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1. Introduction

Constructions of an infinite families of expanding graphs is an important
and hard combinatorial problem. A few known examples had been for-
mulated in terms of a Group Theory (special Cayley graphs of semisimple
Lie groups satisfying Kazhdan property).

In this note we present a new construction. Both the construction
of graphs and evaluation of their expansion properties are also group
theoretical.

We construct for each t ≥ 3, an infinite family of t-regular expanding
graphs.

Let A be a set of vertices of a graph X. We define ∂A to be the set
of all elements b ∈ X − A such that b is adjacent to some a ∈ A.

We say that t-regular graph with n vertices has an expansion constant
c if, for each set A ⊂ X with |A| ≤ n/2, |∂A| ≥ c|A|.

One says that the infinite family of graph Xi is a family of expanders
constant c, if there exists a constant c such that every Xi has the expan-
sion constant c.

Expander graphs are widely used in Computer Science, in areas rang-
ing from parallel computation to complexity theory and cryptography
[3].

An explicit construction of infinite families of t-regular expanders (t
fixed) turns out to be difficult.

Gregory Margulis [4] constructed the first family of expanders. He
used representation theory of semisimple groups.

It can be shown that if λ1(X) is the second largest eigenvalue of the
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adjacency matrix of the graph X, then c ≥ (t − λ1)/2t. Thus, if λ1

is small, the expansion constant is large. A well-known result of Alon
and Bopanna says that, if Xn is an infinite family of t-regular graphs (t
fixed), then limλ1(Xn) ≥ 2

√
t − 1. This statement was the motivation

of Ramanujan graphs as special objects among t-regular graphs. A finite
t-regular graph Y is called Ramanujan if, for every eigenvalue λ of Y ,
either |λ| = t or |λ| ≤ 2

√
t − 1. So, Ramanujan graphs are, in some

sense, best expanders.
Lubotzky, Phillips and Sarnak ([4]) proved that graphs defined by

Margulis in [4] are Ramanujan graphs of degree p + 1 for all primes p.
Morgenstern [6] proved that, for each prime degree q, there exists a family
of Ramanujan graphs of degree q − 1.

In this note, we construct a family of graphs, which contains for each
t > 2, infinitely many bipartite t-regular graphs Γ the eigenvalues of
which are bounded from above by 2

√
t. Eigenvalues of distance 2 graph

for Γ, which has a degree t(t−1), can be written as 2tcosα+t, for some α.
This variety of “almost Ramanujan graphs” contains some well known

families of graphs, which degrees q are prime powers, such as Wegner
graphs Wk(q), k = 1, 2, . . . [9] or CD(k, q) [2]. They proved to be useful
in Computer Science (see [9, 10, 11, 12, 13, 14]). For some of them list
of the eigenvalues have been obtained via computer simulation [7, 8].

2. Preliminaries

The girth of a graph G, denoted by g = g(G), is the length of the shortest
cycle in G.

The distance d(x, y) between vertices x and y of the graph is the
number of edges in a minimal pass between x and y.

The spectrum spec(A) of G is the set of all eigenvalues of the adjacency
matrix A of graph G.

An incidence structure is a set Γ = P ∪ L where P and L are two
disjoint sets (the set of points and set of lines, respectively) together with
symmetric binary relation I on Γ (incidence relation). We will identify I
with the related bipartite graph.

An important example of the above is the so-called group incidence
structure Γ(G, Gi)i∈{1,2}. Here G is an abstract group and {Gs}s∈{1,2} is
a pair of distinct subgroups of G. The objects of Γ(G, Gi)i∈{1,2} are the
cosets of Gi in G for i = 1, 2. Cosets α and β are incident precisely when
α ∩ β 6= ∅. The type function is defined by t(α) = i where α = xGi for
some x ∈ G.

A definition of unipotent-like factorisation, i.e. a factorisation of a
group U into 3 subgroups U1, U2 and U3 such that U1∩U2 = 1, U1∩U3 =
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1, U2 ∩ U3 = 1, and U3 contains [U1, U2] was given in [11]. In this case,
there are unique decompositions u ∈ U of the kinds u = u1u2u3 and
u = u2u1u

′
3 where u1 ∈ U1, u2 ∈ U2, and u3, u

′
3 ∈ U3.

The following statement gives us a natural examples.

Proposition 2.1. Let G be a free product of finite nontrivial groups G1

and G2. Let G3 be the group [G1, G2]. Then G = G1G2G3 is a unipotent-

like factorization.

Proof. It is well known that the group [G1, G2] is normalised by the both
subgroups G1 and G2 hence is normal in G. Since G/[G1, G2] = Ḡ1 × Ḡ2

where Ḡi = Gi[G1, G2]/[G1, G2] for i = 1, 2, the desired result follows
immediately.

Let G = G1G2G3 be a unipotent-like factorization and F < G3 be a
normal subgroup of G. It is clear that (G/F ) = G1G2(G3/F ) is also a
unipotent-like factorization.

Let us consider the following navigation function n from Γ(G) =
Γ(G)G1,G2

onto the set C = G1∪G2 of colors C = G1∪G2: n(G1x) = g2,
where x = x1x2x3, xi ∈ Gi, and n(G2y) = y1, where y = y2y1y3, yi ∈ Gi.

Term navigation is used because each vertex has a uniquely defined
neighbor of chosen color. Let F < G3 be a normal subgroup of G . It is
clear that G/F = G1G2(G3/F ) is also a unipotent-like factorization and
canonical homomorphism η : G → G/F induces natural graph homomor-
phism indη:Γ(G) → Γ(G/F ), which preserves navigation function.

Proposition 2.2. Let G = G1G2G3 be a unipotent-like factorization of

finite group G and F be a normal subgroup of G such that F < G3. Then

spec(Γ(G/F )G1,G2
) ⊂ spec(Γ(G)G1,G2

)

Proof. Let i = ind(η) be a natural homomorphism of Γ1 = Γ(G) onto
Γ2 = Γ(G/F ), Vi be the set of vertices of the graph Γi with the adjacency
matrix Ai, Fi be a vector space of real functions on Vi and φi be a linear
operator on Fi with the standard matrix Ai. Let us put H1 = G and
H2 = (G/F ). and F = {f ∈ F1|[i(x) = i(y)] → [f(x) = f(y)]}.

The value of φi(f(x) for x ∈ (Hi : G1) ((Hi : G2)) is the sum of
elements f(yg), where yg is the neighbor of x of color g, g ∈ G2 (G1,
respectively). The map i preserves navigation function and type function.
Thus F is an invariant subspace of φ1 and the induced operator φ1|F is
similar to φ2.
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Let us consider a Coxeter system (W, S) for W = D∞ i. e. set of
generators S = {s1, s2} together with the set defining relations s1

2 = 1,
s2

2 = 1.

Let qs, s ∈ S be a system of indeterminates, R = Z[qs|s ∈ S] and
F = Frac(R). Then there exists a Tits generic algebra H(S, R), i.e., an
F -algebra, for which {Tw|w ∈ W} is a basis, and where multiplication is
uniquely determined by the following formulas

TsTw = Tsw if l(sw) > l(w),

TsTw = qsTsw + (qs − 1)Tw if l(sw) < l(w),

where s ∈ S, g ∈ W , and l(g) is the length of a reduced decomposition
of g.

The algebra H(S, R) has a presentation as an R algebra with gener-
ators Ts, s ∈ S, and relations as follows:

(Ts)
2 = qsT1 + (qs − 1)Ts,

Let H(s, R) be an R-subalgebra of H(S, R) defined as follows.

H(s, R) = {a ∈ H(S, R)|Tsa = aTs = qsa}
We will refer to H(s, R) as the parabolic Tits algebra with respect to

D∞ and s ∈ S.

Let Ws =< s > and {O0, O1, · · · , } be the totality of all double cosets
of W by Ws. For each double coset Oi, put

bi =
∑

w∈Oi

Tw

The set {bi|i = 0, 1, · · · } is a basis of the algebra H(s, R).

For each s ∈ S, let qs = q, q ∈ Z be the specialization for our inde-
terminates, such that q > 1. Then this specialization induces morphisms
of algebras H(S, R) and H(s, R) onto Q-algebras IH(q) and IH(s, q).
We will refer to IH(q and IH(s, q) as the Iwahory-Hecke algebra and
Iwahory-Hecke parabolic subalgebra of D∞, respectively.

We can treat elements of group algebra C(G) as functions from G to
C. Let G1 and G2 be subgroups of G. Functions which are invariant
on double cosets G1gG2 form the double coset algebra D(G)G1,G2

. If
G1 = G2 instead of this term we will use the more popular term Hecke

algebra.

A C∗ algebra is a pair (A, ∗) where A is an algebra over the field
C of comlex numbers and x → x∗ is an idempotent bijective map on
A (unary operation). A represenration of C∗ algebra A is a representa-
tions of A which agrees with the operation ∗. When ∗ is fixed we will
use the term unitary represantations instead of representations of C∗ al-
gebra. Let URep(A) stands for the set of all unitary finitedimensional
representations of A.

We will consider the group algebra C(G) as C∗ algebra is a group alge-
bra C(G) with the standard ∗ operation f(g)∗ = f(g−1). For evaluation
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of the second largest eigenvalue of the graph in our construction we will
use the following result: the finitedimensional unitary represantations of
the D∞ are of dimensions 1 or 2. In fact, all initary representations of
D∞ are finidimensional (see [15]).

3. Main results

Theorem 3.1. Let G be a finite group, let G1 and G2 be isomorphic

subgroups of G such that G =< G1, G2 >, G = G1G2G
′ be a unipotent-

like factorization, and set T = |G1|.

(i) Set Γ2 = (G/G1, {(x, y)|dΓ(x, y) = 2} for Γ = Γ(G)G1,G2
. Then

each eigenvalue of Γ2 can be written in the form t + 2tcos(φ) or

t(t − 1)

(ii) If Γ has no cycles of length 4 then the second largest eigenvalues of

Γ are bounded by 2
√

t.

Proof. In the group algebra C(G) of G, form the elements

Si =
∑

w∈Gi\1

w and Qi =
∑

w∈Gi

w, i = 1, 2,

and let B = B(S1, S2) be the subalgebra generated by S1 and S2.
It is clear that double coset algebra D = D(G)G1,G2

(Hecke algebra)
for the action of (G, (G : G1) ∪ (G : G2)) and the Hecke algebra D2

corresponding to the action (G, (G : G1)) are subalgebras of algebra
B = B(S1, S2). Element of D2 corresponding to Γ2 is 2Q1Q2Q1. In
case of unipotent-like factorization we can consider both D and B as C∗

subalgebras of C(G) with operation ∗ induced by f(g)∗ = f(g−1):

S1
∗ = S1 and S2

∗ = S2 (1)

By direct checking, we got

(Si)
2 = (t − 1)E + (t − 2)Si, i = 1, 2 (2)

We could identify the algebra D2 with the quotient I of the Iwahori-Hecke
parabolic subalgebra IH(s1, t − 1) of D∞ .

Relations (2) can be written as

ai
2 = E, ai = 2/t(Si − (t − 2)/2E), i = 1, 2, ai

∗ = ai

Thus, the map φ defined by the rules φ(si) = (2/t(Si − (t − 2)/2)
is an epimorphism of the group algebra C(D∞) onto C∗-algebra B. So,
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there is an embedding of URep(B(G)) and URep(C(D∞)), (D2)) is the
image of parabolic subalgebra IH(s1, 1) of C(D∞). The descriptions of
all finite-dimensional representations of group algebras for Dn, n ≤ ∞,
and its parabolic subalgebras can be written uniformly for all possible
n ∈ N ∪∞. There are one-dimensional representations and those of
dimension 2 of the kind A = (aij), a11 = cos(α), a12 = sin(α), a22 = a11,
a21 = −a12. The eigenvalue of a2 is the trace 2 cos(α) of matrix A. We
have that a2 = ((2Q2)/t − 1), Eigenvalues of matrix 2Q1Q2Q1 (same
with 2Q2) form a Spec(D2). Thus, any element λ from Spec(D2) which
is different from the valency can be written in the form

t + tr(tA) = t + 2t cos(α). (3)

If the graph does not contains cycles of length 4 then a path of length
2 between given vertices is unique, and the matrix of de Morgan’s square
of Γ is a 0, 1-matrix), and its eigenvalues are t, −t and trace (

√

(tA)),
(see [1]), i.e.

2
√

t cos(α). (4)

Remark. Relations for the generators S1 and S2, different from (1)
and (2) have a trigonometric nature. They determine the angles α in
Equations(3) and (4) for eigenvalues of the graphs Γ and Γ2.

Theorem 3.2. Let G1, G2 are two copies of finite group G of order |t|.
Then the free product F = G1 ∗ G2 contains infinitely many normal sub-

groups H of finite index, such that graphs Γ(F/H)G1,G2
form an infinite

family of expanders with embedded spectra for which second largest eigen-

value is bounded by 2
√

t.

Proof. It is clear that we have the unipotent factorization F = G1G2F
′,

where F ′ = [G1, G2] is the commutator of G1 and G2. Let us consider a
filtration Hi of F such that Hi ∩Gj = 1 for i = 2, 3, . . . , j = 1, 2 and Hi

are invariant for automorphism of F which permutes G1 and G2. Let Γi

be the incidence structure Γi = Γ(F/Hi)G1,G2
, i = 2, 3, . . .. The canonical

homomorphism of F/Hi+1 onto F/Hi induces the graph homomorphism
of Γi+1 onto Γi. The projective limit of Γi is the infinite tree Γ(F )G1,G2

.
Thus the Γi, i = 2, 3, . . ., form an infinite family of graphs of unbounded
girth and there are infinitely many subgroups Hi such that the girth of
Γi is greater than 4. Spectra of the graph ΓI are eigenvalues of Γi+1

according to Proposition 2.2.
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