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Abstract. All H− and R− cross-sections of the full finite

semigroup Tn of all transformations of the set N = {1, 2, . . . , n}
are described.

1. Introduction

Let ρ be an equivalence relation on a semigroup S. The subsemigroup
T ⊂ S is called a cross-section with respect to ρ if T contains exactly 1
element from every equivalence class. Clearly, the most interesting are
the cross-sections with respect to the equivalence relations connected with
the semigroup structure on S. The first candidates for such relations are
congruences and the Green relations.

The Green relations L,R,H,D and J on semigroup S are defined
as binary relations in the following way: aLb if and only if S1a = S1b;
aRb if and only if aS1 = bS1; aJ b if and only if S1aS1 = S1bS1 for any
a, b ∈ S and H = L ∧R, D = L ∨R.

Cross-sections with respect to the H− (L−,R−,D−,J−) Green re-
lations are called H− (L−,R−,D−,J−) cross-sections in the sequel.

In the present paper all H− and R− cross-sections of the full finite
semigroup Tn of all transformations of the set N = {1, 2, . . . , n} are
described.

The study of cross-sections with respect to Green relations for the
specific semigroups was initiated a few years ago. The most studied ones
are cross-sections of the full inverse symmetric semigroup ISn. For this
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semigroup the first example of an H−cross-section has been constructed
in [R]. Later, a complete description of all H−cross-sections for ISn, n 6=
3, was obtained in [CR]. After that in [GM] all L− and R−cross-sections
of ISn and their disposition with respect to the H−cross-sections of this
semigroup were described.

For a ∈ Tn we denote by im(a) and ρa the image of the element
a and the equivalence relation on the set N given by the rule iρaj iff
a(i) = a(j) respectively. We will multiply the elements in Tn from the
left to the right, that is, (ab)(x) = b(a(x)) for all x ∈ N . The number
rk(a) = |im(a)| is called the rank of a. The identity map idN : N → N

is the unit element of Tn and will be denoted by e.

For an element a ∈ Tn one can use the usual tableaux presentation

a =

(

1 2 · · · n

k1 k2 · · · kn

)

,

where a(i) = ki, i = 1, 2, . . . , n.

It is well-known (see for example [CP]) that the Green relations on
Tn can be described as follows:

aRb if and only if ρa = ρb;

aLb if and only if im(a) = im(b);

aHb if and only if ρa = ρb and im(a) = im(b);

aDb if and only if rk(a) = rk(b).

In particular, Green’s D−classes are Dk = { a ∈ Tn | rk(a) = k}, 1 ≤
k ≤ n.

2. Description of H− cross-sections

From the structure of Green relation H on the semigroup Tn it follows
that each H−class of this semigroup is uniquely determined by a disjoint
decomposition N = A1∪̇ . . . ∪̇Ak of the set N into k non-empty blocks and
a set P ⊆ N with |P | = k. Denote by H

A1,...,Ak

P the H−class determined
by these data.

Theorem 1. a) T1 contains the single H−cross-section H = T1.

b) T2 contains the single H−cross-section

H = {

(

1 2
1 1

)

,

(

1 2
2 2

)

,

(

1 2
1 2

)

}.

c) For n > 2, the semigroup Tn does not contain H−cross-sections.

Proof. a) Obvious.
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b) From the structure of Green relation H it follows that each
H−cross-section H of this semigroup has to contain all elements of the
rank 1 and one element of the rank 2. Moreover, the latter one must
be idempotent. One can verify immediately that the only subsemigroup
that fulfills these conditions is

H = {

(

1 2
1 1

)

,

(

1 2
2 2

)

,

(

1 2
1 2

)

}.

c) Consider three H−classes

H ′ = H
{1},{2,...,n}
{1,3} = {a′, b′}, where

a′ =

(

1 2 3 · · · n

1 3 3 · · · 3

)

, b′ =

(

1 2 3 · · · n

3 1 1 · · · 1

)

,

H ′′ = H
{1,2},{3,...,n}
{2,3} = {a′′, b′′}, where

a′′ =

(

1 2 3 · · · n

2 2 3 · · · 3

)

, b′′ =

(

1 2 3 · · · n

3 3 2 · · · 2

)

,

H ′′′ = H
{1,3},{2,4,...,n}
{1,2} = {a′′′, b′′′}, where

a′′′ =

(

1 2 3 4 · · · n

1 2 1 2 · · · 2

)

, b′′′ =

(

1 2 3 4 · · · n

2 1 2 1 · · · 1

)

.

Let us assume that there exists an H−cross-section H. Then from |H ∩
H ′| = 1 and b′b′ = a′ one gets that a′ ∈ H. Analogously, we can prove
that a′′, a′′′ ∈ H. Since H is a subsemigroup, the elements c = a′a′′a′′′

and c2 also belong to H. But

c =

(

1 2 · · · n

2 1 · · · 1

)

, c2 =

(

1 2 · · · n

1 2 · · · 2

)

,

therefore cHc2. On the other hand c 6= c2. This contradicts our as-
sumption that H is H−cross-section and accomplishes the proof of the
theorem.

Remark. Finiteness of the set N was not used in the proof. Therefore
this theorem holds true for arbitrary full infinite semigroup TX .



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.V. Pyekhtyeryev 85

3. Description of R− cross-sections

Since for a, b ∈ Tn the condition aRb is equivalent to the condition ρa =
ρb, the equalities a = b and ρa = ρb are equivalent for elements a, b from
arbitrary R−cross-section T of Tn. We will frequently use this fact in the
paper.

From the structure of Green relation R on the semigroup Tn it follows
that each R−class of this semigroup is uniquely determined by a disjoint
decomposition N = A1∪̇ . . . ∪̇Ak of the set N into k non-empty blocks.
Denote by R(A1, . . . , Ak) the R−class determined by this decomposition.

Lemma 1. Let T be an R−cross-section of Tn and a, b ∈ Dk ∩ T for
some k, 1 ≤ k ≤ n. Then im(a) = im(b).

Proof. Let us assume the contrary, then there exist a number k and
elements a, b ∈ Dk ∩ T such that im(a) 6= im(b). Denote C = im(a) ∩
im(b), A = im(a)\C, B = im(b)\C and p = |A|. Since |A| = |B| = p,
there exists the disjoint decomposition of the set A ∪ B into the pairs
(a1, b1), (a2, b2), . . . , (ap, bp) such that ai ∈ A, bi ∈ B for every i, 1 ≤ i ≤
p. Since T is an R−cross-section, the set T∩R({a1, b1}, . . . , {ap, bp}, {c1},
. . . , {ck−p−1}, {ck−p ∪ (N\(A∪B ∪C))}) contains precisely one element.
Let c denote this element. Now on one hand the equality im(ac) = im(c)
and the implications ρac = ρa ⇒ ac = a ⇒ im(ac) = im(a) ⇒ im(a) =
im(c) hold true and on the other hand, analogously, we can show that
im(b) = im(c). But the latter equality is impossible because im(a) 6=
im(b). This contradiction completes the proof of the lemma.

Lemma 2. Let T be an R−cross-section of Tn and a ∈ Dk ∩ T, b ∈
Dk+1 ∩ T for some k, 1 ≤ k ≤ n − 1. Then im(a) ⊂ im(b).

Proof. Let
A = im(a) = {a1, . . . , ak}

and
c ∈ T ∩ R({a1}, . . . , {ak}, {N\A}).

Then ρac = ρa. This implies ac = a and im(ac) = im(a), but im(ac) ⊂
im(c) implies that im(a) ⊂ im(c). Since c ∈ Dk+1 ∩ T , we have that
im(b) = im(c) by Lemma 1. The latter equality completes the proof of
the inclusion im(a) ⊂ im(b).

Thus from the lemmas, we can see that every R−cross-section T of
Tn defines linear order on the set N in the following way: an element
i ∈ N is less than j ∈ N iff there exists k, 1 ≤ k ≤ n such that the set
im(Dk ∩ T ) contains i, but does not contain j.
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Let ϕ denote the map that assigns to each R−cross-section T of the
semigroup Tn the linear order on the set N determined as above.

Let linear order < on the set N be fixed. For every decomposi-
tion of the set N = A1∪̇A2∪̇ . . . ∪̇Ak into disjoint union of non-empty
blocks define the induced linear order on blocks by the rule Ai ≺ Aj iff
min(Ai) < min(Aj), where min(Ai) denotes the least element of the set
(Ai, <).

Define

x1 = min(N),

x2 = min(N\{x1}),

...

xn = min(N\{x1, . . . , xn−1}).

Now construct the set S< in the following way: an element a ∈
R(A1, . . . , Ak), where A1 ≺ A2 ≺ · · · ≺ Ak belongs to the set S< if and
only if the equality a(Ai) = xi holds true for every i, 1 ≤ i ≤ k. Then
it is obvious, that S< contains exactly one element from every R−class.
Moreover, the following proposition holds true.

Lemma 3. For every linear order < on the set N the set S< is closed
under multiplication.

Proof. Let a, b ∈ S< be arbitrary elements. Then there exist two
R−classes R(A1, . . . , Ak), R(B1, . . . , Bm) such that a ∈ R(A1, . . . , Ak),
b ∈ R(B1, . . . , Bm). Without loss of generality we can assume that A1 ≺
A2 ≺ · · · ≺ Ak and B1 ≺ B2 ≺ · · · ≺ Bm. By p denote the least number
such that im(a) ∩ Bp = ∅. Clearly, p > 1 and im(ab) = {x1, . . . , xp−1}
in this case. Now for every element x ∈ im(ab) denote by Cx the set
(ab)−1(x). The sets Ax, Bx are defined similarly. To complete the proof
it is now sufficient to show that Cx ≺ Cy for every pair of elements
x < y from the set im(ab). This follows immediately from the equality
min(Cx) = min(Amin(Bx)) and the following sequence of implications
x < y ⇒ Bx ≺ By ⇒ min(Bx) < min(By) ⇒ Amin(Bx) ≺ Amin(By) ⇒
min(Amin(Bx)) < min(Amin(By)) ⇒ min(Cx) < min(Cy) ⇒ Cx ≺ Cy.

Corollary 1. For every linear order < on the set N the set S< is an
R−cross-section in Tn.

Proof. By Lemma 3 this set is closed under multiplication. Moreover,
the multiplication is associative, because S< ⊂ Tn. Hence S< is a sub-
semigroup of Tn. But from the construction of this set it also follows that
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S< contains exactly 1 element from every R−class and the statement is
proven.

Corollary 2. The map ϕ is surjective.

Proof. Follows from S< ∈ ϕ−1(<) for every linear order < on the set
N .

Lemma 4. Let T be an R−cross-section of Tn and < denotes the linear
order ϕ(T ). Denote by ≺ the induced linear order on blocks. The elements
xi, 1 ≤ i ≤ n are determined as above. Then for element a ∈ T ∩
R(A1, . . . , Ak), where A1 ≺ A2 ≺ · · · ≺ Ak the equality a(Ai) = xi for
every i, 1 ≤ i ≤ k holds true.

Proof. Let us assume the contrary. Then there exist an element a ∈ T

and a number j such that a(Aj) 6= xj . Without loss of generality we can
assume that j is the minimal number with this property. Then a(Aj) >

xj . Consider the number p such that min(Aj) = xp. Then for every
x ∈ Aj+1 ∪ · · · ∪ Ak the inequality x > xp holds true. From Ai ≺ Aj for
every i < j it follows that there exist elements yi ∈ Ai such that yi < xp

for every i < j. Now consider element b ∈ T ∩ Dp. It is obvious, that
rk(ba) = j. But im(ba) 6= {x1, . . . , xj}, because for every x ∈ b−1(xp)
we have that (ba)(x) = a(b(x)) = a(xp) > xj . Therefore ba 6∈ T . This
contradiction completes the proof of the lemma.

Corollary 3. The map ϕ is injective.

Proof. Let T1, T2 be R−cross-sections of Tn such that ϕ(T1) = ϕ(T2).
Then by Lemma 4 sets T1∩R, T2∩R coincide for every R−class R. This
implies T1 = T2 and completes the proof of the lemma.

Theorem 2. The map ϕ is a bijection between the set of all R−cross-
sections of Tn and the set of all linear orders on the set N .

Proof. Follows from Corollaries 2 and 3.

Theorem 3. The semigroup Tn contains exactly n! different R−cross-
sections. Every two R−cross-sections are isomorphic.

Proof. By Theorem 2 the number of different R−cross-sections of the
semigroup Tn equals the number of all linear orders on the set N , but
the last number equals n!. With the linear order x1 < x2 < · · · < xn

we associate the permutation π =

(

1 2 · · · n

x1 x2 · · · xn

)

. Let T1, T2 be

two R−cross-sections of Tn. Denote by π1 and π2 the permutations
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associated with the linear orders ϕ(T1), ϕ(T2) respectively. Then the
equality π1T1π

−1
1 = π2T2π

−1
2 holds true. This means that arbitrary two

R−cross-section are conjugated and hence isomorphic.
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