbits are isomorphic as
permutation groups.

We use standard terminology for groups acting on a rooted tree. For
definitions see for example [GNS].
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2. Preliminaries

2.1. Finite spherical hierarchomorphisms

The notion of a hierarchomorphism of a homogeneous rooted tree is a gen-
eralization of the notion of tree automorphism [Ner]. All hierarchomor-
phisms of a homogeneous rooted tree T form a group Hier0(T ). This
group is called the large hierarchomorphism group of T .

The notion of a hierarchomorphism can not be extended to an ar-
bitrary spherically homogeneous rooted tree. But we can introduce a
natural subgroup in the large hierarchomorphism group which can be
defined for an arbitrary spherically homogeneous rooted tree.

Definition 1. The bijection V (T ) −→ V (T ) (where V (T ) is the set
of vertices of the rooted tree T ) is a spherical hierarchomorphism if for
some k ∈ N it acts as a permutation on the vertices of level number k
and preserves the incidence relation between all vertices from the levels
of numbers ≥ k.

All spherical hierarchomorphisms of a spherically homogeneous rooted
tree T form a group which we denote LHier0(T ).

Every spherical hierarchomorphism of T can be represented in the
form

u = (α1, . . . , αmk
)σk,

where σk is a permutation of the vertices of kth level and αi is the au-
tomorphism of the subtree Tvi

of T with root vi (1 ≤ i ≤ mk), where
v1, . . . , vmk

are all vertices of kth level of T .

This decomposition is not unique. But there exists the minimal value
of k for which such decomposition is possible. We call the decomposition
of u for such k a canonical decomposition.

The spherical hierarchomorphism u is an automorphism of tree if and
only if k = 0 in the canonical decomposition of u.

We say that a spherical hierarchomorphism u is finite if

u = (e, . . . , e)σk,

where e is the identical automorphism of the subtrees.

Obviously, the product of two finite spherical hierarchomorphisms is
finite and all finite spherical hierarchomorphisms of the tree T form a
group, which will be denoted LHier0f (T ).

Together with the large hierarchomorphism group, we consider the
small group of hierarchomorphisms Hier(T ) of the tree T . This is the
group of transformations of the boundary of T induced by the elements
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of Hier0(T ) for a homogeneous rooted tree T . It is clear that we can
define the small spherical hierarchomorphism group LHier(T ) and small
finite spherical hierarchomorphism group LHierf (T ) in the Hier0(T ) for
a spherically homogeneous rooted tree T , analogically to the “large” case.

2.2. Homogeneous symmetric and alternating group

At first we introduce the notion of a homogeneous symmetric group.
We will do it as in the paper of N. Kroshko and the second named au-
thor [KS1].

By Sn we denote the symmetric group over the set {1, 2, . . . , n}.

Definition 2. An embedding d of a transitive permutation group (G, X)
into a permutation group (H, Y ) is called diagonal if the restriction of
d(G) onto every orbit of length more than 1 is isomorphic to (G, X) as a
permutation group. The diagonal embedding is called strictly diagonal if
the length of every orbit of the image d(G) on the set Y is greater than
1.

Definition 3. We say that the group G is a group of strictly diagonal
type if G is a limit of an ascending chain of the symmetric groups Sni

(i ∈ N) where all inclusions Sni
⊂ Sni+1 are strictly diagonal.

By xα we denote the image of an element x ∈ {1, . . . , n} under a
permutation α ∈ Sn.

Definition 4. A permutation drα ∈ Snr defined for α ∈ Sn by the rule

(kn + i)drα = kn + iα (0 ≤ k ≤ r − 1, 1 ≤ i ≤ n)

is called a homogeneous r-spreading of the permutation α.

It is clear that the map dr : α −→ drα, α ∈ Sn is a strictly diagonal
embedding of Sn into Snr.

Let Ω = (a1, a2, . . .) be a sequence of natural numbers greater than
1, and let

fΩ(n) = a1 . . . an.

Definition 5. The limit of the following direct system

SfΩ(1)−
da2→SfΩ(2)−

da3→ . . .

(AfΩ(1)−
da2→AfΩ(2)−

da3→ . . .)

is called homogeneous symmetric ( alternating) group and is denoted DSΩ

(DAΩ).
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The sequence Ω determines a supernatural number a1a2 . . . (we will
denote this number Ω too). This number is called characteristic of Ω and
and of the group DSΩ, determined by this sequence.

Every homogeneous symmetric (alternating) group is naturally a sub-
group of the group S(N).

Proposition 1. [KS1]

1. Two homogeneous symmetric (alternating) subgroup of S(N) coin-
cide if and only if their characteristics are equal.

2. Different homogeneous symmetric (alternating) subgroups of S(N)
are non-isomorphic.

3. If G = ∪i∈NSai
(G = ∪i∈NAai

) is a group of strictly diagonal type
and Ω = (a1, a2, . . .) then G is isomorphic to DSΩ (DAΩ).

2.3. Boundary of rooted tree and its homeomorphisms

We will study automorphisms of the homogeneous symmetric groups us-
ing representation of these groups by homeomorphisms of boundaries of
rooted trees. We introduce now all required notions to define such repre-
sentations.

Let T be a locally finite rooted tree with the rooted vertex v0.

For every two vertices u, v of the tree T (u, v ∈ V (T )) we define the
distance between u and v, denoted by d(u, v), to be equal to the length
of the shortest path connecting them.

For the rooted tree T with the root v0 and an integer n ≥ 0 we define
the level number n (the sphere of the radius n) to be the set

Vn(T ) = {v ∈ V (T ) : d(v0, v) = n} .

Let us say that a vertex v of the tree T lies under a vertex w, if the
path connecting the vertex v and the root, contains the vertex w.

Let us denote by Tv the full subtree consisting of all vertices, that lie
under the vertex v with the root v.

An end of the rooted tree is an infinite path without repetitions which
starts in the root.

We will denote by ∂T the set of all ends of the tree T (its boundary).

We can introduce a natural ultrametric on ∂T putting

ρ(γ1, γ2) = 1/(n + 1),
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where n is the length of the maximal common part of the paths γ1 and γ2.
The topology introduced by the metric ρ is compact, totally disconnected
and has a base of open sets

Pni = {γ ∈ ∂T | i ∈ γ}, i ∈ Vn(T ).

Note that Pni = ∂Tvi
and Pni is a ball with center in any end γ 3 vi

and radius equal to 1/(n + 1), where vi ∈ Vn. Every ball in ∂T is clopen.
We we have Pni ∩ Pmj 6= ∅ if and only if Pni = Pmj that is n = m and
i = j.

If the degree of a vertex v ∈ Vn(T ) depends only on n, then the
tree T is called spherically homogeneous. Characteristic of a spherically
homogeneous tree T is the sequence Ω = (a0, a1, . . .), where a0 is degree
of the root and an + 1 is degree of any vertex of nth level.

Let T be a spherically homogeneous rooted tree with root v0 and
characteristic Ω. All such trees are isomorphic to the tree TΩ whose
set of vertices is the set of all finite sequences (i0, i1, . . . , in−1), where
ik ∈ {1, 2, . . . , ak} and n ≥ 0 is an integer. We include also the empty
sequence (corresponding to n = 0) and two vertices are adjacent if and
only if they are of the form (i0, . . . , in−1), (i0, . . . , in−1, in).

The full automorphism group Aut TΩ of TΩ acts on ∂TΩ by isometries.
Moreover Aut TΩ = Iso TΩ.

The subgroup of Aut TΩ of all automorphisms fixing all vertices of
the level number n is denoted by StabAut TΩ

(n) and is called the level
stabilizer.

Let T k be the finite tree that is obtained from the tree T by truncation
of the vertices belonging to the levels of numbers greater than k.

By Hom ∂TΩ we denote the group of all homeomorphisms of the
boundary of the rooted tree TΩ.

Let Hn be the group of homeomorphisms of the boundary ∂TΩ, which
permute the balls Pni only, i.e., do not change the coordinates ik of the
vertices (i0, . . . , im) for all k ≥ n. Clearly, Hn is isomorphic to the sym-
metric group SfΩ(n), and Hn ≤ Hk for n ≤ k. Let us define a subgroup
HΩ of the full homeomorphism group ∂TΩ, as the union of the subgroups
Hn, n ∈ N.

Let AHn ≤ Hn be the subgroup isomorphic to the alternating group
AltfΩ(n). Clearly, AHn ≤ AHk for n ≤ k. Let us define a subgroup AHΩ

of the full homeomorphism group ∂TΩ, as the union of the subgroups
AHn, n ∈ N.

Also we need some facts on homeomorphism group of ∂T .

Theorem 2 ([Rub] Corollary 3.13c). Let X be locally compact Haus-
dorff space, G1, G2 be subgroups and for every open D ⊆ X, x ∈ D and
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i = 1, 2 the set {g(x) | g ∈ Gi and restriction of g on X\D is identity}
be somewhere dense. If ϕ : G1 −→ G2 is an isomorphism then there is
a homeomorphism h ∈ Hom X such that for every g ∈ G1 the following
equality holds ϕ(g) = hgh−1.

It is easy to see that

Remark 1. The space ∂T is a locally compact Hausdorff space, and the
groups HΩ and AHΩ satisfy conditions of Rubin’s Theorem.

3. Main results

3.1. Local isometries

One more reason for studying the groups HΩ is that these groups appear
as natural subgroups in the local isometry group of rooted tree boundary.

Let us consider the concept of a local isometry.

Let (X, ρ) be a metric space.

Definition 6. A bijection α : X −→ X is called local isometry if for
every x ∈ X there exists a neighborhood Ux of x such that for every
x1, x2 ∈ Ux the equality

ρ(xα
1 , xα

2 ) = ρ(x1, x2)

holds.

Definition 7. A bijection α : X −→ X is called uniformly local isometry
if there exists δ > 0 such that

ρ(xα
1 , xα

2 ) = ρ(x1, x2)

for all x1, x2 ∈ X such that ρ(x1, x2) < δ.

Obviously, these two definitions are different. But in some special
cases they coincide.

Lemma 3. For a compact metric space (X, ρ) every local isometry of
(X, ρ) is a uniformly local isometry.

Proof of this lemma is straightforward.

Let us denote the group of all local isometries by LI(∂TΩ).

Lemma 4. Let g be a local isometry of ∂TΩ. There exist α ∈ Aut TΩ and
β ∈ HΩ such that g = αβ.
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Proof. First of all, the homeomorphism g is a uniformly local isometry.
Take some δ > 0 such that the homeomorphism g preserves the distances
between ends, which are at distance less than δ. Then the homeomor-
phism g preserves distances between ends from each ball Pni, i ∈ Vn(TΩ),
where n is big enough. It means that g acts as a permutation on Vn(TΩ).
Let β−1 ∈ HΩ be a homeomorphism which acts on Vn(TΩ) in the same
way as g. We have that α = gβ−1 acts trivially on Vn(TΩ). There-
fore α acts as an isometry on each ball Pni, i ∈ Vn(TΩ). Thus α is an
automorphism of TΩ.

Conversely, it is easy to see that Aut TΩHΩ < LI(∂TΩ). So we have

Theorem 5. The group LI(∂TΩ) is decomposed in product of Aut TΩ

and HΩ.

Theorem 6.

1. The group LHier(TΩ) is isomorphic to the group LI(∂TΩ).

2. The group LHierf (TΩ) is isomorphic to the group HΩ.

3. The group HΩ (AHΩ) is isomorphic to the group DSΩ (DAΩ).

Proof. The first and the second parts of the theorem follow immedi-
ately from Theorem 5 and definitions of the groups LHier(TΩ) and
LHierf (TΩ).

The subgroup Hn < HΩ acts naturally on the level number n of the
tree TΩ for every n ∈ N. Note that the embedding of (Hn, Vn) into
(Hk, Vk), where k > n, is strictly diagonal. Hence the group HΩ is of
a strictly diagonal type. So, the third part of the theorem follows from
Proposition 1, item 3.

Corollary 1. The groups HΩ1 (AHΩ1) and HΩ2 (AHΩ2) are isomorphic
iff sequences Ω1 and Ω2 define the same supernatural number.

Proposition 7. All finitely generated subgroups in the group LI(∂TΩ)
are residually finite.

Proof. For every finitely generated subgroup G of the group LI(∂TΩ) we
can choose another Ω1 such that there exists a natural embedding of the
group G into Aut TΩ1 . And the group AutTΩ1 is residually finite (see for
instance [GNS]).

Really, there exists t > 0 such that for all g ∈ G the equality

ρ(xg, yg) = ρ(x, y)
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holds for x, y ∈ TΩ, ρ(x, y) < t.

Let n = [1
t
]. Define Ω1 in such a way that

a′1 = a1a2 · · · an, a′k = an+k−1, k > 1.

It is easy to see that elements of G act onto ∂TΩ1 as isometries.

3.2. Automorphisms

Lemma 8. The group HΩ has trivial center.

Proof. Since HΩ is union of subgroups Hn ' SfΩ(n), which have trivial
centers, thus HΩ also has trivial center.

Let us denote NΩ = NHom ∂TΩ
(HΩ)

Theorem 9. NΩ ' Aut HΩ.

Proof. From Rubin’s Theorem 2 and Remark 1 we get that every auto-
morphism of HΩ < Hom ∂TΩ is induced by a homeomorphism of ∂TΩ.
Taking into account Lemma 8 we get the required statement.

Proposition 10. Every automorphism of the group HΩ (AHΩ) is locally
inner.

Proof. The proofs for the group HΩ and for the group AHΩ are similar.
So we will prove this proposition for HΩ only.

Let α ∈ Aut HΩ and g ∈ HΩ. We have g ∈ Hn for some n ∈ N. Since
HΩ is union of its subgroups Hn (n ∈ N), there exists k ∈ N such that

α(Hn) ≤ Hk.

Let us show that α|Hn is induced by an inner automorphism of Hk.
By Theorem 9 the automorphism α is induced by some homeomorphism
of ∂TΩ.

Let γ ∈ Hom ∂TΩ induce the automorphism α. Suppose, that for
some 1 ≤ i, j ≤ fΩ(n), i 6= j and 1 ≤ l ≤ fΩ(k) holds

γ−1(Pkl) ∩ Pni 6= ∅, (1)

γ−1(Pkl) ∩ Pnj 6= ∅. (2)

Let g ∈ Hn be such that

g(Pni) = Pni, (3)

g(Pnj) 6= Pnj . (4)
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Since gγ ∈ Hk we get
gγ(Pkl) = Pkm

where 1 ≤ m ≤ fΩ(k). Taking into account (1) and (3) we get

gγ(Pkl) = Pkl

and by gγ ∈ Hk we have gγ(x) = x for all x ∈ Pkl. Also taking into
account (2) and (4) we get that there is x0 ∈ Pkl ∩ γ(Pnj) and

gγ(x0) 6= x0.

This is a contradiction. Hence,

γ−1(Pkl) ⊂ Pni

for some i.
Let

γ(Pni) = {Pkli1 , . . . , Pkli,r(i)
}

where 1 ≤ li1, . . . , li,r(i) ≤ fΩ(k).
It follows from proved above that for different i and j the sets γ(Pni)

and γ(Pnj) don’t intersect. Additionally, r(i) doesn’t depend on i, be-
cause gγ ∈ Hk for all g ∈ Hn and Hn is transitive.

Let gi ∈ Hn, 1 ≤ i ≤ fΩ(n) such that gi(Pni) = Pn1. Since gγ
i ∈ Hk

then for every 1 ≤ m ≤ r the following equality holds

gi(P
γ−1

klim
) = P γ−1

kl1t

for some 1 ≤ t ≤ r.
So the sets

{gi(P
γ−1

kli1
), . . . , gi(P

γ−1

klir
)}

not depend on i. Therefore there exists a homeomorphism δ ∈ Hom ∂TΩ

such that
δγ|Hn ∈ Hk

and for every 1 ≤ j ≤ r the following equation is valid

P γ−1δ−1

klij
= Pks ⊂ Pni,

for some 1 ≤ s ≤ r.
Let us note that δ acts on Hn nontrivially only within every ball Pni.

Moreover on all balls δ acts in the same way. Therefore δ belongs to the
centralizer of Hn in Hom ∂TΩ. Hence, gδ−1γ−1

= gγ for all g ∈ Hn.
So we proved that α|Hn is induced by an inner automorphism of Hk.

Consequently every automorphism HΩ is locally inner.
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The next fact follows from the proof of the theorem.

Corollary 2. Let α(Hn) ≤ Hk (α(AHn) ≤ AHk). Then α|Hn ∈ InnHk

(α|AHn ∈ InnAHk).

We will construct below a set of subgroups of Aut HΩ and will show
that every residually finite group can be embedded into some subgroup
from this set.

Let N = {n0 = 0, ni ≥ 3 | i ∈ N} be an increasing sequence of non-
negative integers. We will consider automorphisms α ∈ Aut HΩ satisfying
the condition

α(Hni
) = Hni

, (5)

for all natural i. Obviously, all such automorphisms form subgroup AN

of the group Aut HΩ.
Let qΩ(nk, nk+1) = ank+1 . . . ank+1

.

Lemma 11. The centralizer CHnk+1
(Hnk

) is isomorphic to the symmetric

group S(qΩ(nk, nk+1)).

Proof. Elements of the centralizer CHΩ
(Hnk

) act nontrivially only inside
the balls Pnki (1 ≤ i ≤ fΩ(nk)). Moreover every element of this central-
izer acts equally on all the balls Pnki. Therefore we get

Hnk+1
∩ CHΩ

(Hnk
) ' S(qΩ(nk, nk+1)).

Proposition 12. The group AN is isomorphic to the Cartesian product
of the groups SqΩ(nk,nk+1), k ∈ N.

Proof. Clearly an automorphism defined by an element of CHnk
(Hnk−1

),
k ∈ N belongs to AN . Let us denote by Dk the subgroup CHnk

(Hnk−1
)

of AN , k ∈ N. By Lemma 11 the groups Dk and SqΩ(nk−1,nk), k ∈ N are
isomorphic.

Every Hni
is isomorphic to some symmetric group of degree greater

than 6 (because n1 ≥ 3). Hence a restriction of the automorphism from
AN onto Hni

is an inner automorphism of Hni
.

Let α1 = α|Hn1
be an inner automorphism defined by an element of

Hn1 . We get α1 ∈ AN and that α−1
1 α acts trivially on Hn1 .

Let α2 = α−1
1 α|Hn2

be an inner automorphism defined by an ele-

ment of Hn2 . We get α2 ∈ AN and that α−1
2 α−1

1 α acts trivially on Hn2 .
Moreover, α2 ∈ CHn2

(Hn1). Hence α2 commutes with α1.
The automorphisms αk ∈ AN , k ≥ 3 are analogically defined. These

automorphisms have the next properties:
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1. α−1
k . . . α−1

1 α|Hnk
= Id;

2. αk ∈ CHnk
(Hnk−1

);

3. αkαn = αnαk,

for all n, k ∈ N.
Let us note that only a finite number of automorphisms αk act non-

trivially on ∂TΩ. So the infinite product

α1α2 . . . αk . . .

gives a well defined automorphism of ∂TΩ. It follows from the properties
of automorphisms αk that

α = α1α2 . . . ,

i.e., that the group AN is the product of its subgroups Dk, k ∈ N. The
subgroups Dk commute pairwise. Therefore all of them are normal sub-
groups of AN . Since Dk has trivial center and Dk+1Dk+2 . . . central-
izes Dk, the intersection of Dk and Dk+1Dk+2 . . . is trivial. Further,
D1 . . . Dk−1 ⊂ InnHnk

and Hnk
has trivial center and Dk centralizes

Hnk
. Hence intersection of Dk and D1 . . . Dk−1 is trivial. So intersec-

tion Dk ∩ D1 . . . Dk−1Dk+1Dk+2 . . . is trivial. Taking into account the
proved above we get that AN is Cartesian product of its subgroups Dk,
k ∈ N.

We have the following corollary of this proposition.

Corollary 3. Every residually finite group can be embedded into Aut HΩ.

Proof. Since we can choose the sequence N arbitrarily, we can make
the number qΩ(nk, nk+1) arbitrarily big for all k ∈ N. Therefore for a
residually finite group G we can choose such a sequence N than G is
embedded into AN . So G is embedded into Aut HΩ.

So, we can conclude

Theorem 13. The automorphism group of the group HΩ (AHΩ) has the
following properties

1. Every automorphism of the group HΩ (AHΩ) is locally inner.

2. The group Aut HΩ contains countable Cartesian product of finite
symmetric groups of arbitrary great degree.

3. Every countable residually finite group can be embedded into Aut HΩ
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3.3. Orbits

Theorem 14. The group NΩ is highly transitive on ∂TΩ.

Proof. Let Σν = {ξ1, . . . , ξn, ν} ⊂ ∂TΩ be a set of arbitrary points of
∂TΩ. Also let Σ = {ξ1, . . . , ξn}.

Let us show that there exists α ∈ NΩ such that

α : ξi −→ ξi, 1 ≤ i ≤ n − 1;

α : ξn −→ ν.

Let k be the minimal natural number such that every point of Σν

belongs to one of the balls {Pk1, . . . , Pkt} = Pk. Let us choose {mj |j ≥ 1}
such that the inequality

|Pmj+11| < 2−1|Pmj1| < |Pk1|

holds. We have

|Pmj1| < 2−j . (6)

There exists an element αm11 of Hm11 such that

αm1 : Pm1i −→ Pm1i, 1 ≤ i ≤ n − 1

αm1 : Pm1n −→ Pm10.

After application of αmj−1 the images of the points of Σ and the
corresponding points ξ1, . . . , ξn−1, ν belong to the same balls from Pj−1.

Therefore, by induction there exists an element αmj
from Hmj

such
that

αmj
: Pmji −→ Pmji, 1 ≤ i ≤ n − 1

αmj
: Pmjn −→ Pmj0

where ξi ∈ Pmji, ν ∈ Pmj0 and

αmj
α−1

mj−1
∈ CHmj

(Hmj−1) (7)

By (7) and taking into account the choice of αmj
(αmj

∈ Hmj
) we get

that the sequence {αmj
} generates an automorphism α ∈ AΩ ≤ NΩ. Let

us show that α is satisfies the required properties.
We have ξi, α(ξi) ∈ Pmji and ν, α(ξn) ∈ Pmj0 by construction for

j ∈ N. By (6), we get α(ξi) = ξi; α(ξn) = ν.

Corollary 4. The group Aut HΩ is continual.
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Theorem 15.

1. Every orbit of the group HΩ is a dense subset of ∂TΩ.

2. The group HΩ acts faithfully on every its orbit.

3. For every orbit O, the groups (HΩ, O) and (DSΩ, N) are isomorphic
as permutation groups.

Proof. The groups (HΩ, O1) and (HΩ, O2) are isomorphic as permutation
groups for arbitrary orbits O1 and O2 of the group (HΩ, ∂TΩ). Really,
NΩ acts transitively on ∂TΩ. So there is g ∈ NΩ such that g(O1) = O2.

Moreover we have that the sequence of the points {αmj
(ξn) ∈ Hmj

} ⊂
∂TΩ has the limit ν ∈ ∂TΩ by proof of Theorem 14. Since the points
ξn, ν ∈ ∂TΩ are arbitrary, we get that every orbit of the group HΩ is
a dense subset of ∂TΩ. Taking into account continuity of the acting of
HΩ < Hom ∂TΩ on ∂TΩ we have that the group HΩ acts faithfully on
every its orbit.

Let O0 be the orbit of (HΩ, ∂TΩ) which contains the point 0 = 00 . . ..
In order to finish the proof of the theorem, it is sufficient to prove that the
groups (HΩ, O0) and (DSΩ, N) are isomorphic as permutation groups.

It is easy to see that

O0 = {j1j2 . . . jn000 . . . | 0 ≤ jk ≤ ak − 1, k ≤ n, n ∈ N}.

Let us enumerate the vertices of tree TΩ as follows: vertex j1 from
the first level is numbered by i1 = j1 + 1; further, inductively the ver-
tex (j1, j2, . . . , jn) of Vn which is adjacent to the vertex from Vn−1 with
number in−1 is numbered by

in = in−1 + jnfΩ(n − 1).

Note that the vertices from Vn are numbered by numbers from 1 to fΩ(n).
Let u = j1j2 . . . jk00 . . . ∈ O0. We number u and get

i1i2 . . . ik−1ikikik . . . , ik−1 6= ik.

Let ϕ maps u to ik. Then ϕ is bijective mapping from O0 to N.
The group (DSn, N) permutes the ordered sets

{i + kfΩ(n) | k ∈ N ∪ 0}

for 1 ≤ i ≤ fΩ(n).
The group (Hn, O0) acts by permutations on the set of balls {Pn1, . . . ,

PnfΩ(n)} and acts trivially within each of these balls. Let j be a vertex
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from the level number n. And let ϕ(j) = in, I0 = {in}, In+l = {i +
kfΩ(n + l) | 0 ≤ k ≤ an+l+1 − 1, i ∈ In+l−1} for l ∈ N. Note that

ϕ(Pnj) =
∞⋃

l=0

Il =

{in + fΩ(n)
m∑

l=0

klqΩ(n, n + l) | 0 ≤ kl ≤ an+l+1 − 1, m ∈ N} =

{in + fΩ(n)k | k ∈ N ∪ 0}.

Therefore (DSn, N) and (Hn, O0) are isomorphic as permutation groups.
Moreover this isomorphism ϕ∗

n : (Hn, O0) −→ (DSn, N) is determined
by ϕ. Since the isomorphism ϕ does not depend on n we get ϕ∗

n|Hk
=

ϕ∗

k for all k < n. Hence (DSΩ, N) = ∪∞

n=1(DSn, N) and (HΩ, O0) =
∪∞

n=1(Hn, O0) are isomorphic as permutation groups.

3.4. Intersections

Lemma 16. [L, LN] Automorphism group of the group FA(TΩ) coincides
with the normalizer of this group in Aut TΩ.

The group Aut TΩ is complete, i.e. Aut TΩ ' Aut(AutTΩ).

Let γ ∈ Aut TΩ and γk = πk(γ) where πk : AutTΩ −→ Aut T k
Ω.

Obviously Aut(TΩ) < Hom(∂TΩ).

Lemma 17. Intersection HΩ ∩ Aut(TΩ) coincides with FA(TΩ).

Proof. This assertion follows from the equality Hn ∩ AutTΩ = AutTn
Ω .

Lemma 18. Let γ ∈ Aut FA(TΩ). There exists an integer k ≥ n such
that γγ−1

k commutes with Aut Tn
Ω .

Proof. There exists k ∈ N such that (AutTn
Ω)γ < Aut T k

Ω. By Lemma 16,
we can consider γk ∈ Aut T k

Ω.The equality

aγ = aγk

holds for all a ∈ Aut Tn
Ω .

Therefore aγγ−1
k = a for all a ∈ Aut Tn

Ω .

In fact, the condition of Lemma 18 is a criterion.

Lemma 19. An element γ belongs to Aut FA(TΩ) iff there exists an
integer k such that γγ−1

k commutes with Aut Tn
Ω .
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Proof. For an element g ∈ FA(TΩ) there exists an integer n such that
g ∈ Aut Tn

Ω . Taking into account γk ∈ FA(TΩ) we end the proof.

In case of a homogeneous tree we will have that AutFA(Tm) consists
of the automorphisms which are defined by automata with finite memory
[NS] (“forgetful” automata). This fact is well-known.

Theorem 20. The intersection Aut HΩ and Aut(TΩ) coincides with
Aut FA(TΩ).

Proof. Suppose that there exists α ∈ Aut HΩ such that α ∈ Aut TΩ \
Aut FA(TΩ). Let g ∈ FA(TΩ). We have gα ∈ Aut TΩ \FA(TΩ), but this
is a contradiction with Lemma 17.

So
Aut HΩ ∩ Aut(TΩ) ⊆ Aut FA(TΩ). (8)

Let us prove that in (8) the equality takes place.
Let β ∈ Hn for some n ∈ N and γ ∈ Aut FA(TΩ). By Lemma 18,

we can assume that γ = (γ1, . . . , γfΩ(n)) ∈ Stab(n) and that γ commutes
with Aut Tn

Ω . Let us show that β commutes with γ.
Let us consider the rooted tree Tξ with characteristic ξ = (fΩ(n), an+1,

an+2, . . .). For this tree Aut Tξ < Hom ∂TΩ and the automorphisms from
Aut TΩ act naturally on the tree Tξ. Therefore, there exists an embedding
ϕ : AutTΩ −→ Aut Tξ which is determined by the embedding of Aut Tn

Ω

into Aut T 1
ξ . In addition FA(TΩ)ϕ < FA(Tξ) and (AutTn

Ω)ϕ < Aut Tn
ξ =

Hn. An automorphism π ∈ Hn acts on StabAut Tξ
(n) by permutation of

indices. In particular,

[π, γ] = (γ−1
1 γπ(1), . . . , γ

−1
fΩ(n)γπ(fΩ(n))). (9)

The commutator from (9) is equal to the identity for all π ∈ (Aut Tn
Ω)ϕ.

Also (AutTn
Ω)ϕ acts transitively on Vn(Tξ). Therefore, γ1 = . . . = γfΩ(n)

and hence [π, γ] = 1 for all π ∈ Hn. So we get βγ = β.

References

[GNS] R.I.Grigorchuk, V.V.Nekrashevych, V.I.Sushchansky Automata, dynamical
systems and groups. Proc. Steklov Inst. Math., Vol. 231 (2000), 134-214.

[Har] B.Hartley Simple locally finite groups. Finite and locally finite groups (Istam-
bul, 1994) NATO ASI Series, C471, Kluwer Academic Publishers,Dordrecht-
Boston- London,1995, 1-44.

[HZ] B.Hartley and A.E.Zalesskii Confined subgroups of simple locally finite
groups and ideal of their group rings. J. Lond. Math. Soc., 55 (1997), N.
1, 210-230.

[KW] O.H.Kegel, B.A.F.Wehrfritz Locally finite groups. North-Holland,
Amsterdam-London, 1973.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.Y. V. Lavrenyuk, V. I. Sushchansky 49

[KS1] N.V.Kroshko, V.I.Sushchansky Direct limits of symmetric and altering groups
with strictly diagonal embeddings. Archiv der Mathematik, Vol. 71. 1998,
173-182.

[KS2] N.V.Kroshko, V.I.Sushchansky Homogeneous symmetric groups. Dopovidi
NAN Ukrainy, 1993, N. 12, 9-13 (in Ukraine).

[L] Ya. Lavreniuk Automorphisms of wreath branch groups. Visnyk Kyivskogo
Universytetu, 1999, N. 1, 50-57. (In Ukrainian).

[LN] Ya. Lavreniuk, V. Nekrashevych Rigidity of branch groups acting on rooted
trees. Geometriae Dedicata, 89 (2002),N. 1-2, 159-179.

[NS] V.V.Nekrashevych, V.I.Sushchansky Automata with finite memory and
shifting endomorphisms. Dopovidi NAN Ukrainy, 2001, N. 4, 18-21. (In
Ukrainian).

[Ner] Yu.A.Neretin Groups of hierarchomorphisms of trees and related Hilbert
spaces. J. Funct. Anal. 200 (2003), N. 2, 505-535.

[Rub] Rubin M. On the reconstruction of topological spaces from their groups of
homeomorphisms. Trans. Amer. Math. Soc., Vol. 312 (1989), N. 2, 487-538.

[Zal] A.E.Zalesskii Group rings of inductive limits of alterating groups. Leningrad
Math. J., 2 (1991), 1287-1303.

[Zal2] A.E.Zalesskii Direct limits of finite dimensional algebras and finite groups.
Trends in ring theory (Miscolc, 1996) Amer. Math. Soc. Prowidence, 1998,
221-239.

Contact information

Y. V. Lavrenyuk Kyiv Taras Shevchenko University, Ukraine
E-Mail: yar_lav@hotmail.com

V. I. Sushchansky Kyiv Taras Shevchenko University, Ukraine
E-Mail: wsusz@zeus.polsl.gliwice.pl


