Algebra and Discrete Mathematics Number 3. **(2003).** pp. 89 – 94 © Journal "Algebra and Discrete Mathematics"

The commutator Hopf Galois extensions

RESEARCH ARTICLE

George Szeto and Lianyong Xue

Communicated by V. Lyubashenko

ABSTRACT. Let H be a finite dimensional Hopf algebra over a field k and H^* the dual Hopf algebra of H. Then a commutator right H^* -Galois extension B of B^H is characterized in terms of the smash product B#H and some relationships between such a B and the Hopf Galois Azumaya or Hopf Galois Hirata extensions are also given.

1. Introduction

Let H be a finite dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, B a left module algebra over H with center C, and $V_B(B^H)$ the commutator subring of B^H in B. Let B be a right H^* -Galois extension of B^H , in [3], it was shown that $V_B(B^H)$ is a right H^* -Galois extension of Z where Z is the center of B^H if and only if $B \cong B^H \otimes_Z V_B(B^H)$ and $V_B(B^H)$ is a finitely generated and projective Z-module ([3], Lemma 2.8). Now we call B a commutator Hopf Galois extension of B^H if $V_B(B^H)$ is a right H^* -Galois extension of Z. When $H = (kG)^*$ for a finite automorphism group G of B, a commutator Hopf Galois extension is a commutator Galois extension as studied in [6]. The purpose of the present paper is to characterize a commutator Hopf Galois extension in terms of the Hirata separability of the smash product B#H over B^H . Moreover, a relationship is also given between the class of commutator Hopf Galois extensions and the class of Hopf Galois Azumaya extensions as studied in [4] and [7] or the class of Hopf Galois Hirata extensions, respectively, where B is called a right H^* -Galois

²⁰⁰⁰ Mathematics Subject Classification: 16W30, 16H05.

Key words and phrases: Hopf Galois extensions, Azumaya algebras, commutator subrings, smash products, and Hirata separable extensions.

Hirata extension of B^H if B is a right H^* -Galois extension and a Hirata separable extension of B^H as given in [8].

2. Basic definitions and notations

Throughout, H denotes a finite dimensional Hopf algebra over a field k with comultiplication Δ and counit ε , H^* the dual Hopf algebra of H, B a left H-module algebra, C the center of B, $B^H = \{b \in B \mid hb = \varepsilon(h)b$ for all $h \in H\}$ which is called the H-invariants of B, and B#H the smash product of B with H where $B\#H = B \otimes_k H$ such that for all b#h and b'#h' in B#H, $(b\#h)(b'\#h') = \sum b(h_1b')\#h_2h'$ where $\Delta(h) = \sum h_1 \otimes h_2$. B is called a right H^* -Galois extension of B^H if B is a right H^* -comodule algebra with structure map $\rho: B \longrightarrow B \otimes_k H^*$ such that $\beta: B \otimes_{B^H} B \longrightarrow B \otimes_k H^*$ is a bijection where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. we call B a separable extension of A if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m \text{ for some integer } m\}$ such that $\sum a_i b_i = 1$, and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. A right H^* -Galois extension B is called a commutator right H^* -Galois extension if $V_B(B^H)$ is a right H^* -Galois extension of the center of B^H , a right H^* -Galois Azumaya extension if B is separable over B^H which is an Azumaya algebra over C^H , and a right H^* -Galois Hirata extension if B is also a Hirata separable extension of B^H . Throughout, an H^* -Galois extension means a right H^* -Galois extension unless it is stated otherwise.

3. The commutator Hopf Galois extensions

In this section, we shall characterize a commutator Hopf Galois extension in terms of the smash product B#H.

Theorem 3.1. Let B be an H^* -Galois extension of B^H and Z the center of B^H . Then the following statements are equivalent:

(1) B is a commutator H^* -Galois extension of B^H ,

(2) B#H is a projective Hirata separable extension of B^H and contains B^H as a direct summand as a B^H -bimodule,

(3) $B \# H \cong B^H \otimes_Z (V_B(B^H) \# H)$ and $V_B(B^H) \# H$ is a finitely generated and projective Z-module, and

(4) $V_B(B^H) # H$ is an Azumaya Z-algebra.

Proof. (1) \implies (4) Since *B* is a commutator *H*^{*}-Galois extension of B^H , $V_B(B^H)$ is an *H*^{*}-Galois extension of *Z*. Hence $V_B(B^H)#H \cong \text{Hom}_Z(V_B(B^H), V_B(B^H))$ such that $V_B(B^H)$ is a finitely generated and projective *Z*-module ([3], Theorem 1.7). But *Z* is commutative with 1, so $V_B(B^H)$ is a progenerator of *Z*. Thus $\text{Hom}_Z(V_B(B^H), V_B(B^H))$ is an Azumaya *Z*-algebra ([1], Proposition 4.1 on page 56); and so $V_B(B^H)#H$ is an Azumaya *Z*-algebra.

 $(4) \Longrightarrow (1)$ Since $V_B(B^H) \# H$ is an Azumaya Z-algebra, finitely generated and projective over $V_B(B^H)$, $V_B(B^H) \# H$ is a Hirata separable extension of $V_B(B^H)$ ([1], Theorem 1). But $V_B(B^H)$ is a progenerator of $V_B(B^H)$, so $V_B(B^H)$ is a progenerator of $V_B(B^H) \# H$ ([2], Lemma). Hence $V_B(B^H)$ is an H^* -Galois extension of $(V_B(B^H))^H$ ([4], Theorem 2.2). Noting that $(V_B(B^H))^H = V_{B^H}(B^H) = Z$, we have that B is a commutator H^* -Galois extension of B^H .

(1) \Longrightarrow (2) By hypothesis, $V_B(B^H)$ is an H^* -Galois extension of Z, so $B \cong B^H \otimes_Z V_B(B^H)$ such that $V_B(B^H)$ is a finitely generated and projective Z-module ([3], Lemma 2.8). Noting that the above isomorphism is also a ring isomorphism, we have that $B\#H \cong (B^H \otimes_Z V_B(B^H))\#H \cong$ $B^H \otimes_Z (V_B(B^H)\#H)$. But by (1) \Longrightarrow (4), $V_B(B^H)\#H$ is an Azumaya Z-algebra, so $B^H \otimes_Z (V_B(B^H)\#H)$ is a projective Hirata separable extension of B^H . Also Z is a direct summand of $V_B(B^H)\#H$ as a Z-bimodule ([1], Lemma 3.1, page 51), so B^H is a direct summand of $B^H \otimes_Z (V_B(B^H)\#H)$ as a B^H -bimodule. Thus (2) holds.

(2) \Longrightarrow (4) Since B#H is a projective Hirata separable extension of B^H and contains B^H as a direct summand as a B^H -bimodule, $V_{B\#H}(B^H)$ is a separable Z-algebra such that $V_{B\#H}(V_{B\#H}(B^H)) = B^H$ ([5], Proposition 1.3 and Proposition 1.4). This implies that the center of B#H, B^H , and $V_{B\#H}(B^H)$ are the same Z. Thus $V_B(B^H)\#H$ (= $V_{B\#H}(B^H)$) is an Azumaya Z-algebra.

(1) \implies (3) Since $V_B(B^H)$ is an H^* -Galois extension of $Z, B \cong B^H \otimes_Z V_B(B^H)$ such that $V_B(B^H)$ is a finitely generated and projective Z-module ([3], Lemma 2.8). Noting that this isomorphism is also a ring isomorphism, we have that $B\#H \cong (B^H \otimes_Z V_B(B^H))\#H \cong B^H \otimes_Z (V_B(B^H)\#H)$ such that $V_B(B^H)\#H$ is a finitely generated and projective Z-module by (1) \implies (4).

(3) \implies (1) Since H is a finite dimensional Hopf algebra over a field k, the statement (3) implies that $B \cong B^H \otimes_Z V_B(B^H)$ and $V_B(B^H)$ is a finitely generated and projective Z-module. Thus $V_B(B^H)$ is an H^* -Galois extension of Z ([3], Lemma 2.8).

4. Three kinds of Hopf Galois extensions

In section 2, we call B an H^* -Galois Hirata extension of B^H if B is an H^* -Galois extension and a Hirata separable extension of B^H . In [8], it was shown that an H^* -Galois extension B of B^H is a Hirata separable extension of B^H if and only if $V_B(B^H)$ is a left H-Galois extension of C ([8], Theorem 2.6). In this section, we shall show that an H^* -Galois Hirata extension of B^H equal to B^{H^*} is a commutator H^* -Galois extension of B^H . Moreover, an equivalent condition is given under which a commutator H^* -Galois extension of B^H or an H^* -Galois Azumaya extension of B^H .

Theorem 4.1.

(1) If B is an H^* -Galois Azumaya extension of B^H , then B is a commutator H^* -Galois extension of B^H .

(2) If B is an H^* -Galois Hirata extension of B^H equal to B^{H^*} , then B is a commutator H^* -Galois extension of B^H .

Proof. (1) Let *B* be an *H*^{*}-Galois Azumaya extension of *B^H*. Then, by Lemma 4.1 in [4], $V_B(B^H)$ is an *H*^{*}-Galois extension of $(V_B(B^H))^H$. Since $(V_B(B^H))^H = V_{B^H}(B^H) = Z$, *B* is a commutator *H*^{*}-Galois extension of *B^H*.

(2) Let B be an H^* -Galois Hirata extension of B^H . Then $V_B(B^H)$ is a left H-Galois extension of C ([8], Theorem 2.6). Hence $V_B(B^H)$ is a finitely generated and projective C-module. Since C is commutative with 1, $V_B(B^H)$ is a progenerator of C. But then the argument used in the proof of Lemma 2.8 in [3] can be applied here. Let Ω = $\operatorname{Hom}_{C}(V_{B}(B^{H}), V_{B}(B^{H}))$. Then, as a left Ω -module, $B \cong V_{B}(B^{H}) \otimes_{C}$ $\operatorname{Hom}_{\Omega}(V_B(B^H), B)$. Noting that $\operatorname{Hom}_{\Omega}(V_B(B^H), B) \cong B^{H^*}$ by $f \longrightarrow$ each f in $\operatorname{Hom}_{\Omega}(V_B(B^H), B)$, f(1)we have for that $B \cong V_B(B^H) \otimes_C B^{H^*}$. But $V_B(B^H)$ is a left *H*-Galois extension of *C*, so $V_B(V_B(B^H)) = B^H = B^{H^*}$ ([8], Lemma 2.5). Hence $B \cong V_B(B^H) \otimes_C B^H$. Moreover, since $V_B(V_B(B^H)) = B^H$ again, the centers of B^H and *B* are the same C. Therefore $V_B(B^H)$ is an H^* -Galois extension of C ([3], Lemma 2.8), that is, B is a commutator H^* -Galois extension of B^H .

Next two theorems relate the class of commutator H^* -Galois extensions to the class of H^* -Galois Azumaya extensions and the class of H^* -Galois Hirata extensions.

Theorem 4.2. Let B be a commutator H^* -Galois extension of B^H . Then B is separable over Z, the center of B^H , if and only if B is an H^* -Galois Azumaya extension of B^H .

Proof. (\Longrightarrow) Since $B \cong B^H \otimes_Z V_B(B^H)$ as a Z-algebra such that $V_B(B^H)$ is an H^* -Galois extension of Z which is a direct summand of $V_B(B^H)$ as a Z-module ([3], Proposition 1.9 and Corollary 1.10). By hypothesis, B is separable over Z, so B^H is separable over Z ([1], Corollary 1.9 on page 45). Thus B^H is an Azumaya Z-algebra. Moreover, since $B \cong B^H \otimes_Z V_B(B^H)$ again, $Z = C^H$. Therefore B is a separable and H^* -Galois extension of B^H which is an Azumaya C^H -algebra; that is, B is an H^* -Galois Azumaya extension of B^H ([4], Theorem 3.4).

 (\Leftarrow) *B* is an *H*^{*}-Galois Azumaya extension of *B*^{*H*}, so *B* is a separable extension of *B*^{*H*} and *B*^{*H*} is an Azumaya *C*^{*H*}-algebra. Hence *B* is a separable extension of *Z* (= *C*^{*H*}) by the transitivity of separable extensions.

Theorem 4.3. Let B be a commutator H^* -Galois extension of B^H . Then $V_B(B^H)$ is an Azumaya Z-algebra if and only if B is an H^* -Galois Hirata extension of B^H .

Proof. (\Longrightarrow) Since $V_B(B^H)$ is an H^* -Galois extension of $Z, B \cong B^H \otimes_Z V_B(B^H)$ as a Z-algebra. But $V_B(B^H)$ is an Azumaya Z-algebra, so B is a Hirata separable extension of B^H . Hence B is an H^* -Galois Hirata extension of B^H .

(\Leftarrow) Since *B* is an *H*^{*}-Galois extension of *B*^{*H*}, *B* is a finitely generated and projective *B*^{*H*}-module. By hypothesis, *B* is a projective Hirata separable extension of *B*^{*H*} and contains *B*^{*H*} as a direct summand as a *B*^{*H*}-bimodule by Theorem 3.1-(2). But then $V_B(B^H)$ is a separable *C*algebra and $V_B(V_B(B^H)) = B^H$ ([5], Proposition 1.3 and Proposition 1.4). This implies that the center of *B*, *B*^{*H*}, and $V_B(B^H)$ are the same $Z (= C = C^H)$. Thus $V_B(B^H)$ is an Azumaya *Z*-algebra.

Acknowledgements

This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

- F. R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Volume 181. Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [2] S. Ikehata, Note on Azumaya Algebras and H-Separable Extensions, Math. J. Okayama Univ., 23 (1981), 17-18.
- [3] H. F. Kreimer and M. Takeuchi, Hopf Algebras and Galois Extensions of an Algebra, Indiana Univ. Math J., 30 (1981), 675-692.
- M. Ouyang, Azumaya Extensions and Galois Correspondence, Algebra Colloquium, 7(1) (2000), 43-57.

- [5] K. Sugano, On Centralizers in Separable Extensions, Osaka J. Math., 7 (1970), 29-41.
- [6] G. Szeto and L. Xue, On Commutator Galois Extensions, JP Journal of Algebra and Number Theory, 2(3) (2002), 269-283.
- [7] G. Szeto and L. Xue, On Hopf DeMeyer-Kanzaki Galois Extensions, International Journal of Mathematics and Mathematical Sciences, 2003(26) (2003), 1627-1632.
- [8] K. H. Ulbrich, Galoiserweiterungen von Nicht-kommutativen Ringen, Communication in Algebra, 10(6) (1982), 655-672.

CONTACT INFORMATION

- G. Szeto Department of Mathematics Bradley University Peoria, Illinois 61625, USA *E-Mail:* szeto@hilltop.bradley.edu
- L. Xue Department of Mathematics Bradley University Peoria, Illinois 61625, USA *E-Mail:* lxue@hilltop.bradley.edu

Received by the editors: 28.03.2003 and final form in 21.10.2003.

94