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ABSTRACT. Let G be a group, A = @, . As a strongly
graded ring by G, H a subgroup of G and Ay = @,y As. We
give a necessary and sufficient condition for the ring A/Agy to be
separable, generalizing the corresponding result for the ring exten-
sion A/A;. As a consequence of this result we give a condition for
A to be a hereditary order in case A is a strongly graded by finite
group R-order in a separable K-algebra, for R a Dedekind domain
with quotient field K.

1. Introduction

C. Nastasescu, M. Van den Berg and F. Van Oystaeyen in their paper
[5] examined, between others, the separability of the restriction functor
associated to a ring homomorphism. Certainly, if ¢ : R — S is a ring
homomorphism, they associated to ¢ the restriction functor ¢, : modS —
modR associating to a left S-module M the left R-module defined on the
set M by the ring homomorphism ¢. They proved that the functor ¢, is
separable if and only if the ring extension S/R is separable (Proposition
2.3). In the sequel they applied the separability of ¢, in case ¢ is the ring
embedding Ay — A, where A is a strongly graded ring by a group G. As
a result of this they proved that ¢, is separable if and only if the trace
function is surjective and the group G is finite. Also, M.D. Rafael gave
another version of this result (|7], Theorem 3.1).
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In this paper extending the above result for the functor ¢, : modA —
modApy associating to a A-module M its restriction as a Apg-module,
where H is a subgroup of G, A = @, oAy and Ay = P ey Ao we
prove that the ring extension A/Ap is separable if and only if the set
G/H is finite and there exists an element r in the center Z(Ap) of Ay
such that Y, 7" =1, for a left transversal T of H in G.

Moreover, let R be a Dedekind domain with quotient field K and A
a separable K-algebra. If A is a strongly graded ring over a finite group
G, A is an R-order in A and H is a subgroup of G, we prove that A is a
hereditary R-order if Ay is hereditary and the trace function is surjective.

2. On the separability of the restriction functor

Let A be a strongly graded ring by a group G, thatis A = @geG A4, where
each A, is a Aj-module and the multiplication is given by AcAr = Asr,
for all o, 7 € G. We refer to [6] for details on graded rings. Let H be a
subgroup of G. We denote Ay = @,c 5 An, then Ap is a strongly graded
ring by H. Since AgA 1 = Ay, for all g € G, we may fix a decomposition

S alb!), =1 (2.1)

for agi) € Ay, b(i)1 € Agy-1 and ¢ is running over a finite index set depend-

ing on g. For all A € A and ¢ € G and T a left transversal of H in G,

let
A7 =S ada,

for a((f), bg) . as in the relation (2.1).

The ring extension S/R is separable if and only if the map ¥ :
SQprS — S, s®s — ss splits as an (S-S)-bimodule homomorphism.
All rings have unity. We refer |2|, [6] and |7] for details on separable
extensions.

A functor F': C — D between two arbitrary categories is called sepa-
rable if for all objects M, N € C there are maps

émNn € Homp(FM,FN) — Hom¢(M,N)
satisfying the following compatibility conditions: 1) If « € Hom¢(M, N),

then ¢ v (F(a)) = a. 2) If there are M', N’ € C and o € Hom¢(M, N),
B € Home(M',N'), f € Homp(FM,FM'), g € Homp(FN,FN') such
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that the diagram

v P9 By

7| s
v 9L p

is commutative, then the diagram
M —2- N

o | | ¢ta

VRN

is commutative.

We refer [4] and [5] on separable functors.

For brevity we write Q) instead of @) . We consider the embedding
¢ : Ag — A, which splits as a Ag-bimodule map. Hence the induction
functor ¢* : modAy — modA, associating to a left Ag-module M the
A-module A Q) M is separable by (|5], Proposition 1.3,2). Now we con-
sider the restriction functor ¢, : modA — modA, associating to a left
A-module M the Ag-module M. The next theorem essentially gives a
necessary and sufficient condition for the functor ¢, to be separable and
extends (|5, Proposition 1.3).

In the following we use the above notation.

Theorem 2.1. The ring extension A/Ag is separable if and only if the
set G/H is finite and there exists an element r in the center Z(Ay) of
Ag such that ), rt =1, for a left transversal T of H in G.

Proof. Let T be a left transversal of H in GG, we get the direct sum

ARA= P Apr ® Mgy
kteT

Let us suppose that the ring A/Ag is separable and ¥ : AQA — A is
the multiplication map defined by

v ZZ)‘M{® Ht1 ZZ)\]{:H P pre—1

kteT (i) kteT i
where )\,(jl)q € Apg and ,ug)t,l € Aps—1 and ¢ runs over a finite index
depending of k£ and t. Hence V¥ is a (A — A)-bimodule epimorphism.
Then there exists a (A — A)-bimodule homomorphism & : A — AQ A
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splitting ¥. Let ®'(1) = s’ for some s’ € A @ A, where 1 is the unity of
A, and let

S—ZZSkH@’ Ht1

kteT i

where s,(jl)q € Apy and Thp-1 € Agy—1 and i runs over a finite index

set. For brevity we denote zj; = ), SI(JI){ ® Tgi,l and x; = w44, then
(1) = s = > ) ter The- We remark that, for Ay € Ajand g € G,

Ags' =A@/ (1) = ' (Ng) = D' (1)\g = s’ Hence

()

Ags' = §'Ag (2.2)

for g € G and \; € Ay.
Let for g € G, t € T, gtH = t'H for some t' € T. Comparing the
Ay @ Ag—1 component of both sides of the relation (2.2), we get

)\gflft = .’I]tl)\g (23)

Summing both sides of the relation (2.3) over all ¢t € T', we have

Z AgTi = Z Ty g (2.4)

teT teT

Moreover, since 1 = ¥®'(1) = ¥(s') = ¥ (Zk,teT xkyt) and the kHt !
-indexed coefficient of 1 in A is zero, we remark that

S~

7

for k # t.
If we define s = ), 74, then ¥(s) = 1. Moreover, from the relation
(2.4) it follows that
Ags = 8Ag (2.5)

forall \y € Ay, g € G.

Now we define the map ® : A — A ® A by ®(\) = As. Because
of the relation (2.5), ® is a (A — A)-bimodule homomorphism such that
Ud(\) = A, for all A € A, that is @ splits V.

Let Z be the finite subset of T" such that s = > __, x. with 2, # 0.
We denote 7, = ¥(x,) then

d =1 (2.6)

ze€Z



TH. THEOHARI-APOSTOLIDI, H. VAVATSOULAS 99

We prove that 7, € Cp,(A) = {\ € A: Az =z, forall, A € Ay}, for
z € Z.

From the relation (2.3) for ¢ = 1, we get that \jzy = )\ <
U(Azy) = U(xA1) < Ay = A, for all t € Z. Hence, r, € Cy, ().
Now we prove that r; € Z(Ap), the center of Ay. Indeed; 1 = U(z1) €
Ap. Moreover, from the relation (2.3) for ¢ € H and ¢ = 1, we get
A1 = T1Ag = Y(Agz1) = ¥(z1Ng) = A\gr1 = 11Ag. Hence ri € Z(Ap).
Now we prove that 7! is zero for almost all ¢ € T. Indeed; from the
relation (2.3) we get AgW(xy) = W(ap )Ny if and only if

Ath = T't/Ag (27)

forge G,t €T, \yj € Aj and gtH = t'H. If r, = 0, for some ¢t € T,
then, from the relation (2.7) and for ¢ = ¢t=! we get 0 = rq\,1, for
all ;-1 € Aj—1. Hence r; = 0. Now again from the relation (2.7) for
t=1and g € Z, we get 0 = ry)g, for all \; € Ay and g € Z. Hence
rq = 0, Vg € Z, but this is impossible because of the relation (2.6).
Therefore the set 7' is finite. From the relations (2.7) and (2.1) and since
re € Cp, (A) we get that for all \; € Ay, and for all g € G,

Z aéi)b?l)\grt =TpAg & Z aéi)”bgzl)\g “rdg =0

(rf_rt/))\g:(){:}’l"f—rtlzo, fOl“ au,gEG

For t = 1 the last relation becomes r{ = ry, for all g € G. Finally, from
the relation (2.6) we get ., .p 7' = 1.

For the converse, let us suppose that there exists an element r in the
center of Ag such that >, 7" = 1. We define the map

®: A~ A@Adefined by A Y > af @rbl”, A
i teT

for agi) € Ay and bii,)l € A;-1 defined as in the relation (2.1). It is

easy to see that the definition of @ is independent of the election of the
elements agz) and bgz,)l and for the election of the set T" and ® is a left
A-homomorphism which splits the map ¥. The technique is analogous

to that using in the proof of (|9, Theorem 2.2). O

Corollary 2.2. i)The induction functor ¢* is separable.
it) The restriction functor ¢. is separable if and only if there ezists
an element r in the center Z(Ag) of Ag such that Y, cprt =1
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Let R be a Dedekind domain with quotient field K and A a separable
K-algebra. An R-order A in A is a subring of A containing R in its center
which is finite generated R-module and KA = A. If A is an R-order in A,
a A-lattice is a left A-module which is a finitely generated and projective
R-module. Let A be an R-order in A which is a strongly graded ring
by a finite group G and H be a subgroup of G. We refer [1] for details
about R-orders in A. Using the above notation and moreover setting
Treu(r) =Y eprt, for an element r € A and a left transversal T' of H
in G, we get the following.

Corollary 2.3. i) If Ay is hereditary and there exists an element r €
Ca, (An) such that Trg p(r) = 1, then A is hereditary.
ii) If A is hereditary order, then Ap is hereditary.

Proof. 1) Under the second condition the restriction functor ¢, is separa-
ble by Corollary (2.2). Let us suppose that Ay is hereditary. If M is a
left A-lattice, then My is a left Ap-lattice and hence projective. By ([5],
Proposition 1.2,3) M is also projective and hence A is hereditary.

ii) By the same argument using that the induction functor ¢* is sep-
arable. (see also [3], Proposition 2.3) O

Remarks. J. Haefner and G. Janusz have proved in (|2|, Proposition 2.2
statement 2) that for finite G the restriction functor ¢, : modA — modA g
is separable if H is normal subgroup of G and [G : H]| is a unit in A;.
Moreover they claimed that the converse of the statement 2 is also true.
The above theorem corrects this result of J. Haefner and G. Janusz and
also corrects the statement 3 of the same Proposition 2.2 refering on
crossed products and the separability of the restriction functor.
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