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Abstract. In this article we study gyrogroups and left gy-
rogroups as transversals in some suitable groups to its subgroups.
These objects were introduced into consideration in a connection
with an investigation of analogies between symmetries in the clas-
sical mechanics and in the relativistic one. The author introduce
some new notions into consideration (for example, a weak gyro-
transversal) and give a full description of left gyrogroups (and gy-
rogroups) in terms of transversal identities. Also he generalize a
construction of a diagonal transversal and obtain a set of new ex-
amples of left gyrogroups.

1. Introduction

At the first time the concepts of a gyrogroup and a gyrocommutative gy-
rogroup were introduced into consideration in [14] in a connection with
an investigation of analogies between symmetries in the classical mechan-
ics and in the relativistic one. In [14, 15] the elementary properties of
gyrogroups were established and it was shown that they are left special
loops.

In [4] the concept of the gyrogroup was generalized and it was intro-
dused a notion of a left gyrogroup; also in [4, 3, 5, 6] these objects were
considered as transversals (gyrotransversals) in some groups to their sub-
groups.

In the present work the research of above-mentioned concepts is pro-
ceeded. In §1 the necessary definitions are introduced, among which the
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concepts of a weak gyrotransversal and a middle Bol loop deserves the
special attention. The elementary properties of these objects are proved.
In §2 it is shown that the left gyrogroups is exactly weak gyrotransver-
sals in some groups; and some its properties are established. In §3 and
§4 the transversals in groups are investigated, for which the transversal
operations are gyrogroups and commutative gyrogroups, respectively. In
§5, proceeding from a definition of semidirect product of a left loop and a
suitable group (see [12, 11]), it is shown that weak gyrotransversals (gyro-
transversals) are obtained by the natural way in the semidirect products
of the left gyrogroups (gyrogroups) and the suitable groups. At last, in
§6 the generalization of a construction of the diagonal transversals (see
[4]) is given.

2. Necessary definitions, notations and preliminary state-

ments

Definition 1. [2] A system 〈E, ·〉 is called a left (right) quasigroup
if the equation a · x = b (y · a = b) has an unique solution in the set E
for anyone given a, b ∈ E. The system 〈E, ·〉 is called a quasigroup if it
is both left and right quasigroup simultaneously. A left (right) quasigroup
〈E, ·〉 is called a left (right) loop if there exists the element e ∈ E such
that e · x = x ( x · e = x, respectively). This element e ∈ E is called a
left (right) unit. The system 〈E, ·〉 is called a loop if it is both left and
right loop simultaneously (in this case e · x = x · e = x ∀x ∈ E, and this
element e ∈ E is called a unit of the loop 〈E, ·〉).

Definition 2. [1, 10] Let 〈G, ·, e〉 be a group and 〈H, ·, e〉 be its own
subgroup. A complete set T = {ti}i∈E of representatives of the left (right)
cosets of the group G to its subgroup H (exactly one representative from
each coset) is called a non-reduced left (right) transversal in G to H.
If the non-reduced left (right) transversal T satisfy the condition e = t1 ∈
T , then the set T = {ti}i∈E is called a left (right) transversal in G to
H. The left transversal T in G to H is called a two-sided transversal
in G to H, if it is a right transversal in G to H simultaneously.

For every left transversal T = {ti}i∈E in G to H it is possible to define
correctly a following operation on the set E (a transversal operation):

x
(T )
· y = z

def
⇐⇒ txty = tzh, h ∈ H. (1)

Lemma 1. The following statements are true:
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1. If T is a non-reduced left (right) transversal in G to H, then the

system 〈E,
(T )
· 〉 is a left (right) quasigroup with the right (left) unit

1;

2. If T is a left (right) transversal in G to H, then the system 〈E,
(T )
· 〉

is a left (right) loop with the unit 1.

Proof. The proof is similar to the proof of Lemma 1 from [10].

Definition 3. A left transversal T in G to H is called a loop transversal

if the transversal operation 〈E,
(T )
· , 1〉 is a loop.

Lemma 2. For every left transversal in G to H the following statements
are equivalent:

1. T is a loop transversal in G to H;

2. ∀π ∈ G the set T π = πTπ−1 is a left transversal in G to H;

3. ∀π ∈ G the set T is a left transversal in G to πHπ−1.

Proof. The proof it can see in [1].

For every left transversal T in G to H we shall denote:

lx,y
def
= t−1

x·ytxty ∈ H.

Definition 4. [13] A left multiplication group of a left quasigroup
〈E, ·〉:

LM ( 〈E, ·〉)
def
= 〈La|La (x) = a · x, a ∈ E〉.

A left inner mappings group of a left loop 〈E, ·, 1〉:

LI ( 〈E, ·, 1〉)
def
= {α ∈ LM ( 〈E, ·, 1〉) |α (1) = 1}.

It is known (see [13]) that

LI ( 〈E, ·, 1〉) = 〈lx,y|x, y ∈ E〉.

Definition 5. A left transversal T = {ti}i∈E in G to H is called a

1. weak gyrotransversal, if the following conditions hold:

(a) T is a two-sided transversal in G to H;
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(b) LI(〈E,
(T )
· , 1〉) ⊆ NG (T ), i.e. ∀h ∈ LI(〈E,

(T )
· , 1〉) it is true

that hTh−1 ⊆ T ;

2. gyrotransversal [4, 3], if the following conditions hold:

(a) ∀ti ∈ T it is true that t−1
i ∈ T ;

(b) H ⊆ NG (T ), i.e. ∀h ∈ H it is true that hTh−1 ⊆ T .

Definition 6. [4]A system 〈E, ·〉 is called a left gyrogroup, if the fol-
lowing conditions hold:

1. In the set E there exists an element 1 such that

1 · x = x ∀x ∈ E.

2. ∀x ∈ E there exists an element −1x ∈ E such that

−1x · x = 1.

3. ∀a, b, z ∈ E the following identity holds:

a · (b · z) = (a · b) · αa,b (z) ,

where αa.b ∈ Aut ( 〈E, ·〉) is called a gyroautomorphism.

Remark 1. A left gyrogroup 〈E, ·, 1〉 is a left loop, i.e. the equation
a · x = b has the unique solution in E for every fixed a, b ∈ E. Really, let

a · x = b.

Then for left opposite −1a to a ∈ E we have:

−1a · b = −1a · (a · x) =
(
−1a · a

)
· α−1a,a (x) =

= 1 · α−1a,a (x) = α−1a,a (x) ,

i.e. x = α−1
−1a,a

(
−1a · b

)
.

Definition 7. [14, 4, 3, 15] A left gyrogroup 〈E, ·, 1〉 is called a gy-
rogroup, if ∀a, b ∈ E the following condition holds:

αa,b ≡ αa·b,b.

Definition 8. [14, 4, 3, 15] A gyrogroup 〈E, ·, 1〉 is called a gyrocom-
mutative gyrogroup, if ∀a, b ∈ E the following condition holds:

a · b = αa,b (b · a) .
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Below we shall consider a group G as its permutation representation
Ĝ by the left cosets to its subgroup H. If T = {tx}x∈E is a left transversal
in G to H, we define [10]:

ĝ (x) = y
def
⇐⇒ gtxH = tyH. (2)

It is known [8] that if

CoreG(H) = ∩
g∈G

gHg−1 = {e},

then Ĝ ∼= G; below we shall propose that CoreG(H) = {e}.

Lemma 3. Let T = {tx}x∈E is a non-reduced left transversal in G to H

and 〈E,
(T )
· , 1〉 is the transversal operation. Then the following formulas

are true:

1. ∀h ∈ H: ĥ (1) = 1;

2. ∀x, y ∈ E:

t̂x (y) = x
(T )
· y, t̂x (1) = x, t̂−1

x (1) = x
(T )

\ 1,

t̂−1
x (y) = x

(T )

\ y, t̂−1
x (x) = 1.

3. If T = {tx}x∈E is a left transversal in G to H, then also the fol-
lowing identity is fulfilled:

t̂1 (x) = x.

Proof. The proof is similar to the proof of Lemma 4 from [10].

Lemma 4. Let T = {tx}x∈E be a non-reduced left transversal in G to H

and 〈E,
(T )
· , 1〉 be its transversal operation. Then the following statements

are equivalent:

1. T is a non-reduced two-sided transversal in G to H;

2. The equation x
(T )
· a = 1 has an unique solution in E for every

a ∈ E;

3. A set T−1 =
{
t−1
x

}

x∈E
is a non-reduced two-sided transversal in G

to H.
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Proof. 1) ←→ 2). The proof is similar to the proof of Lemma 7 from [10].
1) ←→ 3). Since ∀x ∈ E it is true that

(Htx)−1 = t−1
x H, (txH)−1 = Ht−1

x ,

so if T is a non-reduced left (right) transversal in G to H then T−1 is a
non-reduced right (left) transversal in G to H, and vice versa.

Definition 9. [2] A left (right) quasigroup 〈E, ·〉 is called a special
quasigroup at the left (at the right), if ∀x, y ∈ E

lx,y = L−1
x·yLxLy ∈ Aut ( 〈E, ·〉)

( rx,y = R−1
x·yRyRx ∈ Aut( 〈E, ·〉), respectively).

Definition 10. [2] A left loop 〈E, ·〉 is called a left Bol loop, if the
following identity (left Bol identity) is fulfilled ∀x, y, z ∈ E:

x (y (xz)) = (x (yx)) z.

Lemma 5. A left Bol loop 〈E, ·, 1〉 satisfies the following properties:

1. the left inverse property, i.e. ∀x, y ∈ E: −1x · (x · z) = z, where
−1x · x = 1;

2. −1x = x−1, i.e. the left and the right inverse elements to an element
x ∈ E coincide;

3. the left alternation, i.e. ∀x, y ∈ E: x · (x · y) = (x · x) · y;

4. the solution of the equation a ·x = b is x = a−1 · b, and the solution
the equation y · a = b is y = a−1 ·

(
(a · b) · a−1

)
, i.e. left Bol loop

〈E, ·, 1〉 is a loop.

Proof. The proof it can see in [2], chapter 6.

Definition 11. An operation 〈E, ·〉 is called a middle Bol loop [2], if
the following identity holds:

x · ((yz) \x) = (x/z) · (y\x) ,

where ”\” and ”/” are left and right divisions in 〈E, ·〉, respectively.

Lemma 6. Let 〈E, ·〉 is a middle Bol loop. Then the following statements
are true:

1. 〈E, ·〉 is a loop with some unit 1;
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2. The left inverse element −1x and the right inverse element x−1 to
an element x ∈ E coincide: −1x = x−1;

3. If 〈E, ·, 1〉 is a left Bol loop and ”/” is the right inverse operation
to the operation ” · ”, then the operation

x ◦ y = x/y−1

is a middle Bol loop 〈E, ◦, 1〉, and everyone middle Bol loop can be
obtained in a similar way from some left Bol loop.

Proof. The proof it can see in [7].

3. Left gyrogroups as weak gyrotransversals

Lemma 7. Let T be a left transversal in G to H. Then the following
statements are equivalent:

1. T is a weak gyrotransversal in G to H;

2. The transversal operation 〈E,
(T )
· , 1〉 is a left gyrogroup.

Proof. 1) −→ 2). Let T be a left transversal in G to H and T be a weak
gyrotransversal in G to H, i.e. the two following conditions hold:

1. T is a two-sided transversal in G to H;

2. ∀h ∈ LI (〈E,
(T )
· , 1〉) it is true that hTh−1 ⊆ T .

Let us show that the conditions 1) - 3) from Definition 6 are fulfilled

for the operation 〈E,
(T )
· , 1〉.

The condition 1) is fulfilled automatically for anyone left transversal
in G to H (see Lemma 1).

The condition 2) follows from the Condition 1 and Lemma 4.

Valid Condition 2 ∀x ∈ E and ∀h ∈ LI (〈E,
(T )
· , 1〉) it is true that

htxh−1 = tψ(x). (3)

In virtue Lemma 3 we have:

ψ (x) = t̂ψ(x) (1) = ĥt̂xĥ−1 (1) = ĥt̂x (1) = ĥ (x) ,

i.e. the equality (3) may be rewritten as:

htxh−1 = t
ĥ(x). (4)
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Let us show that ∀h ∈ LI (〈E,
(T )
· , 1〉) a mapping

αh : x → ĥ (x)

is an automorphism of the operation 〈E,
(T )
· , 1〉. We have ∀x, y ∈ E:

txty = tx·ylx,y,

where lx,y = t−1
x·ytxty ∈ LI(〈E,

(T )
· , 1〉). Then in virtue of (4) ∀h ∈

LI(〈E,
(T )
· , 1〉) it is true that

htxh−1htyh
−1 = htx·yh

−1hlx,yh
−1,

t
ĥ(x)tĥ(y) = t

ĥ(x·y)h
′,

where h′ ∈ LI (〈E,
(T )
· , 1〉), and

ĥ (x)
(T )
· ĥ (y) = ĥ(x

(T )
· y),

i.e. αh is an automorphism of the operation 〈E,
(T )
· , 1〉.

At last ∀a, b, z ∈ E we have in virtue of (4):

tatbtz = ta·bla,btz = ta·bla,btzl
−1
a,b la,b =

= ta·btl̂a,b(z)la,b = t(a·b)·l̂a,b(z)la·b,l̂a,b(z)la,b,

and, on the other hand

tatbtz = tatb·zlb,z = ta·(b·z)la,b·zlb,z.

So we obtain

ta·(b·z)la,b·zlb,z = t(a·b)·l̂a,b(z)la·b,l̂a,b(z)la,b.

According to the definition of a left transversal it means that

a
(T )
· (b

(T )
· z) = (a

(T )
· b)

(T )
· l̂a,b (z) ,

where αla,b
= l̂a,b is an automorphism of the operation 〈E,

(T )
· , 1〉 (as it

was shown above). The condition 3) of Definition 6 is fulfilled.
2) −→ 1). Let T = {tx}x∈E be a left transversal in G to H and the

operation 〈E,
(T )
· , 1〉 be a left gyrogroup. Then the conditions 1)-3) from
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Definition 6 are fulfilled for the operation 〈E,
(T )
· , 1〉. Let us show that T

is a weak gyrotransversal.
By virtue of condition 2) and Lemma 4 the transversal T is a two-sided

transversal, i.e. the item 1a) of Definition 5 holds.
By virtue of condition 3) it is true that ∀a, b, z ∈ E:

t̂at̂b (z) = t̂a·b (αa,b (z)) ,

i.e. la,b = αa,b is an automorphism of the operation 〈E,
(T )
· , 1〉. Then

LI(〈E,
(T )
· , 1〉) ⊆ Aut(〈E,

(T )
· , 1〉) (5)

Now let h ∈ LI(〈E,
(T )
· , 1〉) and we shall consider the expression

(
htkh

−1
)

∀x ∈ E. Since ∀x ∈ E htxh−1 ∈ G then

htxh−1 = tuh1 (6)

for some u ∈ E and h1 ∈ H. Valid Lemma 3 we have:

u = t̂u (1) = t̂uĥ1 (1) = ĥt̂xĥ−1 (1) = ĥt̂x (1) = ĥ (x) .

So (6) may be rewritten as

htxh−1 = t
ĥ(x)h 1. (7)

Further we have ∀x, y ∈ E:

txty = tx·ylx,y,

htxh−1htyh
−1 = htx·yh

−1hlx,yh
−1.

In virtue of (7) we obtain:

t
ĥ(x)h1tĥ(y)h2 = t

ĥ(x·y)h3 · hlx,yh
−1, h1, h2, h3 ∈ H.

Again in virtue Lemma 3 we have

t̂
ĥ(x)ĥ1t̂ĥ(y)ĥ2 (1) = t̂

ĥ(x·y)ĥ3ĥ l̂x·yĥ
−1 (1) ,

ĥ (x)
(T )
· ĥ1

(

ĥ (y)
)

= ĥ(x
(T )
· y). (8)

Since h ∈ LI(〈E,
(T )
· , 1〉) then in virtue of (5) we have

ĥ(x
(T )
· y) = ĥ (x)

(T )
· ĥ (y) .
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Substituting the last equality in (8), we obtain

ĥ (x)
(T )
· ĥ1

(

ĥ (y)
)

= ĥ (x)
(T )
· ĥ (y) ∀x, y ∈ E.

Since T is a left transversal in G to H then system 〈E,
(T )
· , 1〉 is a left

quasigroup; therefore we receive

ĥ1

(

ĥ (y)
)

= ĥ (y) ∀y ∈ E.

Since the mapping ĥ (y) is a permutation on the set E then we have:

ĥ1 (z) = z ∀z ∈ E,

i.e. ĥ1 = id and so h1 = e. Then according to (7), we receive that

∀h ∈ LI(〈E,
(T )
· , 1〉) and ∀x ∈ E it is true that

htxh−1 ∈ T,

i.e. the item 1b) of Definition 5 is fulfilled. Then the transversal T is a
weak gyrotransversal.

Corollary 11. If a left transversal T in G to H is a gyrotransversal then

the transversal operation 〈E,
(T )
· , 1〉 is a left gyrogroup.

Lemma 8. Let T be a weak gyrotransversal in G to H (i.e. the transver-

sal operation 〈E,
(T )
· , 1〉 is a left gyrogroup). Then the transversal opera-

tion 〈E,
(T )
· , 1〉 satisfies the following properties:

1. a
(T )
· b = a

(T )
· c ⇔ b = c (left cansellation);

2. The element 1 ∈ E is the unique unit for the operation 〈E,
(T )
· , 1〉;

3. ∀a ∈ E there exist an unique left inverse element −1a (−1a
(T )
· a = 1)

and an unique right inverse element −1a (a
(T )
· a−1 = 1).

4. If αa,b is a gyroautomorphism then

αa,b (z) = (a
(T )
· b)\(a

(T )
· (b

(T )
· z)),

α−1
a,b (z) = b\(a\((a

(T )
· b)

(T )
· z)),

and, as a corollary, α0,a = αa,0 = id.
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5. It is true that ∀x, y ∈ E:

x
(T )
· (x−1(T )

· y) = ϕx (y) ,

−1x
(T )
· (x

(T )
· y) = ψx (y) ,

where ϕx and ψx are some automorphisms of operation 〈E,
(T )
· , 1〉.

Proof. 1) and 2) follow from Lemma 1.
3) follows from Lemma 1 and Lemma 4 (item b)).
4). According to the definition of a left gyrogroup

a · (b · z) = (a · b) · αa,b (z) .

On the other hand, since T is a left transversal then tatb = ta·bla,b, and
so ∀z ∈ E

a · (b · z) = t̂a (b · z) = t̂at̂b (z) = t̂a·b l̂a,b (z) = (a · b) · l̂a,b (z) .

So αa,b = ĥa,b. Then, according Lemma 3

αa,b (z) = l̂a,b (z) = t̂−1
a·b t̂at̂b (z) = (a · b) \ (a · (b · z)) ,

α−1
a,b (z) = l̂−1

a,b (z) = t̂−1
b t̂−1

a t̂a·b (z) = b\ (a\ (a · b) · z) .

5). From the item 4) it follows that

x ·
(
x−1 · y

)
=

(
x · x−1

)
· αx,x−1 (y) = ϕx (y) ,

−1x · (x · y) =
(
−1x · x

)
· α−1x,x (y) = ψx (y) .

Remark 2. In a left gyrogroup the left inverse property may not be
fulfilled. The example it can see in [9], page 317-318.

4. Gyrogroups as loop transversals of a special kind

Lemma 9. Let T = {tx}x∈E be a weak gyrotransversal in G to H. Then
the following statements are equivalent:

1. The transversal operation 〈E,
(T )
· , 1〉 is a gyrogroup;

2. ∀x ∈ E: txTtx ⊆ T ;

3. The transversal operation 〈E,
(T )
· , 1〉 is a left Bol loop.
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Proof. 1) −→ 2). Let T = {tx}x∈E be a weak gyrotransversal in G to H

and transversal operation 〈E,
(T )
· , 1〉 is a gyrogroup. Then ∀x, y ∈ E:

αx,y = αx·y,y.

In virtue of Definition 6 and Lemma 3 we have:

t−1
x·ytxty = t−1

(x·y)·ytx·yty,

t−1
x·ytxt−1

x·y = t−1
(x·y)·y,

tx·yt
−1
x tx·y = t(x·y)·y (9)

If y = x−1 then from (9) we obtain that

t−1
x = e · t−1

x · e = tx−1 , (10)

i.e. (9) may be rewritten as

tx·ytx−1tx·y = t(x·y)·y. (11)

Since 〈E,
(T )
· , 1〉 is a left loop, then the following replacement is correct:

{
x−1 = u
x · y = v

−→ y = x\v = (1/u) \v =
(
u−1

)
\v.

Then (11) may be rewritten as: ∀u, v ∈ E

tvtutv = tv·((−1u)\v),

i.e.
tvTtv ⊆ T ∀v ∈ E.

2) −→ 3). Let T be a left transversal in G to H and ∀x ∈ E

txTtx ⊆ T,

Then ∀x, y ∈ E there exists a permutation αx (y) such that

txtytx = tαx(y). (12)

In virtue Lemma 3 we have

αx (y) = t̂αx(y) (1) = t̂xt̂y t̂x (1) = t̂xt̂y (x) = x · (y · x) .

Then (12) may be rewritten as

txtytx = tx·(y·x).
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Again applying Lemma 3, we obtain:

x · (y · (x · z)) = x ·
(
y · t̂x (z)

)
= x · t̂y t̂x (z) =

= t̂xt̂y t̂x (z) = t̂x·(y·x) (z) = (x · (y · x)) · z,

i.e. the left Bol identity is fulfilled for the operation 〈E,
(T )
· , 1〉. Then

〈E,
(T )
· , 1〉 is a left Bol loop.

3) −→ 1). Let T be a weak gyrotransversal and 〈E,
(T )
· , 1〉 be a left

Bol loop. Then 〈E,
(T )
· , 1〉 is a left gyrogroup and the left Bol identity

holds:

x · (y · (x · z)) = (x · (y · x)) · z.

Then in virtue Lemma 3 we obtain ∀z ∈ E:

t̂xt̂y t̂x (z) = x · t̂y t̂x (z) = x ·
(
y · t̂x (z)

)
=

= x · (y · (x · z)) = (x · (y · x)) · z = t̂x·(y·x) (z)

i.e.

txtytx = tx·(y·x). (13)

Besides for a left Bol loop 〈E,
(T )
· , 1〉 it is true, that for every element

x ∈ E the left inverse element −1x coincides with the right inverse element

x−1: −1x = x−1. Also we know that a left Bol loop 〈E,
(T )
· , 1〉 is a left

IP -loop, i.e.
−1x · (x · y) = x ·

((
−1x

)
· y

)
= y. (14)

Let us do a replacement:

{
y−1 = u
y · x = v

−→ x = y−1 · (y · x) = u · v.

Then (13) may be rewritten as: ∀u, v ∈ E

tu·vtu−1tu·v = t(u·v)·v. (15)

Valid (14) we obtain ∀x, y ∈ E:

y = x ·
(
x−1 · y

)
,

x\y = x−1 · y,

t̂−1
x (y) = t̂x−1 (y) ,

t−1
x = tx−1 .
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By virtue of the last equality we obtain from (15): ∀u, v ∈ E

tu·vt
−1
u tu·v = t(u·v)·v,

t−1
u·vtut−1

u·v = t−1
(u·v)·v,

t−1
u·vtu = t−1

(u·v)·vtu·v,

t−1
u·vtutv = t−1

(u·v)·vtu·vtv,

αu,v = αu·v,v,

i.e. operation 〈E,
(T )
· , 1〉 is a gyrogroup.

Lemma 10. Let T = {tx}x∈E be a left transversal in G to H and

〈E,
(T )
· , 1〉 be the transversal operation. Then the following statements

are equivalent:

1. The system 〈E,
(T )
· , 1〉 is a gyrogroup;

2. T is a two-sided transversal in G to H and two following conditions
hold:

(a) ∀x ∈ E: txTtx ⊆ T ;

(b) ∀h ∈ LI(〈E,
(T )
· , 1〉): hTh−1 ⊆ T .

Proof. The proof is an evident corollary of Lemmas 7 and 9.

Remark 3. Since a left Bol loop is a loop then the transversal T from
Lemmas 9 and 10 is a loop transversal.

Lemma 11. [15] In every gyrogroup 〈E, ·, 1〉 the following properties are
fulfilled:

1. ∀a ∈ E there exists the unique element a−1 ∈ E such that a·a−1 =
a−1 · a = 1;

2. αa,a−1 = αa−1,a = αa,a = id;

3. ∀a, b ∈ E:

αa,b (z) = (a · b)−1 · (a · (b · z)) ,

α−1
a,b (z) = b−1 ·

(
a−1 · ((a · b) · z)

)
.

4. αa,b

(
b−1 · a−1

)
= (a · b)−1;
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5. α−1
a,b = αa−1,a·b = αb,a·b = αb,a;

6. αa,b = αa·b,a−1 = αa,b·a;

7. (a · b) · c = a · (b · αb,a (c));

8. The solution of the equation x · a = b is: x = b · (αb,a (a))−1 =
b · α−1

a,b

(
a−1

)
.

Proof. 1). Since a gyrogroup is a left Bol loop then in virtue Lemma 5,
item 2) it is true that −1x = x−1, so

x · x−1 = x−1 · x = 1.

2). In virtue Lemma 5, items 1) and 2) for a left Bol loop it is true
that

x−1 · (x · z) = x ·
(
x−1 · z

)
= z ∀x, z ∈ E.

Therefore

αa,a−1 (z) =
(
a · a−1

)
\

(
a ·

(
a−1 · z

))
= a ·

(
a−1 · z

)
= z,

i.e. αa,a−1 = id. Similarly, αa−1,a = id. Further we have in virtue Lemma
5, item 3)

αa,a (z) = (a · a) \ (a · (a · z)) == (a · a) \ ((a · a) · z) = z,

i.e. αa,a = id.
3). By the definition 6

a · (b · z) = (a · b) · αa,b (z) ,

so in virtue Lemma 5, item 3) we have

αa,b (z) = (a · b)−1 · (a · (b · z)) . (16)

Making the replacement z = α−1
a,b (u), we obtain from (12):

u = (a · b)−1 · (a · (b · α−1
a,b (u) )), (17)

and again using Lemma 5, item 3) we obtain:

α−1
a,b (u) = b−1 · (a−1·((a · b) · u)).

4). Using item 3) of present Lemma and Lemma 5, item 3) we obtain:

αa,b

(
b−1 · a−1

)
= (a · b)−1 · (a·(b·(b−1 · a−1))) =

= (a · b)−1 ·
(
a · a−1

)
= (a · b)−1 .
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5). According to item 3) of present Lemma

α−1
a,b (z) = b−1 · (a−1 · ((a · b) · z)). (18)

Let us do a replacement

{
a−1 = c
a · b = d

−→

{
c = a−1

c · d = a−1 · (a · b) = b

Then (18) may be rewritten as

α−1
a,b (z) = (c · d)−1 · (c·(d · z)) = αc,d (z) = αa−1,a·b (z) ,

i.e. α−1
a,b ≡ αa−1,a·b.

Further in virtue Lemma 9 if a transversal T = {tx}x∈E corresponds

to a gyrogroup 〈E, ·, 1〉 = 〈E,
(T )
· , 1〉, then it is true that

txtytx = tx·(y·x), ∀x, y ∈ E.

Then we have

tx·(y·x) = txtytx = txty·xαy,x = tx·(y·x)αx,y·xαy,x.

So we obtain

αx,y·xαy,x = id,

i.e.

α−1
a,b = αb,a·b. (19)

At last since by the Definition 6 for every gyrogroup it is true that

αa,b = αa·b,b,

then from (19) we obtain:

α−1
a·b,b = α−1

a,b = αb,a·b. (20)

Making the replacement
{

a · b = c
b = d

we obtain from (20) ∀c, d ∈ E:

α−1
c,d = αd,c.
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6). We have from item 5) of present Lemma

αa,b = α−1
a−1,a·b

= αa·b,a−1 . (21)

By virtue of the last equality in the item 5) we have

αb, a·b = αb,a,

i.e.
αa,b = αa,b·a.

7). By virtue of items 3) and 5) of present Lemma and Lemma 5,
item 1) we have:

(a · b) · c = a · (b · α−1
a,b (c) ) = a · (b · αb,a (c)) .

8). According to items 1) and 3) of present Lemma and Lemma 5,
item 4) the solution of the equation x · a = b is

x = a−1 ·
(
(a · b) · a−1

)
= b ·

(
b−1 ·

(
a−1 ·

(
(a · b) · a−1

)))
= (22)

= b · α−1
a,b

(
a−1

)
= b · αb,a

(
a−1

)
.

But since
1 = αb,a

(
a−1 · a

)
= αb,a

(
a−1

)
· αb,a (a) , (23)

then we obtain from (22):

x = b · αb,a

(
a−1

)
= b · (αb,a (a))−1 .

It is very interesting to investigate operations, which are inverse ones
to a gyrogroup operation 〈E, ·, 1〉. The left inverse operation coincides
with operation 〈E, ·, 1〉 (because of the left Bol loop 〈E, ·, 1〉 is a LIP -
loop). Let us study the right inverse operation.

We can define the following operations on a set E (see [15]):

a ⊕ b
def
= a · αa,b−1 (b) , (24)

a ¯ b
def
= a ⊕ b−1.

Lemma 12. Let 〈E, ·, 1〉 be a gyrogroup. Then the following statements
are true:

1. a ¯ b = a/b, a ⊕ b = a/b−1, where “/” is a right division in the
gyrogroup 〈E, ·, 1〉,

a · b = a // b−1, where “//” is a right division in a system 〈E,⊕, 1〉;
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2. a ⊕ αa,b (b) = a · b;

3. The system 〈E,⊕, 1〉 is a loop with the unit 1, and ∀x ∈ E the left
and right inverse elements to an element x in 〈E,⊕, 1〉 coincide.
Moreover, both of them are equal to x−1 (where x−1 is an inverse
element to an element x in 〈E, ·, 1〉);

4. (a ⊕ b)−1 = b−1 ⊕ a−1;

5. Aut (〈E,⊕, 1〉) = Aut (〈E, ·, 1〉);

6. The system 〈E,⊕, 1〉 is a middle Bol loop, i.e. the following identity
holds:

x ⊕ ((y ⊕ z) \ \x) = (x //z) ⊕ (y \\x) ,

where “\\” and “//” are left and right division in 〈E,⊕, 1〉, respec-
tively.

Proof. 1). According to (23), (24) and Lemma 11, item 8), we obtain

a ¯ b = a ⊕ b−1 = a · αa,b

(
b−1

)
= a · (αa,b (b))−1 = a/b.

Then

a ⊕ b = a ¯ b−1 = a/b−1.

Further we have

(a · b) ⊕ b−1 = (a · b)/b = a,

i.e.

a · b = a//b−1,

where “//” is a right division in 〈E,⊕, 1〉.

2). From item 1) and (23) it follows that

(a · b) // (αa,b (b)) = (a · b) · (αa,b (b))−1 =

= (a · b) · αa,b

(
b−1

)
= a ·

(
b · b−1

)
= a,

i.e.

a ⊕ αa,b (b) = a · b.

3). In virtue of the item 1) the system 〈E,⊕, 1〉 is an inverse operation
to the loop 〈E, ·, 1〉, therefore it is a quasigroup. Further we have ∀x ∈ E:

1 ⊕ x = 1/x−1 = x,

x ⊕ 1 = x/1−1 = x,
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i.e. 〈E,⊕, 1〉 is a loop. At last,

x ⊕ x−1 = x/
(
x−1

)−1
= x/x = 1,

x−1 ⊕ x = x−1/x−1 = 1.

4). We have ∀a, b ∈ E:

(a ⊕ b)−1 =
(
a/b−1

)−1
, b−1 ⊕ a−1 = b−1/a.

But a = c · b−1 for some c ∈ E, therefore

(a ⊕ b)−1 =
((

c · b−1
)
/b−1

)−1
= c−1 =

(
c−1 · a

)
/a = b−1/a = b−1⊕a−1.

5). According to the item 1), we have

a ⊕ b = a/b−1, a · b = a//b−1.

Then every automorphism α of the operation 〈E, ·, 1〉 will be an automor-
phism of the inverse operation 〈E, /〉, and so α will be an automorphism
of the operation 〈E,⊕, 1〉; and vice versa.

6). It is an evident corollary of Lemma 6, item 3).

Let us note also the folowing identities

(x//y)−1 = z−1\\x−1, (x\\y)−1 = y−1//x−1.

5. Gyrocommutative gyrogroups

Lemma 13. Let T = {tx}x∈E be a left transversal in G to H such that

the transversal operation 〈E,
(T )
· , 1〉 is a gyrogroup. Then the following

statements are equivalent:

1. 〈E,
(T )
· , 1〉 is a gyrocommutative gyrogroup;

2. ∀x, y ∈ E : (x · y) · (x · y) = x · (y · (y · x)) , - the Bruck identity;

3. ∀x, y ∈ E : txt2ytx = t2x·y;

4. ∀x, y ∈ E : (x · y)−1 = x−1 · y−1, - automorphic inverse
property.
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Proof. Let the conditions of Lemma hold; then 〈E,
(T )
· , 1〉 is a left Bol

loop.

1) −→ 2). Let 〈E,
(T )
· , 1〉 is a gyrocommutative gyrogroup. Then by

the definition 8 ∀x, y ∈ E:

x · y = αx,y (y · x) .

Then by the definition 6 of the automorphism αx,y and in virtue Lemma
5 we have:

x · y = (x · y)−1 · (x · (y · (y · x))) ,

(x · y) · (x · y) = x · (y · (y · x)) .

2) −→ 3). Let the following identity holds ∀x, y ∈ E:

(x · y) · (x · y) = x · (y · (y · x)) .

Then in virtue Lemmas 5 and 9 we have ∀x, y ∈ E:

txt2ytx = txty·ytx = tx·((y·y)·x) = tx·(y·(y·x)) = t(x·y)·(x·y)=t2x·y.

3) −→ 4). Let ∀x, y ∈ E

txt2ytx = t2x·y.

Then in virtue Lemma 5 we have:

txtytytx = tx·ytx·y,

lx,y = t−1
x·ytxty = tx·yt

−1
x t−1

y ,

l̂x,y(1) = t̂x·y t̂
−1
x t̂−1

y (1),

1 = (x · y) ·
(
x−1 · y−1

)
,

(x · y)−1 = x−1 · y−1.

4) −→ 1). Let ∀x, y ∈ E:

(x · y)−1 = x−1 · y−1.

Then in virtue Lemma 11, item 4) we have

(x · y)−1 = αx·y

(
y−1 · x−1

)
= αx,y((y · x)−1).

Then we obtain

1 = αx,y (1) = αx,y((y · x) · (y · x)−1) =

= αx,y (y · x) · αx,y((y · x)−1) = αx,y (y · x) · (x · y)−1 ,
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i.e.

αx,y (y · x) = x · y,

and the system 〈E,
(T )
· , 1〉 is a gyrocommutative gyrogroup.

Lemma 14. Let T = {tx}x∈E is a left transversal in G to H and

〈E,
(T )
· , 1〉 is a transversal operation. Then the following statements are

equivalent:

1. 〈E,
(T )
· , 1〉 is a gyrocommutative gyrogroup;

2. T is a two-sided transversal in G to H and the following three con-
ditions hold:

(a) ∀x ∈ E : txTtx ⊆ T ;

(b) ∀h ∈ LI (〈E,
(T )
· , 1〉): hTh−1 ⊆ T ;

(c) ∀x ∈ E : txt2ytx = t2x·y.

Proof. The proof is an evident corollary from Lemmas 10 and 13.

Lemma 15. If 〈E,
(T )
· , 1〉 is a gyrocommutative gyrogroup then the opera-

tion “⊕” (determined in (24)) satisfies the following properties: ∀x, y ∈
E

1. x ⊕ y = y ⊕ x;

2. x//y = y\\x.

Proof. 1). According Lemma 12 we have

x ⊕ y = x/y−1,

so it is necessary to prove that ∀x, y ∈ E

x/y−1 = y/x−1.

But since 〈E,
(T )
· , 1〉 is a loop then x = z · y−1 for some z ∈ E. In virtue

Lemma 13 we obtain

(
x/y−1

)
· x−1 =

((
z · y−1

)
/y−1

)
·
(
z · y−1

)−1
= z ·

(
z−1 · y

)
= y,

as it was required.
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2). According Lemma 12 we have

x//y = x · y−1,

then we obtain

y\\x =
(
x−1//y−1

)−1
=

(
x−1 · y

)−1
= x · y−1 = x//y.

6. Semidirect products of gyrogroups, left gyrogroups and

suitable groups

Let us remind a definition of a semidirect product of a left loop 〈E, ·, 1〉
and a suitable permutation group H (see [11, 12]).

Definition 12. Let 〈E, ·, 1〉 be a left loop with two-sided unit 1, and H
be a subgroup of the permutation group St1 (SE) such that the following
conditions are fulfilled:

1. ∀a, b ∈ E: la,b = L−1
a·bLaLb ∈ H;

2. ∀a ∈ E and ∀h ∈ H: ϕ (a, h) = L−1
h(a)hLah

−1 ∈ H,

where La (x) = a · x is a left translation by an element a ∈ E. Then
on a set E × H of pairs (u, h) it is possible to define an operation:

(u, h1) ∗ (v, h2)
def
=

(
u · h1 (v) , la,h1(v)ϕ (v, h1)h1h2

)
, (25)

and an action on the set E:

(u, h) (x)
def
= u · h (x) . (26)

It is possible to show (see [11, 12]) that:

1. A system G = 〈E×H, ∗, (1, id)〉 is a group (a semidirect product
of the left loop 〈E, ·, 1〉 and the group H);

2. It is true that (u, h)−1 = (h−1 (u\1) ,(LuhL
h−1(u\1)

)−1);

3. A set T = { (u, id) |u ∈ E} is a left transversal in the group G
to its subgroup H∗ = { (1, h) |h ∈ H} ∼= H, and the transversal

operation 〈E,
(T )
· , 1〉 coincides with the operation 〈E, ·, 1〉.
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The following special case of the above-described construction will be
important for us: when the left loop 〈E, ·, 1〉 is a left special loop (left
Al-loop), that is

LI (〈E, ·, 1〉) ⊆ H ⊆ Aut (〈E, ·, 1〉) . (27)

The formula (25) of the semidirect product may be rewritten as

(u, h1) ∗ (v, h2)
def
=

(
u · h1 (v) ,la,h1(v)h1h2

)
. (28)

Then all above-mentioned properties are correct and the following formula
holds:

(u, h)−1 =
(
h−1 (u\1) ,(LuLu\1h)−1

)
. (29)

Remark 4. The formula (27) coincides with the formula of a gyrosemidi-
rect product of a left gyrogroup and its gyroautomorphism group (see
[4, 14]).

Lemma 16. Every left gyrogroup 〈E, ·, 1〉 may be represented as a weak
gyrotransversal in the group 〈E × H, ∗, (1, id)〉 to a subgroup H, if H
satisfies the conditions of the Definition 12.

Proof. The proof obviously follows from Lemma 7 and above-mentioned
properties of the semidirect product.

Corollary 12. Every left gyrogroup 〈E, ·, 1〉 may be represented as a weak
gyrotransversal in the group 〈E × H, ∗, (1, id)〉 to a subgroup H0, which
satisfies the condition (27) (and semidirect product is defined under the
formula (28)).

Lemma 17. Every gyrogroup 〈E, ·, 1〉 may be represented as a gyro-
transversal in the group G = 〈E × H, ∗, (1, id)〉 to its gyroautomorphism
group H0 (i.e. H0 satisfies the condition (27)).

Proof. (See also [4]) According the Corollary 12 a set T = { (a, id) |a ∈ E}
is a weak gyrotransversal in G to H0. Since 〈E, ·, 1〉 is a gyrogroup then
in virtue Lemma 9 〈E, ·, 1〉 is a left Bol loop; therefore it satisfies the left
inverse property, i.e. ∀u ∈ E

LuLu\1 = id. (30)

Then in virtue of (29)

(u, id)−1 = (u\1, id) =
(
u−1, id

)
,
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i.e. T−1 = T.
Further ∀u ∈ E and ∀h ∈ H0 in virtue of the formula (28)

(1, h) ∗ (u, id) ∗
(
1, h−1

)
= (1, h) ∗

(
u, lu,1h

−1
)

=

= (1, h) ∗
(
u, h−1

)
=

(
h (u) , l1,h(u)hh−1

)
= (h (u) , id) ,

i.e. ∀u ∈ E and ∀h ∈ H0

(1, h) ∗ T ∗ (1, h)−1 = T.

It means that T is a gyrotransversal in G to H0.

Remark 5. A left gyrogroup may not be represented as a gyrotransversal
in the group G = 〈E×H, ∗, (1, id)〉 to its gyroautomorphism group (since
in a left gyrogroup, not being a gyrogroup, it is not necessarily satisfied
the condition (30)).

Lemma 18. A left gyrogroup 〈E, ·, 1〉 may be represented as a gyro-
transversal in the group G = 〈E × H, ∗, (1, id)〉 to a group H0, which
satisfies the condition (27) ⇔ 〈E, ·, 1〉 is a LIP -loop.

Proof. The proof is evident, because a left gyrogroup 〈E, ·, 1〉 is always a
weak gyrotransversal in the group G = 〈E×H, ∗, (1, id)〉 to the subgroup
H0 (see a Corollary 12), and the condition (30) is equivalent to a definition
of LIP -loop.

7. Generalized diagonal transversals

Definition 13. Let K be a group, G be a semidirect product

G = K h Inn (K) ,

where
Inn (K) =

{
αn|αn (x) = kxk−1, k, x ∈ K

}

is a group of internal automorphisms of the group K. Then a generalized
diagonal transversal Dm of degree m is a set

Dm = {(k, αm
k ) |k ∈ K}. (31)

We shall denote
Dm (K) = (k, αm

k ) . (32)

A diagonal transversals, which were investigated in [4, 5, 6, 3], are
obtained in a case when m = 1.
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Lemma 19. The generalized diagonal transversal Dm of degree m is a
gyrotransversal in G to H = Inn(K).

Proof. For every element (k, αh) ∈ G (where k, h ∈ K) we have:

(k, αh) = (k, αm
k ) · (1, αk−mh) ,

and this decomposition is an unique one. It means that the set Dm is a
left transversal in G to H.

Further we have:

(Dm (k))−1 = (k, αm
k )−1 =

(
α−m

k

(
k−1

)
, α−m

k

)
= Dm

(
k−1

)
,

i.e. (Dm)−1 ≡ Dm.
Also we obtain:

(1, αh)Dm (k) (1, αh)−1 = (1, αh) (k, αm
k ) (1, αh−1) =

= (1, αh) (k, αkmh−1) = (αh (k) ,αhkmh−1) =

=
(
αh (k) ,ααh(km)

)
=

(
αh (k) ,α(αh(k))m

)
=

= (αh (k) ,αm
αh(k)) = Dm (αh (k)) .

According to Definition 5, item 2) the set Dm is a gyrotransversal.

Let us study the transversal operation 〈E,
(Dm)
· , 1〉. We have:

Dm (k1)Dm (k2) = (k1, α
m
k1

)(k2, α
m
k2

) =

= (k1α
m
k1

(k2) ,αm
k1αm

k1
(k2)) · (1, α(k1αm

k1
(k2))−mkm

1 km
2

) =

= Dm(k1α
m
k1

(k2) ) · (1, αkm
1 (k1k2)−mkm

2
),

because of

(k1α
m
k1

(k2)
−m km

1 km
2 )−mkm

1 km
2 =

(
km

1 k−1
2 k−1

1 k−m
1

)m
km

1 km
2 =

=
(
km

1 k−1
2 k−1

1 k−m
1

) (
km

1 k−1
2 k−1

1 k−m
1

)
· ... ·

(
km

1 k−1
2 k−1

1 k−m
1

)

︸ ︷︷ ︸

m

· km
1 km

2 =

= km
1

(
k−1

2 k−1
1

)m
km

2 = km
1 (k1k2)

−m km
2 .

It means that

k1
(Dm)
· k2 = k1α

m
k1

(k2) (33)

and

lk1,k2 = (1, αkm
1 (k1k2)−mkm

2
). (34)
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Lemma 20. A left gyrogroup 〈E,
(Dm)
· , 1〉 is a group ⇔ the following

identity
(ab)m = bmam ∀a, b ∈ K/Z (K) . (35)

is fulfilled in a factor-group K/Z (K).

Proof. According to the formula (34), the left gyrogroup 〈E,
(Dm)
· , 1〉 is a

group if and only if when

αkm
1 (k1k2)−mkm

2
= id ∀k1, k2 ∈ K.

It is equivalent to a fact that ∀a, b ∈ K/Z (K) it is true that

am (ab)−m bm = 1,

(ab)−m = a−mb−m,
(
b−1a−1

)m
=

(
a−1

)m (
b−1

)m
,

(cd)m = dmcm ∀c, d ∈ K/Z (K) .

Lemma 21. The left gyrogroup 〈E,
(Dm)
· , 1〉 is a gyrogroup ⇔ the follow-

ing identity

b2mam =
(
a−mb am+1b

)m
∀a, b ∈ K/Z (K) (36)

is fulfilled in the factor-group K/Z(K).

Proof. According to the formula (36), the left gyrogroup 〈E,
(Dm)
· , 1〉 is a

gyrogroup if and only if when

l
a
(Dm)

· b,b
= la,b,

α
(a

(Dm)
· b)m((a

(Dm)
· b)b)−mbm

= αam(ab)−mbm ,

α(aamba−m)m(aamba−mb)−m
bm = αam(ab)−mbm .

It is equivalent to a fact that in the factor-group K/Z (K) it is true that

(
am+1ba−m

)m (
am+1ba−mb

)−m
bm = am (ab)−m bm,

(
amaba−m

)
·
(
amaba−m

)
· ... ·

(
amaba−m

)
·
(
am+1ba−mb

)−m
= am (ab)−m ,

(ab)m a−m
(
am+1b a−mb

)−m
= (ab)−m ,

a−m
(
am+1 b a−mb

)−m
= (ab)−2m ,

(ab)2m =
(
am+1b a−mb

)m
am.
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Let us replace: c = ab, d = a−1; then

c2m =
(
d−m−1dc dmdc

)m
d−m,

c2mdm =
(
d−mc dm+1c

)m
∀c, d ∈ K/Z (K) .

Remark 6. If m = 1 then we obtain the results from [4].
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