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ABSTRACT. Various versions of the prediction principle called
the “Black Box” are known. One of the strongest versions can
be found in [EM]. There it is formulated and proven in a model
theoretic way. In order to apply it to specific algebraic problems
it thus has to be transformed into the desired algebraic setting.
This requires intimate knowledge on model theory which often pre-
vents algebraists to use this powerful tool. Hence we here want to
present algebraic versions of this “Strong Black Box” in order to
demonstrate that the proofs are straightforward and that it is easy
enough to change the setting without causing major changes in the
relevant proofs. This shall be done by considering three different
applications where the obtained results are actually known.

Introduction

The aim of this paper is to investigate and apply a well-known prediction
principle due to Saharon Shelah. It can be found in [EM, Chapter XIII]
where it is formulated and proven in a model theoretic way.

However, many known applications are in an algebraic context and
thus it seems natural to transfer everything into the corresponding set-
ting. An algebraic version of this principle, which we call “Strong Black
Box”, has the advantage of immediate application. Moreover, the here
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presented proofs are given in an algebraic setting and use only basic
knowledge of set theory. Therefore it is relatively easy to adjust a given
Strong Black Box to a different situation. To emphasize this we here
present three versions and its applications. This shall be done in three
independent sections: In the first section we demonstrate how to real-
ize endomorphism rings. In Section 2 we construct E-rings, respectively
E(R)-algebras, and in Section 3 we show the existence of a cotorsion-free
module G with the additional property that, for any submodule H of G,
if G/H is cotorsion-free then H = G or |H| < |G]; such a module G is
called wultra-cotorsion-free. Note, the reader who is only interested in one
of the applications can go straight to the favorite section; it will be clear
if something from before is needed.

We need to mention that the obtained results in all these applications
are actually known. The classical proofs, however, are much more com-
plicated due to the fact that they are based on the “General Black Box”.
We want to use the name “General Black Box” for the Black Box principle
as, for example, given in [S] or [CG| to distinguish between this principle
and the one presented here. Both principles hold in ordinary set theory,
ZFC, but are inspired by the diamond principle due to R. Jensen which
holds in the constructible universe (V=L). While the Strong Black Box
provides predictions on particular successor cardinals the General Black
Box includes more general cardinals, even some singular ones. On the
other hand, the Strong Black Box is less complicated and its applications
more straightforward. This advantage is due to the fact that the predic-
tion principle is sharper, i.e. the disjointness condition is stronger, and
hence less algebra is needed.

The reader who is familiar with constructions using the General Black
Box will appreciate the achieved simplifications.

For unexplained terminology we refer the reader to [EM].

§1. Realizing endomorphism rings

Throughout this first section let R be a commutative ring with 1 and
let S be a countable multiplicatively closed subset of R containing no
units except 1 such that R is S-reduced and S-torsion-free. Recall, an
R-module M is said to be S-reduced if it satisfies (),cgsM = 0; M is
S-torsion-free if sm =0 (s € S,m € M) implies m = 0. Note that,
in general, we shall skip the prefix “S-” and use the notions torsion-free,
reduced, pure etc. instead of S-torsion-free, S-reduced, S-pure where M
is said to be (S-) pure in N (notation: M C, N) if sM = M N sN holds
for all s € S. Hence, in this case, the S-adic topology on M is induced
by the S-adic topology on V.
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To describe the S-adic topology with a descending chain of submod-
ules we fix an enumeration S = {s,|n < w} of S with so = 1 and define
a divisor chain (g )n<w by ¢n = S0 - ... Sp. Then the S-adic topology of
any R-module M has {g,M|n < w} as a basis of neighbourhoods of zero.

Let R denote the completion of R in the S-adic topology. We shall
assume that R satisfies HomR(ﬁ, R) = 0, that is to say R is S-cotorsion-
free. In general, an R-module M is said to be (S—) cotorsion-free if M is
(S-)torsion-free, (S-)reduced and satisfies Homp (R, M) = 0. Note, that
the torsion-freeness of M actually follows from HomR(ﬁ, M) = 0 and
in some cases, e.g. for domains R such that the quotient field Q(R) is
countably generated over R, HomR(R\, M) = 0 also implies that M is
reduced.

In this section we show that, given infinite cardinals k, u, A satisfying
k > |R|,pu" = p, A = p* and a cotorsion-free R-algebra A with F C,
AC, F for some free R-module F and |A| < A, there exists a cotorsion-
free R-module G of cardinality A such that EndgG = A. This shall be
done using a suitable version of the Strong Black Box, which is introduced
and proven in the first subsection.

For a proof of this result using the General Black Box we refer to

[CGl.

1.1. The Black Box Theorem

In this subsection we shall formulate and prove the Strong Black Box in
full detail. To do so let R, S, F, A as well as &, 4, A be as above.

We formulate the parameters of the Black Box with respect to a free
R-module B and its completion B. Let F = @Kp Ra. (Cx A,p < A)
and put B := @, yeal Cx P, o) caA = B'. Then, writing e, for
eqts and using that R is commutative, we have B = @( Req ¢

and B = B. For later use we put the lexicographic ordering on A x p;
since A, p are ordinals A x p is well ordered.

For any g = (ga,c€a.e)(a,c)erxp € B C H(a,e)eAXpRea,s we define the
support of g by

LE)EAX P

[9] = {(a, ) € A X plgae # 0}
and the support of M C B by [M] = Ugenr [9]; note [[g]| < Vo for all
g€ B. Moreover, we define the A-support of g by

gy ={a€N3eep:(ae) €lg]} C A
and the A-support of g by

[gla={e€plBaer:(a,e)€lg]} SpC A
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Note, eq,. = eqa. where a. € A, which explains the use of the notion
“ A-support”.
Next we define a norm (A-norm) on A, respectively on B, by

{a}| = a+1

for an ordinal « in A,
[M]|| = sup [[{a}]|
aeM

for a subset M of A and
lgll = IIg]x

for g € E, ie.
lgll = min{ € A|[g], € B}

Note, [g], € Bholdsiff g € By for By = B, 5

A-normof g by ||glla = || [g] 4 ||. For asubset M of B the above definitions
extend naturally, e.g. [M]y =U,cp 9]y ={a € A[Fe € p: (a,¢) € [M]}.

The reader who is only interested in the case A = R, i.e. in realizing
a ring R as endomorphism ring of an R-module, can ignore the “p-”,
respectively the “A-component”, and just work with B = @, Rea
(cf. §2).

To formulate the Black Box we finally need to define canonical homo-
morphisms which shall play a crucial role in the proof of the Black Box.
For this we, once and for all, fix bijections h, : 4 — « for all a with
p < a < X where we put h, = id, (this is possible since A = p and so
|a| = || = p for all such as). For technical reasons we also put ho = hy
for a < p. Note, Imh, = p U« for all o < .

eqA. We also define an

Definition 1.1.1. Let the bijections ho (a0 < X) be as above and put
hae = ho X he : o x p — Imhg X Imh, for all (a,e) € A X p.

We define P to be a canonical summand of B if P = @(a,e)el Req .
for some I C X\ x p with |I| <k such that:

o if (a,e) €1 then (IN(pux p)hae=1NImhg;
o if (a,e) € I then (e,e) € I; and
o if (a,e) € [, € p then (e,0) € 1.

Accordingly, ¢ : P — B is said to be a canonical homomorphism if P is
a canonical summand of B and Ime C P; we put [¢] = [P], [¢], = [P],
and ||¢|| = [ P]|
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Note that, by the above definition, a canonical summand P satisfies
1Pl < [P

Also note, that we are mainly interested in canonical homomorphisms
whose norm is a limit ordinal of cofinality w; hence we introduce the
notation A° := {a < A|cf(a) = w}.

Let € denote the set of all canonical homomorphisms. By assumption,
p = p and thus 2% < g and A® = A (see [J, Ch. I, (6.18)]), which
implies |€| < Asince [{I C X x p||I| < k}| = A¥ and, for a fixed canonical
summand P, ‘HomR(P, ]3)’ < 2. Note, |€| = A then follows from the

Strong Black Box Theorem.
We are now ready to formulate the main theorem of this subsection,
i.e. the desired version of the Strong Black Box:

Strong Black Box Theorem 1.1.2. Let k,pu, A be as before and let
E C X° be a stationary subset of \.

Then there exists a family € of canonical homomorphisms with the
following properties:

(1) If p € € then ||¢| € E.
(2) If v, ¢ are two different elements of € of the same norm a then
e Nleh Il <a.

(3) PREDICTION: For any R-homomorphism ¢ : B — B and for any
subset I of A x p with |I| < k the set

{ac Bl c € : ol = a,0 S, I C[p]}
18 stationary.

To prove the above theorem we need further definitions and other
results. We begin with defining an equivalence relation on € as follows:

Definition 1.1.3. Canonical homomorphisms ¢, ¢’ are said to be equiv-
alent, or of the same type (notation: ¢ = ¢'), if

[l N () =[] N (nx )
and there exists an order-isomorphism f : || — [¢'] such that

(zf)¢' = (zo)f

for all x € domyp where
f: m — m’
1s the unique extension of the R-homomorphism defined by

eoc,&‘f: C(ae) f ((a,a) S [90]) :
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Note, f : [p] — [¢'] is unique since [p], [¢'] are well ordered. Thus, if
¢ =¢ and [p] = [¢'] then f =id and so ¢ = ¢'.

Obviously, any type in (€,=) can be represented by a subset V' of
w1 x p of cardinality at most x, an order-type of a set of cardinality x and
a homomorphism from a free R-module P of rank x into its completion
P. Therefore there are at most w different types (equivalence classes)
since {V C px u||V] <k} = p = u, there are at most 2° < p non-
isomorphic well-orderings on a set of size x and, for a fixed P, we have
Homp/(P, ]3)‘ =27,

Certain infinite sequences of canonical homomorphisms play an im-
portant role:

Definition 1.1.4. Let o9 C o1 C ... C vp C ... (n<w) be an increas-
g sequence of canonical homomorphisms.
Then (pn)n<w is said to be admissible if

[pol N (X 1) = [pn] N (X p) and [lonl| < [lent1ll

for alln < w.

Also, we say that (vn)n<w is admissible for a sequence (8y)n<w of
ordinals in A (or (¢n, Bn)n<w is admissible), if (¢n)n<w @s admissible
satisfying

lonll < Bn < llen+1ll and [pn] = [pnt1] N (Br X Br)

for alln < w.
Moreover, two admissible sequences (¢n)n<w, (@) )n<w are said to be
equivalent, or of the same type, if ¢, = ¢, for alln < w.

Note, if (¢n)n<w is admissible then ¢ = (J,, ., ¢n is an element of €
with [[[| = sup, <., [l¢nll € A°.

Let ¥ denote the set of all possible types of admissible sequences
of canonical homomorphisms. It follows immediately from the above
definition that any type in ¥ can be identified with a sequence (7,,)n<w
for some types 7, in (€, =) where the corresponding subsets of u X p are
all the same. Hence we clearly deduce |T| < pi0 = p.

If (¢n)n<w, respectively (¢n, Bn)n<w, is admissible of type 7, then
we also use the notion 7-admissible. Moreover, if 7 = (7,)n<w € ¥ and
(¢n)n<k (k < w) is a finite increasing sequence of canonical homomor-
phisms satisfying ¢, € 7, and ||¢n| < [¢n+1] for all n < k, then we
shall also speak of (¢p)n<k to be of type 7, keeping in mind that such a
finite sequence could belong to different types in <.

We are now ready to show the following result which will play a
crucial role in proving the Black Box Theorem 1.1.2. Note, that the kind
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of formula we use to formulate this result goes under the generic name
“Svenonius sentences” or “Svenonius game” (cf. [H, p.112]). It should be
noted for the reader who is familiar with game theory that the proof
below uses the Gale-Stewart-Theorem, namely that in a closed (or open)
game some player has a winning strategy.

Proposition 1.1.5. Let ¢y : B — B be an R-homomorphism, I C X X p
a set of cardinality at most k and R = Ry 1 = {p € €lp C 9, I C [p]}.
Then there exists a type T € X such that

Joo € RV = [lpoll - - - Fpn € RYBn 2 [lipnl| -

with (¢n, Bn)n<w being T-admissible.

Proof. Suppose, for contradiction, that the conclusion fails. Then, since
the above formula is of “finite character”we have, for any type 7 € ¥,

Vipo € & 300(7, 00) = llpoll - - - Veon € R 3u(T, @0, -+, n) = [lnl -

with (¢n, Bn)n<w not being T-admissible.
In the following we fix ordinals 3, (7, @o, . . ., ¥n) as above (1 € ¥, p; €
R,i <n <w). Moreover let

To =ax (anp)and By = @ Reg . (o < ).
(B,e)ETx

We define C' to be the set of all ordinals o < A such that B,y C é;
and O, (7, @o, - .., ¢n) < a for each type 7 € ¥ and for any finite sequence
(p0,---,¢n) with ¢; € & and ||p;|| < a (that is, iff [p;] C a x «) for
all i < n. Then C is unbounded since: Given an arbitrary oy < A we
inductively define ordinals ap < A (k < Kt < ) by oy = sup{oy|l < k}
for k a limit ordinal and

apt1 = ap + 1V || By, ¢|| V sup By

where
B = {Bn(7, 00, n)|T € T, 01 € &, [lill < ax}

is a set of cardinality at most u since |T| < p, |[{y € &|||¢|| < ax}| <
lag|™ < p" = p provided that ap < A. Then, using that |[p]| <  for all
© € R, it is easy to see that o = sup{ay|k < KT} is an element of C.
Now we choose an increasing sequence ap < a1 < ... < ap < ... (n <
w) in C with ag > p, ||I|], ||I]| 4 and put a = sup,,,, a,. Note, since oy, €
C for all n < w we also have that Bat) € B,. Moreover, let {enn < w}
be an arbitrary but fixed set of elements of a N p. Using these ay,s and
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ens we inductively define subsets I, of a x (aNp) =T, = [Ba] (n <w)
of cardinality at most k by:

In =TU{(an,en)In < w}

and
Lyy1=1,UL,Ul, " UI,

where

I ={(c,e)[3B € X: (B,e) € I} U{(c. B)[3B € p = (Bse) € I},

L'= | lesevl,

(Be)eln

and

—h a
L' = ((un(ux m) e U Tmhs ) 15l
(ﬂ,€)€ln

These I,s really satisfy the required conditions since: For n = 0 we
have |Io| < k and Iy C T, by ||I]|, [|I]|a < g < a. Next suppose |I,,| < &
and I,, C T,. Then, clearly, |I,4+1] < k; also I,, C T, is obvious, Ew cT,
holds since B,y C é;, Eh C T, follows from the definition of the hg_s,
and so I,+1 C T, as required.

Now we put I" = U,.,In and P = @ g.cr- Repe.  Then
Il <k, I* €T, = ax(anp) and I C I* = [P]. Moreover,
(I*N(pwxp)hge = I* N Imhg, for all (B,e) € I* by the definition
of the T,"s and I* also satisfies: if (B,e) € I* then (g,e) € I* and if
(B,€) € I*, 3 € p then (g, 3) € I (see definition of the I,,s). Therefore P
is a canonical summand of B (see Definition 1.1.1) with Py C P where
the latter follows from the definition of the Ews. Thus ¢ ;== | Pis a
canonical homomorphism with I C I* = [g], i.e. p € R.

Finally, we put ¢, =¢ [ (PN By,), that is [¢n] = [¢] N (an X o).
Using the definitions of the B,,s and of the set C' C Cy it is easy to
check that ¢, € R (n < w) and that then (p,)n<, is an admissible
sequence with ||¢n| < @n < ||@nt1]|. Let 7 € T be the type of (¢n)n<w-
By the definition of C' we also have that (5,(7,¢0,...,¢n) < a, since
lonl| < ap for any n < w. Therefore, ||p,|| < 5, < «a, and hence
[pn] = [0l N (an X an) = [©] N (Br X Br) = [pnt1] N (Br X Br), ie.
(¢ns Bn)n<w is T-admissible, contradicting the assumption that it is not
for B, = Bn(7,¢0,-..,¢n). Hence the original conclusion holds and so
the proof is finished. O
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In order to prove the Strong Black Box Theorem we also need the
following known lemma. We include the proof for the convenience of the
reader; it can also be found in [EM]. First recall that, for an ordinal «,
a mapping 1, : w — « is a ladder on « if it is strictly increasing and
sup Imn, = «; an indexed family of such ladders on different as is called
a ladder system.

Lemma 1.1.6. Let E C \° be a stationary subset of X\ = u™ for some
such that pRo = p.

Then there is a ladder system {n.|a € E} such that, for all cubs C,
the set {a € E[Imn, C C} is stationary.

Proof. For any o € E let {n},|i < u} be an enumeration of all ladders on «
(if necessary with repetition); this is possible since [“a| = |a|™ < pRo = 4
for all < A = u*. Moreover, for each i < pu, let 77; be the ladder system
given by 7, := {n} |a € E}.

We claim that there is an ¢ < g such that 7, satisfies the conclusion
of the theorem. Suppose not. Then, for any ¢ < u, there is a cub
C; C X such that the set T; := {a € E[Imn}, C C;} is not stationary, i.e.
there is a cub D; with T; N D; = (). Replacing C; by the cub C; N D;
we may assume that 7; = @ for any i < p, ie. Imn!, ¢ C; for all
a€ E (i <p). Weput C =), C;. Then Cisalsoacubin A (cf. [EM,
I1, Proposition 4.3]). We choose an ordinal @ € C'N E which is a limit
point of C, i.e. a = sup, ., a, for some a,, € C' N with o, < a1
(a, respectively the s, exist since the set of all limit points of a cub is
also a cub; see [EM, p.35]). Therefore the map 7, : w — « defined by
Na(n) = ay, is a ladder on a with Imn, C C. By the above enumeration
Na = n¢, for some i < p contradicting Imn?, Z C; D C. O

Finally, we prove the main theorem of this subsection.

Proof of the Strong Black Box Theorem 1.1.2. First we decom-
pose the given stationary set E into |T| < p pairwise disjoint station-
ary subsets, say & = |, ¢ Er.

For each 7 € ¥ we choose a ladder system {n,|a € E;} such that the
set {a € E|Imn, C C} is stationary for any cub C (cf. Lemma 1.1.6).

For any o € FE., we define €, C € to be the set of all canonical
homomorphisms ¢ such that ||¢|| = « and ¢ = U, ¥n for some 7-
admissible sequence (g, )n<w With [©n] = [¢] N (a(n) X na(n)) (n < w).
Note, for ¢,¢’ € €, with domp = domy’ (iff [p] = [¢']), we clearly
deduce ¢, = ¢!, for all n < w and so ¢ = ¢’ (cf. Definition 1.1.3).

Now we define €* to be the union of all these €,s, i.e. & = UaeE Ca.

First note that condition (1) obviously holds.
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Next we show that condition (2) is satisfied. To do so let ¢, " € €*
with ||¢|| = ||¢'|| = a. Then ¢,¢" € €, where a € E; for some 7 € T
and s0 ¢ = U, ons ¢ = Upcw 95, for some 7-admissible sequences
(Pn)n<ws (Pn)n<w-

Suppose that || [¢], N [¢'], || = a. Then there are o, € [o], N [¢'],
with sup, ., o, = a; w.lo.g. we may assume a, > p. Let e,,€], € p
such that (an,ep) € [¢] and (ay,e),) € [¢].

We consider two cases.

Firstly assume that p < A, i.e. p < p. Then hq, ¢, = ha, X hy =
Ra,.er (n < w). Since (Pn)n<w, (¢))n<w are of the same type 7 we know
that

[l N (X ) = o] N (1% ) = [6] N (e x ) = [@] N (e x ).

Hence

[p] N (e x p) = [p] N Imha,, e, =
= ([l N (1 % 1)) hae, = ([¢7] N (1% 1)) hay e, =
= [‘Pl] N hnhozn,dL = [90/] N (an X :U’>

for all n < w because domyp, dom¢’ are canonical summands of B. There-
fore,

el = (ln(an x w) = [J ([¢] N (an x ) = [¢].

Secondly assume p = A. Then (ay,en) € [p] implies (ep, o) € [¢] and so
(an, o) € [¢] (see Definition 1.1.1). Similarly, we obtain (ay,, ) € [¢]
and so, as in the first case,

el = | (] N (o x o)) = | ([l N (1 % 1) Py, =

= U ([¢] 0 (0 x ) hanan = | ([¢] N (an x an)) = [¢].

In either case we deduce ¢ = ¢’ and thus (2) is proven.

It remains to show (3). So let ¢ : B — B be an R-homomorphism
and let I C X x p with |I] < k. By Proposition 1.1.5 there is a type 7 €
such that:

Jpo € R VG > HQDOH"'EkPn €ERVG, > H‘PnH

with (¢n, Bn)n<w is T-admissible where 8 = Ry 1 = {¢ € €lp S, I C
[p]}-
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We define a subset C of A as follows: An ordinal a belongs to C' if and
only if v > pi, & = [[pol|, Bath C Ba (recall: Bo = @ g.)er, Repe, Ta =
ax (anp)), and, if (o, Bo, - - -, ©n, Bn) 1s a finite part of one of the above
T-admissible sequences with 3, < «, then there is also ¢,11 € K with
[on+1] € a x a and (@o, Bo, - - - Pns Bn, Pn+1) is T-admissible. Clearly, C
is a cub and therefore the set E. = {a € E;|[Imn, C C} is stationary by
Lemma 1.1.6.

In the following let @ € E. be fixed, i.e. no(n) € C for all
n < w. By the definition of C' we have ||¢o]| < 1a(0) < no(1) and
so there is p; € R with ||p1]] < 7a(1) such that (¢o,74(0),¢1) is 7-
admissible. We proceed like this along n < w, i.e. whenever we have the
T-admissible sequence (¢0,7a(0), ..., ¢¥n,na(n)) with ||| < na(n) <
Na(n + 1) we can find ¢,11 € & with ||pns1| < na(n + 1) such that
(©0,1a(0), ..., Yn,Na(n), ont1) is T-admissible. Therefore we obtain an
infinite 7-admissible sequence (@, N0 (N))n<w, 1.6.  |lonll < Na(n) <
lon+1ll and [@nt+1] N (Ma(n) X Na(n)) = [¢n] (cf. Definition 1.1.4). We
put ¢ = (U, ., ¢n; then

[l = sup |||l = sup na(n) = «
n<w n<w

and

] N (na(n) x na(n)) = ) (ek] N (a(n) x na(n))) = [@a].

k>n

Hence ¢ = {J, o, ¥n € €a C €*. Since o € E. was arbitrary and E. is
stationary the proof is finished. O

We finish this subsection with an “enumerated” version of the Strong
Black Box Theorem 1.1.2, which can then directly be applied in Subsec-
tion 1.2.

Corollary 1.1.7. Let the assumptions be the same as in the Strong Black
Box Theorem 1.1.2.
Then there exists a family (¢3)s<x of canonical homomorphism such

that:
(i) llesll € E for all B < A;

(1) [loyll < ll@sll for ally <6 < X;

(iii) [ {5\ Nlesly Il < llgsll for ally < B < X;
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(iv) PREDICTION: For any homomorphism ¢ : B — B and for any
subset I of A x p with |I| < k the set

{a € B3 < X:|legll = a,03 S, 1 C [pg]}

18 stationary.

Proof. By the Strong Black Box Theorem 1.1.2 there is a class €* of
canonical homomorphisms satisfying the conditions (i) and (iv) which
are obviously independent of the enumeration (cf. conditions (1) and (3)
in Theorem 1.1.2). Moreover, we put an arbitrary well-ordering on the
sets €4 = {¢ € T||¢|| = a} (a € E) and define ¢ € &, to be less than
¢ € €y if a < . This defines a well-ordering on €* and hence there
is a corresponding ordinal A* such that the condition (ii) is satisfied. In
fact, A* = A since |€,] < p for all @ < A and thus all initial segments of
the above defined well-ordering are of cardinality less than .

Condition (iii) also easily follows since || [¢]\N[¢'], || < ||¢']| is obvious
for |||l < ||¢'|| and it coincides with condition (2) in Theorem 1.1.2 for

lell = llell 0

1.2. The Realization Theorem

In this subsection we shall apply the Strong Black Box as given in Corol-
lary 1.1.7 to prove the following theorem.

Theorem 1.2.1. Let R, S, A and k, i1, A be as before.
Then there exists an S-cotorsion-free R-module G of cardinality A such
that
EndrG = A.

Before we can construct the desired module we need the following
lemma, which basically tells us how to obtain the module “step by step”.

Step Lemma 1.2.2. Let P = Ga(a,e)el* Req . for some I* C X\ x p
and let M be an A-module as well as an S-cotorsion-free R-module with
P C, M C, B. Also suppose that there is a set I = {(am,en)|n < w} C
[P] = I* such that ag < a1 < ... < ap < ... and IyN|gly is finite for
allg e M (I = [I], = {an|n < w}).

Moreover, let ¢ :' P — M be such an R-homomorphism which is not
multiplication by an element of A. R

Then there exists an element y of P such that yo ¢ M' := (M,yA).
where «’ denotes the (S-) purification in B and w s identified with its
unique extension ¢ : P— M.

Moreover, M' is again an A-module as well as a S-cotorsion-free R-
module with M C, M' C, B.
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(The element y can be chosen to be either y = x ory = x + mb for
suitable m € R,b € P and for x =) _ @nean.e,-)

Proof. Let the assumptions be as above. Either z = >° _ qneéa,, e, sat-
isfies xp ¢ (M, zA), or not. In the latter case there are k < w and a € A
such that

qrre —xa € M. (+)

Since M C, B is S-torsion-free and ¢ ¢ A we also have that qp ¢ A,
and thus there is an element b of P such that grbp = b(grp) # ba. Hence,
by the cotorsion-freeness of M, there is m € R such that

m(qrbp — ba) ¢ M. (++)
Let z = x + wb and suppose zp € (M, zA),. Then
qzp —za € M

for some | > k,a’ € A. Therefore, using (+), we obtain that

qi
(qzp — zd') — q—k(qk:mp —za) =

= qrp + qrbp — xa' — wba' — qre + Do =
qk
a

=x(=a—ad)+ m(qbp — ba')
dk

is an element of M. Now, [z], = I, while [g(by —ba’)], N I and
r(La—d)+m(abp — ba/) NIy are both finite. Hence Za —a’ =0
and thus it follows from the above that m(qibp— Lba) = Lm(gubp—ba) €

M C, B. Since g—i € S this implies m(gpbp—ba) € M contradlctlng (++).
Therefore either y = or y = 2 satisfies yp ¢ (M,yA), =: M.
Clearly, M’ is also an A-module.

It remains to show that M’ is S-cotorsion-free. Since M’ C, B it is
torsion-free and reduced. To prove Hom(R M) =0let p: R — M’ be

a homomorphism and let & < w such that g(1p) € M + yA, say

(1) = m+ya(m € M,a € A).
Moreover, for any r € ﬁ, let k <k, <w,m, € M,a, € A such that
. (rp) = my + yar.

By the continuity of ¢ we have r¢o = r(1¢) and thus we deduce

0= g, (r¢) = e, 7(1p) = mr +ya, — —=r(m + ya),
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respectively,

kr

my — —rm = y(—ra — a,).

gk gk

Therefore, since [mr — %rm} \ N I, is finite and [y], N I is infinite for

either y = = or y = = + wb, we conclude that both sides of the above
equation equal zero, i.e. a, = q;kr ra and m, = q;k” rm for each r € R.

Hence, by the purity of A in A and of M in B and since qu;: €S, we

have that ra € A and rm € M for all r € ﬁ, which implies a = 0 and
m = 0 by the cotorsion-freeness of A and M. Thus 1 = 0 and so ¢ is
the zero-homomorphism as required. O

We are now ready to construct the desired module.

Construction 1.2.3. Let (¢g)g<x be a family of canonical homomor-
phisms as given by Corollary 1.1.7. For any 3 < A let Pg = domgg, i.e.

We inductively define elements y, € P, and pure R-submodules G”?
of B such that, for all v < 8 < A,

() Myl = 12y [1(= Nl 1D,
(2) G°=(B',y,A(y < B)),, and
(3) GP is S-cotorsion-free.

Recall that B' = @, .\ eaA 2 B (see beginning of Subsection 1.1). Also
note that the GPs are then clearly A-modules.

Let GO = B’ C, B = B’; obviously B’ is S-cotorsion-free since A is,
by assumption, and it also satisfies the conditions (1) and (2) since there
are no relevant y.s.

Next let 8 be a limit ordinal and suppose that G7 satisfies all the
required conditions for any 4 < 5. We put G = U7<B G". Then G®
certainly satisfies (1) and (2). Moreover, G? is clearly torsion-free and re-
duced and so it remains to show Hom(ﬁ, GP) =0. So,let ¢ : R — G be
a homomorphism and let § < 3 such that 1p € G° = (B, y, A(y < 9)),.
Then, for each r € R, we have [r¢] C [1¢] and hence | [rely N yyly Il <
|y || for all v > & (see Corollary 1.1.7(iii)). Therefore rp € G° for all
r e E, respectively, Imy C G2 and thus ¢ = 0, i.e. G? is S-cotorsion-free.

It remains to tackle the successor case. Assume GP is given satisfying
all the conditions.

We consider ¢g. Since ||¢g| € E C \° there are (an,ey,) € [pg] (n <
w) depending on 3, such that ag < a1 < ... < a, < ... and [j¢g| =
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SUP, <, On. We put I = {(an,en)ln < w}. Then || Ix N gl |l < llesll
respectively TN [g], is finite, for all g € G® by (1), (2) and condition (iii)
in Corollary 1.1.7.

We differentiate two cases.

If pg: Pg — F/’g satisfies Impg C GP and s ¢ A, then we apply the
Step Lemma 1.2.2 to I as above, P = P3 C, B C, GPand M =GP C, B.
We deduce the existence of an element y = yg € J/DB and of an A-module

G = (GPysA). = (B, y, A(y < B)),

which is a S-cotorsion-free pure submodule of B such that

ysps & G,
where yg =3, . Gn€an.e, OT Y3 = > e, InCan.e, + 0 (T € R,b € B).
Hence yg satisfies (1) and G+ satisfies (2) and (3).

If Impg ¢ GP or pz € A, then we put yg = Y., __ Gn€a,,, and
GAtl = (Gﬁ,yﬁA)*. Then, also in this case, y3 and Gt satisfy all the
required conditions (cf. Step Lemma 1.2.2).

Finally, we define G by

G=|]J G = (B ysAB < \)).
B

O

It is an immediate consequence from the construction that G is an A-
module of cardinality A which is also an S-cotorsion-free pure submodule
of B. Next we describe the elements of G.

Lemma 1.2.4. Let G be as in Construction 1.2.35.

(a) The set {eq]or < A} U{yg|B < A} is linearly independent over A,
i.e. (B',ygA(B < N)) =B ®Ds.\ypA is a free A-module.

(b) If g € G\ B’ then there are a finite non-empty subset N of X and
k < w such that qrg € B/@®66N ygA and [g]\Nygl, is infinite iff
B € N. In particular, if ||g| is a limit ordinal then ||g|| = ||Ymax N|-

Proof. First we show (a). We already know that {e,|o < A} is a linearly
independent set since B’ = @, .\ eaA is a free A-module by definition.
Now, it follows from Corollary 1.1.7(iii) that || [y,], N [ys], | < llygll,
respectively that [y,], N [ys], is finite, for v < B < A since [yg], C [pg],
and ||yg|| = ||¢gl| for all 8. Moreover, [b], is finite for all b € B’. Therefore
the independence follows from the S-torsion-freeness of A together with
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the fact that ys [ e, = gn for all but finitely many n < w and for

certain ayn, < A, where g [ eq = go for g = (eayga)a<r € B=1 C
[Tocr€aA(ga € A).

It remains to show (b). Solet g € G\B'. Since G = (B', ygA(B < \))«
there is k < w such that qrg € (B, ysA(8 < \)) = B' @ @4, ysA.
Therefore

qrg = b+ Zygag (be B',0#ag e A,0# N C X finite)
BeEN

is a unique expression (for fixed k); in fact, for a k' # k the expression
only differs by an S-multiple, i.e. N is unique. Thus the conclusion
follows from Corollary 1.1.7(iii) since [ys], N [yg], is finite for 3 # ('

and [qrg]y = [g])- O
Using the above lemma we prove further properties of G.
Lemma 1.2.5. Let G be as in Construction 1.2.3 and define G, (a0 < \)
by Go:={g9€G|llgll < a,llglla < a}. Then:
(a) GNPy C GO for all B < \;
(b) {Gala < A} is a A-filtration of G; and
(c) if B< A\ a <X are ordinals such that ||¢s|| = o then G, C GP.

Note, we used the upper index (5 < ) for the construction while we
use the lower index (a < \) for the filtration.

Proof. First we show (a). Let g € GN ]/3; for some 3 < A. Since GO =
B’ C G*! we assume g € G\ B’. Then, by Lemma 1.2.4, qzg € B' @
@D, cn yyA for some finite N C A, k < w such that [g], N [y,], is infinite
for v € N.

Since g € I/DE we also have [g], C [Ps], <: []/3;] /\).

If ||g|| < ||Pgl| then N C B by Corollary 1.1.7(ii) and thus g € G® C
GB+1L

Otherwise, if [lg]l = |Bsll(€ A°) then g = llys. | = [l ]| for 4 =
max N and [g], N [y,.], € [os], N [@4.], is infinite. Hence 8 = 7, by
condition (iii) of Corollary 1.1.7 and so g € G*! as required.

Condition (b) is obvious.

To see (c) let § < A, < XA with ||¢g|| = a and let g € G,o. If
g € B’ we are finished. Otherwise, by Lemma 1.2.4, we have qig €
B & @, enyyA (N C Afinite, b < w) with [g], N [y,], is infinite for
y € N. This mplies [lgs]) = [lg,]] < lgll < @ = sl for all 4 € N
and thus N C 8 by Corollary 1.1.7(ii), i.e. g € G®, which finishes the
proof. O
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Finally, we are ready to prove the main theorem of this subsection,
i.e. the realization theorem.

Proof of Theorem 1.2.1. Let G be the A-module as constructed
in 1.2.3. We already know that G is an S-cotorsion-free R-module of
cardinality A. It remains to show EndrG = A.

Obviously, A C EndgrG. Conversely, suppose there exists i €
EndrG \ A. Let ¥’ = 4 | B, then ¢/ ¢ A since v is uniquely deter-
mined by ¢’ (B C, G C, E)

Let I = {(an,en)|n <w} CAxpsuchthat g < oy <...<ap < ...
and I N[g], is finite for all g € G. Note, the existence of I can be easily
arranged, e.g. let E C A\ a € N\ E, ¢, € p (n < w) arbitrary and
(an)n<w any ladder on a.

By the Step Lemma 1.2.2 there exists an element y of B such that
y ¢ (G,yA), = G'. By the Strong Black Box (Corollary 1.1.7) the set

E'={acE[FB < A: gl = a,058 S S, [y] C [ws]}

is stationary since |[y]] < Ng < k. Note, [y] C [pg] implies y € 1/3;
Moreover, let C' = {a < A\|G4¥ € G4} Then C is a cub since {Gqla <
A} is a Afiltration of G by Lemma 1.2.5(b).

Now let @« € E'NC (# 0). Then Go9 C G, and there exists an
ordinal 8 < X such that ||¢g| = a,pg C ¢ and y € ﬁ/\g The first
property implies G, € G® by Lemma 1.2.5(c) and the latter properties
imply pg ¢ A.

Moreover, Pg C B with ||[Pg|la < ||[Ps|| = « and hence Pg, and so
also (P3)v are contained in G, C G”.

Therefore ¢g : P3 — G? with 3 ¢ A and thus it follows from the
Construction 1.2.3 that ygps ¢ GP*L. On the other hand, it follows from
Lemma 1.2.5(a) that ygps = ysyp € GN 1/3; C GA*! — a contradiction.

So we have shown that no such v exists and this means EndrG = A
as required. O

We would like to mention that one can also show, using standard
arguments, that G is an Ny-free A-module.

We finish this section with pointing out that the constructions and
proofs in this section can be simplified for |A| < k. In this case we may
work directly with B = @, e« A and with P = @ ; ea A as canonical
summand provided |I| < k and (I N p)he = I NImhy (a € I) (cf.
Definition 1.1.1). The definition of the equivalence relation on the set €
of all canonical homomorphisms has to be adjusted: ¢, ¢’ are of the same
type if [¢] N = [¢'] N p and there is an order-isomorphism f : [p] —
[¢] such that (eqa)pf = (eqa)f¢’ = (eqra)y’ for all a € A,a € [¢]
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(see Definition 1.1.3). All other adjustments are obvious (see also §2 for
comparison).

Note, the simplifications we can achieve in this way are due to the
fact that the support function maps into A rather than into A x p. In
fact, for |A| < k, we only need to assume that A is S-cotorsion-free, i.e.

w0

no “p”; respectively “F”, is needed here (see beginning of §1).

§2. Existence of E(R)-Algebras

Throughout this second section let, as before, R be a commutative ring
with 1 and let S be a countable multiplicatively closed subset of R con-
taining no units except 1 such that R is (S-)cotorsion-free. We refer the
reader to §1 for the definition of S-cotorsion-free. Here we additionally
assume that R* is torsion-free (as an abelian group).

Also as before, we fix an enumeration S = {s,|n < w} of S with
so = 1 and define a divisor chain (g, )n<w by @n =80 ... - S, to describe
the S-adic topology of an R-module M by {g,M|n < w} as a basis of
neighbourhoods of zero.

In this section we show that, given infinite cardinals &, u, A satisfying
k > |R|,u" = p,\ = p*, there exists an F(R)-algebra R of cardinality
A which is also an S-cotorsion-free R-module. Recall, an R-algebra A is
an E(R)-algebra if it satisfies Endg(AR) = A. The E(R)-algebra R shall
be constructed in Subsection 2.2 using a suitable, yet another, version of
the Strong Black Box. This desired version will be introduced in the first
subsection.

For a proof of the same result using the General Black Box we refer

to [DMV].

2.1. The Black Box Theorem

In this subsection we shall formulate the needed version of the Strong
Black Box which will only be slightly different to the one given in Sub-
section 1.1. Hence we shall only outline the proofs. Nevertheless, we will
include all necessary definitions and results following the same pattern as
in 1.1.

Let R,S as well as &, i1, A be as above.

As usual, we formulate the parameters of the Black Box with respect
to a free R-module B and its S-adic completion B. In the present case,
however, B is also a ring, namely a polynomial ring over R. Let B =
R[X,|a < A] be the polynomial ring in the commuting variables X, and
let 90T be the set of all monomials including the trivial monomial 1. Then
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For any g = (gmm)meom € BC Hmeimﬁm we define the support of g
by
lg] = {m € Mg # 0}
and the support of M C B by [M] = Ugens lg]; note |[g]] < Ng for all
g e B. Moreover, we define the X -support of g by

9] x = {a € A\| X, occurs in some m € [g]} C .

Next we define a norm, as before, by [{a}|| = a+1 (a € ), [[M|| =
supgens [[{a}| (M € A) and [|gl| = [ {g]x [| (9 € B), i.e. |lgll = min{s €
Al lg]lx € B}. Note, [g]x € B holds if and only if ¢ is an element of Bg
where Bg := R[X,|a < (]. As before, for a subset M of B the above
definitions extend naturally.

Again, we need to say what we mean by a canonical homomorphism.
For this we fix bijections h,, : 4 — «a for all a with p < a < A where we
put h, = id,. For technical reasons we also put h, = h, for a < p.

Definition 2.1.1. Let the bijections hy (v < \) be as above.

We define P to be a canonical subalgebra of B if P = R[X,|a € I
for some I C X\ with |I| < k such that (I Np)he = INImhy for all
acl. R

Accordingly, an R-module homomorphism ¢ : P — B is said to be a
canonical homomorphism if P is a canonical subalgebra of B and Imyp C

P we put [p] = [P, [¢]x = [Plx and |lo]| = || P].

Let € denote the set of all canonical homomorphisms; clearly |€| = A
(as in §1).

We are now ready to formulate the desired version of the Strong Black
Box:

Strong Black Box Theorem 2.1.2. Let k,u, A be as before and let
E C \° be a stationary subset of \.

Then there exists a family € of canonical homomorphisms with the
following properties:

(1) If p € € then ||| € E.

(2) If @, ¢’ are two different elements of €* of the same norm « then
Ielx Nelx I <a.

(3) PREDICTION: For any R-homomorphism ¢ : B — B and for any
subset I of A with |I| < k the set

{ac BBy e @ ol = a,p S, 1 C o}

15 stationary.
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Note that, although the above theorem reads exactly like the Strong
Black Box Theorem in §1, the definition of a canonical homomorphism
is slightly different to Definition 1.1.1. As mentioned before, we will not
give all the details of the proof (again). However, we do state all used
definitions and results, even when they coincide with their counterpart
in §1.

We begin by adjusting the definition of the equivalence relation on €:

/

Definition 2.1.3. Canonical homomorphisms @, " are said to be equiv-

alent, or of the same type (notation: ¢ = ¢'), if

[lx Np=[¢]xNu

and there exists an order-isomorphism f : [p]yx — [¢/] such that

(xf)p' = (zo)f for all x € domp

where o _
f : domp — domey’

1s the unique extension of the R-homomorphism defined by
k kn\ F _ vk kn
(Xho o X ) F = xJo o X p(as. . an € [9]).

Note, f : [¢]lx — [¢]x is unique since [p]y , [¢'] x are well ordered.
Thus, if ¢ = ¢’ and [p]y = [¢']x then f =1id and so ¢ = ¢'.

As in §1 it is easy to see that there are at most p different types
(equivalence classes) in (€, =).

Next we recall the definition of an admissible sequence and of all other
related notions:

Definition 2.1.4. Let o9 C o1 C ... C pp C ... (n < w) be an increas-
ing sequence of canonical homomorphisms.
Then (@n)n<w @s said to be admissible if

[polx N =[enlx N and [[on]l < ll@ntall

for alln < w.

Also, we say that (pn)n<w ts admissible for a sequence (f5,)n<w Of
ordinals in A (or (@n,OBn)n<w 18 admissible), if (on)n<w s admissible
satisfying

lenll < Bn < ll@nt1ll and [pn]x = [pnt1lx O Bn

for alln < w.
Moreover, two admissible sequences (¢n)n<w, (©h)n<w are said to be
equivalent, or of the same type, if ¢, = ¢}, for alln < w.
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Note, if (¢n)n<w is admissible then ¢ = |J ©n is an element of €
with ||| € A°.

Let ¥ denote the set of all possible types of admissible sequences of
canonical homomorphisms; clearly, |Z| < Mo = p.

If (¢n)n<w, respectively (¢n, Bn)n<w, is admissible of type 7, then we
also use the notion 7-admissible. Moreover, if 7 = (7,)n<w € T and
(¢n)n<k (k < w) is a finite increasing sequence of canonical homomor-
phisms satisfying ¢, € 7, and [|¢n| < ||@nt1]| for all n < k, then we
shall also speak of (¢p)n<k to be of type 7, keeping in mind that such a
finite sequence could belong to different types in ¥.

We are now ready to show the following result which is, as before, the
“main ingredient” for the proof of the Strong Black Box Theorem 2.1.2.
Because of this importance we do include a sketch of the proof.

n<w

Proposition 2.1.5. Let ¢y : B — B be an R-homomorphism, I C X\ a
set of cardinality at most k and R = Ry = {p € €l TP, I C [p]y}.
Then there exists a type T € T such that

El(po IS Vﬂo > ||<,00|| .. .Htpn S Vﬁn > HQOnH

with (¢n, Bn)n<w being T-admissible.

Proof. Suppose, for contradiction, that the conclusion fails. Then, since
the above formula is of “finite character”, we have for any type 7 € ¥,

Vo € 8 3Po(7, 00) > |lwoll -+ Von € R IBu(T, 00, .-, 0n) = |lonll -

with (¢n, On)n<w not being T-admissible.

In the following we fix ordinals 3, (7, @o, . . ., ¢n) as above (1 € ¥, p; €
Ri<n<w).

We define C' to be the set of all @ < A such that B,y C é; (recall:
B, = R[X3|8 < a]) and B,(7, @0, ..., ¢n) < a for each type 7 € T and
for any finite sequence (o, ..., ¢n) of elements of 8 with ||¢;|| < o (iff
[¢i] x € a). Then C'is an unbounded set (cf. proof of Proposition 1.1.5).

Now we choose an increasing sequence ag < a; < ... < Qp <...
in C' with ag > p, ||| and put o = sup,,, a,. Note that B,y C B,.
Using these aps we inductively define subsets I, of @ = [By]y (n < w)
of cardinality at most s by:

Iy =TU{ann < w}

and .
In+1 =1, Ul_nw UE

where
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T," = [(R[Xs|5 € L)) ¥,
L = Uper, (a0 ) 1y U (1 mhg) B3,

We put I* = |, ., In and P = R[Xg|3 € I*]. It is easy to check that
P is a canonical subalgebra satisfying ||P|| = o and Py € P. Hence
@ =1 | P is a canonical homomorphism with I C [¢], i.e. ¢ € R.
Finally, we put ¢, = ¢ | (P N B,,). Using the same arguments
as in the proof of Proposition 1.1.5 we deduce that (¢n, On)n<w is & 7-
admissible sequence for some type 7 and for 3, = 5,(7, @0, - -+, ¢n). This
contradiction finishes the proof. O

We have now provided all necessary definitions and results to prove
the main theorem of this subsection. We also use Lemma 1.1.6 again,
which has nothing to do with the special setting and hence it does not
need to be adjusted.

Proof of the Strong Black Box Theorem 2.1.2. Exactly as in the
proof of Theorem 1.1.2, we decompose the given stationary set E into
|T| < p pairwise disjoint stationary subsets, £ = J, .z E;, and, for
each 7 € T, we choose a ladder system {n.|a € E;} such that the set
{a € E;|Imn, C C} is stationary for any cub C' (cf. Lemma 1.1.6).

Also as in 1.1.2, we define €* = | J,cp €a where, for each o € E,
the set €, consists of all canonical homomorphisms ¢ such that ||¢]| = «
and ¢ = J,,., ¥n for some 7-admissible sequence (on)n<w With [on]x =
(0] x N1Na(n) (n < w). Note, for ¢,¢" € €, with domy = domy’ (iff
[plx = [¢']x) we deduce p = ¢'.

Now, condition (1) is obviously satisfied. Condition (2) follows from

lelx = U (Wlx naw) = J (elx ) ha,, =

n<w n<w

U ([@]x i) b, = U ([¢]x Nem) = [¢]
n<w n<w
for p < o, € [p]x N [¢']x With sup, ., an = ||| = [|¢']] (cf. 1.1.2).
Finally, the proof of condition (3) is the same as the corresponding
part of the proof of the Strong Black Box Theorem 1.1.2 using Proposi-
tion 2.1.5 instead of Proposition 1.1.5. O

As in §1 we also present an “enumerated” version of the Strong Black
Box Theorem. For the proof we refer to the proof of Corollary 1.1.7.

Corollary 2.1.6. Let the assumptions be the same as in the Strong Black
Box Theorem 2.1.2.
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Then there exists a family (vg)g<x of canonical homomorphism such
that

(@) llesll € E for all § < X;
(i1) [yl < llpgll for all vy < 5 < A;
(iii) [ [p7]x N leslx I < llppll for ally < 5 < A;

(iv) PREDICTION: For any R-homomorphism 1 : B — B and for any
subset I of X with |I| < k the set

{ae B33 < X:|lpgll =a,08 S, I C [pgly}

18 stationary. ]

2.2. Constructing F(R)-algebras

In this subsection we shall apply the Strong Black Box as given in Corol-
lary 2.1.6 to prove the following theorem:

Theorem 2.2.1. Let R,S and k, i, A be as before.
Then there ezists an E(R)-algebra R of cardinality X which is also an
S-cotorsion-free R-module.

Before we construct the desired E(R)-algebra we need:

Step Lemma 2.2.2. Let P = R[Xqa|a € I*] for some I* C X and let M
be an R-subalgebra ofB with P C, M C, B which is an S-cotorsion-free
R-module and a torsion-free abelian group.

Also suppose that there is a set I = {ap < a1 < ... < ap < ...(n <
w)} CI* = [P]y such that I N [g]y is finite for all g € M.

Moreover, let ¢ : P — M be such an R-homomorphism which is not
multiplication by an element of M.

Then there exists an element y of P such that yo ¢ M’ = (Mly])s
where +«’ denotes the S-purification in B, MT(y] denotes the R-subalgebra
of B generated by M,y and ¢ is identified with its unique extension ¢ :
P— M.

Moreover, M' is again an R-subalgebm/\of B which is also an S-
cotorsion-free R-module with M C, M’ C, B and a torsion-free abelian
group.

(The element y can be chosen to be either y = x ory = x + wb for

some suitable m € R,b € P and forx =) _ q.Xa,.)

__ Note, it is straightforward that the purification of an R-subalgebra of
B is also an R-subalgebra.
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Proof. Let the assumptions be as above. Either 2 = 3 _ ¢, Xq, sat-
isfies zp ¢ (M[z])« or not. In the latter case there are k,n < w,r; €
M (i < n) such that

gerp =Y i, (+)

i<n
Note, since ¢ is not multiplication by an element of M, also qrp ¢ M
since M C, B is S-torsion-free.
We differentiate two cases.
First assume n < 1. By the above P(qry — r1) # 0 and hence there

exists an element b of P such that 0 # b(gxp — 1) = qrbp — br1 € M.
By the cotorsion-freeness of M there is 7 € R with

m(qpbp — br1) ¢ M. (++)

Let z = z + wb and suppose z¢ € (M|z]),. Then there are n’ < w,k <
I <w,t; € M(i <n')such that

qQrp = t,-zi.

Using (+) we obtain that

; qi
ambp = qze — qre = E ti(x + mb)" — q—k(ro + ).
i<n’

Since [b] C [b], [gimby] C [be] and {X} |n < w} C [z¢], respectively
[azi]X = I, we deduce n/ = 1 and t; = Z_;irl by the assumption on I.
Therefore
qmbg@ = to N 3—17‘0 + ﬂ’l°17'l'b
k

dk
and so
ﬂ7r(qkbg0 —rib) =ty — ﬂ7“0 eMC,B (ﬂ €9),
dk qk dk
respectively

m(qrbp —mb) € M

contradicting (++).
Now suppose n > 1 in (+). We may assume that r, # 0 and so
0 # nr, € M by the torsion-freeness of M. Thus there is m# € R with

™nry, & M. (+++)
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Let z=z+m (ie. b=1€ R C P C M) and suppose
qzp = th

for some 0’ < w,k <l <w,t; € M(i <n'). Using () we obtain

QT = qzp — qre =y tiz' — N ria'.

i<n’ U 5=

Comparing the supports again we deduce n’ = n, t,, = q—rn and t,—1 +

tomn = ;11 rn—1 and so
ﬂ7“,171'71 = ﬂrn_l —th_1 €M C, E,
qk qk
respectively
rpmn € M,

contradicting (+ + +).
Therefore, in both cases, either y = z or y = z satisfies yp ¢ M’ =

(MTy))--
The remaining properties of M’ can be shown using support argu-
ments and the assumptions on M (cf. proof of Lemma 1.2.2). O

We are now ready to construct the desired E(R)-algebra.

Construction 2.2.3. Let (¢g)g< be a family of canonical homomor-
phisms as given by Corollary 2.1.6. For any 8 < A let Pg = domypg =
R[Xa|or € [pp] |-

We inductively define elements ., € 15; and R-subalgebras R of B
such that, for all v < 8 < A,

lyyl = 12511 (= lleq D),
RP = (Blyyly < 4)).,,

RP is an S-cotorsion-free R- module, and

1
2

(1)
(2)
(3)
(4)

R? is torsion-free as abelian group.

Let R® = B = R[X.|a < )]; clearly B satisfies (2) and also B =
D.,con Bm C. B is an S-cotorsion-free R-module and a torsion-free
abelian group since R is, by assumption. Note, condition (1) is not rele-
vant in this case.

Next let # be a limit ordinal and suppose that R7 satisfies all the
required conditions for any v < 3. We put R? = U,Y R Then RS
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certainly satisfies (1), (2) and (4). Moreover, it is easy to check that R?
is S-cotorsion-free (cf. Construction 1.2.3).

It remains to tackle the successor case. Suppose R? is given satisfying
all the conditions.

We consider ¢g. Since ||pg|| € A° there are ordinals ag < o <
o< ap < ...(n <w)in [pg]y such that [[pg|| = sup, ., an. We put
I ={ay|n <w}. Then ||[IN[g]y || < [l¢gl, respectively I N{g]y is finite,
for all g € R® by (1), (2) and condition (iii) in Corollary 2.1.6.

We differentiate two cases:

If pg: Pg — ]/3;; satisfies Impg C RP and vg ¢ RP then we apply
the Step Lemma 2.2.2 to I as above, P = Pg and M = RA C, B. We
thus deduce the existence of an element y = yg € f/’; and of a pure
S-cotorsion-free R-submodule R of B with

R = (ROlys]) = (Bly,ly < ).
which is also an R-algebra such that

ysos & RO

and R°t! is a torsion-free abelian group, where Yg = Y pew MmXa, OF
Yg = Y pew InXa, +7b (1 € Rb e Pg). Therefore yg satisfies (1) and
RA*1 satisfies (2), (3) and (4).

If Impg ¢ RP or v5 € RP then we put yz = Y new I Xa, and
RPT = (RP[yg]),. Then, also in this case, yg and RT! satisfy all the
required conditions.

Finally we define R by
R=[J R’ = (Blys|s < N),.
B<A

O

It is an immediate consequence from the construction that R is an
R-subalgebra of cardinality A which is also a pure S-cotorsion-free R-
submodule of B and a torsion-free abelian group.

Next we describe the elements of R.

Lemma 2.2.4. Let R be as in Construction 2.2.3.

(a) The set {yg|B < A} is linearly independent over B.

(b) Ifg € R \ B then there are a finite non-empty subset N of \ and
k < w such that qrg € Blyg|B € N] and [g]x N [ys]y is infinite iff
B € N. In particular, if ||g|| is a limit ordinal then ||g]| = ||Ymax N |-
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Proof. The conclusion of (a) follows from the facts that [yg] - is infinite for
all 3 < Xand [ys] N [yg] y is finite for all § # 3’ (see Corollary 2.1.6(iii)).

To see (b) let g € R\ B. Since R = (Blys|B < A]), there is k < w
such that grg € Blyg|8 < A] and so qrg € Blys|6 € N] for some minimal
subset N C X where N # () is obvious. Using the independence of the ygs
the desired conditions are easily checked (cf. proof of Lemma 1.2.4). O

Using the above lemma we prove further properties of R.

Lemma 2.2.5. Let R be as in Construction 2.2.3 and define Ry (o < \)
by Ro:={g € R||g| < a}. Then:

(a) RN J/DB C RO for all B < \;

(b) R, is an R-subalgebra of R for all a < \;

(c) {Rala < A} is a A-filtration of R; and

(d) if B< A\ a < X are ordinals such that ||ps|| = o then R, C RP.

Note, we used the upper index (5 < A) for the construction while we
use the lower index (a < A) for the filtration.

Proof. The proof of (a), (c) and (d) is similar to the one of Lemma 1.2.5
using Lemma 2.2.4 instead of Lemma 1.2.4. Condition (b) follows from
R = (BLlysllps]l < o)), where B, = RIX3|8+1 < al. o

Finally, we are ready to prove the main theorem of this subsection,
i.e. the existence of an E(R)-algebra.

Proof of Theorem 2.2.1. Let R be the R-algebra as constructed in
2.2.3. We already know that R is an S-cotorsion-free R-module of cardi-
nality A and also that R is torsion-free. It remains to show End R(ER) =
R.

Clearly, R C EndR(RR) Conversely, suppose there exists an R-
module homomorphism ¢ : R — R which is not_multiplication by an
element of R. Let ¢/ = 1 | B. Then ¢’ ¢ R since ¢ is uniquely
determined by ¢/ (B C, R C, B).

Let I ={ap <1 <...<a,<...(n<w)} C Asuchthat I N[g]y
is finite for all g € R. Note, the existence of I can be easily arranged,
e.g. let EGC AN, o€ X\ FE and (an)n<y any ladder on a.

By the Step Lemma 2.2.2 there exists an element y of B such that

Yy ¢ (fé[y]k By the Strong Black Box (Corollary 2.1.6) the set

E'={acE[FB < A: gl =a,05 S S, [y] C [ws]}
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is stationary since |[y]| < 8o < k. Note, [y] C [¢g] implies y € ]/3; where
Pg = domypg. Moreover, let C' = {a < A|Rq%) € Ry}. Then C is a cub
since {Rqla < A} is a Mfiltration of R by Lemma 2.2.5(c).

Now let « € E'NC (# (). Then R,y C R, and there exists an
ordinal B < A such that |pg|| = a,¢3 € 9 and y € I/DE The first
property implies R, C R? by Lemma 2.2.5(d) and the latter properties
imply ¢g ¢ R, especially vp ¢ RP.

Moreover, Pg C B with || P|| = o and hence Pg, and so also (Ps)y
are contained in R, C RP.

Therefore g : Pg — R® with g ¢ Rg and thus it follows from the
Construction 2.2.3 that ygps ¢ R+, On the other hand, it follows from
Lemma 2.2.5(a) that ygpg = ypi € RN 1/3; C RA*! — a contradiction.

So we have shown that no such 9 exists and this means EndR(éR) =
R as required. O

Note, that one could also show, using standard arguments, that Ris
an Ni-free R-module.

§3. Existence of ultra-cotorsion-free modules

Throughout this last section let, again, R be a commutative ring with 1
and let S be a countable multiplicatively closed subset of R containing no
units except 1 such that R is (S-)cotorsion-free, that is, R is torsion-free
and reduced (with respect to S) and satisfies Hompg(R, R) = 0 where
R denotes the S-adic completion of R. Note, cotorsion-freeness for an
arbitrary R-module M is defined in the same way (with Homp(R, M) =
0). Moreover, we fix an enumeration S = {s,|n < w} of S with sy =
1 and define a divisor chain (gn)n<w by ¢n = S0 - ... S to describe
the S-adic topology of an R-module M by {g,M|n < w} as a basis of
neighbourhoods of zero.

In this section we show that, given infinite cardinals &, u, A satisfying
k > |R|,u" = p, A = pt, there exists an ultra-cotorsion-free R-module G
of cardinality A\. We define an R-module M to be ultra-cotorsion-free if M
is S-cotorsion-free and, for any submodule H of M, if M /H is S-cotorsion-
free then H = M or |H| < |M|. In particular, if M is ultra-cotorsion-free
then M has no non-trivial S-cotorsion-free epimorphic images of smaller
cardinality. Note, ultra-cotorsion-free modules have been used in [GSW]
to show the abundance of cotorsion theories (cotorsion pairs).

The desired R-module G shall be constructed using a suitable, yet
again different, version of the Strong Black Box which will be introduced
in the first subsection.
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3.1. The Black Box Theorem

In this subsection we shall formulate and prove the needed version of the
Strong Black Box in full detail. Comparing the here presented version
with the one given in §1 should enable the reader to understand that
the Strong Black Box can be formulated (and proven) in rather differ-
ent settings provided that the cardinalities in question are bounded by
g (number of types), respectively by A (e.g. number of canonical sum-
mands).

Now, let R,S as well as k, u, A be as above. As usual, we formulate
the parameters of the Black Box with respect to a free R-module B and
its S-adic completion B. Let B = DB <> Rea.

For any g = (ga€a)acr € B C [Tocex Re,, we define the support of g
by

l9] = {a € Alga # 0} C A

and the support of a subset M of B by [M] = U,en lg]; note [[g]] < No

for all g € B.

Moreover, we define a norm on \, respectively on B, by [{a}]| = a+1
(@ € A), M|l = supaen [{a}l] (M S A) and |lgl| = [I[g]]] (9 € B),
ie. |g| = min{f € A|[g] € B}. Note, [g] C § holds iff ¢ € By for
Bg = ®a<ﬁ Req. As before, for a subset M of B the above definitions
extend naturally.

We also need to define canonical summands and other “canonical ob-
jects” which shall play a crucial role in the formulation and the proof of
the Strong Black Box. Note, in the here presented version we basically
want to predict kernels of homomorphisms (i.e. submodules, respectively
their elements), not the homomorphisms themselves.

As before, we fix bijections hy : p — « for all o with p < a < A
where we put h, = id,. For technical reasons we also put h, = h, for
a < p.

Definition 3.1.1. Let the bijections hy (o < \) be as above.

We define P to be a canonical summand of B if P = @ ; Req for
some I C X with |I| < k such that (I N p)he = I NImh,, for all o € I.

We call (P,v) a canonical pair if P is a canonical summand of B and
v s a pure element of p.

Moreover, an infinite sequence (Vn)n<w of pure elements 0f§ satisfy-
ing |op| < |vnt1|| (n < w) is said to be a Signac-branch.

A pair (P, (vn)n<w) is called a canonical Signac-pair if P is a canonical
summand of B and (vp)n<y 15 a Signac-branch such that:

e v, € ﬁfor all n < w; and
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o [Pl = supycy [[onl]-

Let B denote the set of all canonical pairs and let € denote the set of
all canonical Signac-pairs. Then it is easy to see that || = |€] = A.

For the application in 3.2 we also need to include further parameters,
namely pr(B) x ﬁ, where pr(B) denotes the set of all pure elements of B.
Note, an element g of B is called pure if g = s¢’ (se€S,¢ € E) implies
s = 1. In order to formulate the Strong Black Box according to our needs
we define “traps” as follows:

Definition 3.1.2. Let (P, (vn)n<w) be a canonical Signac-pair, b a pure
element of B and m € R. Then t = (P, (Un)n<w, b, 7) is said to be a trap
if b € P (especially ||b|| < || P]]). We put [t] = [P] and ||t]| = || P||.

We are now ready to present the desired version of the Strong Black
Box:

Strong Black Box Theorem 3.1.3. Let &, 1, A be as before and let
E C X\° be a stationary subset of .

Then there exists a family € of traps t = (P, (Ven)n<w, b, ) with
the following properties:

(1) Ift € € then |it| € E.

(2) If t, t' are two different elements of € with ||t|| = ||t'|| = « then
1N < o

(3) PREDICTION: For any set U of pure elements of B of cardinality
A, for any pure element b of B and for any m € R the set

{a€eE|Fte : |lt| =a,{vnn <w} CU,b=by,m =m}
18 stationary.

To prove the above theorem we need further definitions and other
results. We begin with an equivalence relation on ‘B.

Definition 3.1.4. Canonical pairs (P,v),(P’,v") are said to be equiva-
lent or of the same type (notation: (P,v) = (P',v")) if

[Plnp=[P]nu
and there exists an order-isomorphism f : [P] — [P'] such that

vf=wv



R. GOBEL, S. L. WALLUTIS 37

where .
f:P— P
1s the unique extension of the R-homomorphism defined by

eaf = oy (0 €[P)).

Note, f : [P] — [P’] is unique since [P], [P’] are well ordered. Thus,
if (P,v) = (P’,v’) and [P] = [P’] then f =1id and so (P,v) = (P',v’).

Obviously, any type in (5,=) can be represented by a subset V of u
of cardinality at most k, an order-type of a set M of cardinality at most
k and a countable sequence (ap,Tn)n<w With oy, € M, 1, € R (which
describes v). Therefore there are at most u* - - k™0 - | R|R0 = y different
types in (B, =).

Next we consider certain infinite sequences of canonical pairs:

Definition 3.1.5. A sequence (P, vp)n<w 0f canonical pairs is said to
be admissible if

PhCcPC...CP,C... (n<uw),

[Po] N = [Pu] O 1 and [Py < o (< [Pl

for each n < w.
Also, we say that (P, vp)n<w is admissible for a sequence (3, )n<y of
ordinals in A, if (P, Un)n<w s admissible such that

[ Poll < Bn <[Pyl and [Py] = [Pry1] N By

for alln < w.
Moreover, two admissible sequences (Pp,vp)n<w, (P, Ul )n<w are said

to be equivalent or of the same type, if (P, v,) = (P}, v),) for alln < w.

Note, if (P, vp)n<w is admissible then (P = Un<w Pn, (vn)n<w) is a
canonical Signac-pair since || P|| = sup,,., [|Pn| = sup, <., [|vnll-

Let ¥ denote the set of all possible types of admissible sequences of
canonical pairs. It follows immediately from the above definition that
any type 7 in ¥ can be represented by 7 = (7, )n<, wWhere the 7,s are
equivalence classes of (8,=) with the same underlying subset V of pu.
Hence we deduce |T| < pMo = p.

If (P, vn)n<w is an admissible sequence of type 7, then we also use the
notion 7-admissible. Moreover, if 7 = (7, )n<w € T and (P, vp)n<k (kK <
w) is a finite increasing sequence of canonical pairs satisfying (P, v,) € 7,
for all n < k, then we shall also speak of (P, v,)n<k to be of type 7,
keeping in mind that such a finite sequence could belong to different
types in %.
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The next result is the key for proving the Strong Black Box Theo-
rem 3.1.3. Note again, that the kind of formula we use to formulate this
result goes under the generic name “Svenonius sentences” (cf. [H, p.112],
also §1).

Proposition 3.1.6. Let U be a set of pure elements 0f§ of cardinality
A, let b be a pure element of B, and let R = Ry, = {(P,v) € Plv € U,b €
P}.

Then there exists a type T € X such that

A(Py,v0) € RYBy > | Pol| - .- 3(Pryvn) € RSBy > || B -
with (Pp, Un)n<w being T-admissible for (Bp)n<w-

Proof. Suppose, for contradiction, that the conclusion fails. Then, for
any 7 € T, we have:

V(Py,vo) € 8 3Po(T, Po,vo) > || Pol| - --

V(Pnavn) Gﬁaﬂn(TaPOaUOa"anvvn) > ”in

with (P, Un)n<w not being 7-admissible for (5,)n<w-

In the following we fix ordinals 3, (7, Py, vo, - . . , Pn,vy) as above (7 €
T, (P,vi) € Ri < n < w). We define C' to be the set of all @ < A
such that G, (1, Py, vo, ..., Pn,v,) < « for each 7 € ¥ and for any finite
sequence (P, v;)i<p, with (P;,v;) € R and || P|| < a (i <n). Then C is
unbounded since, starting with an arbitrary ag < A, one can inductively
define ordinals oy (k < k* < p) such that o = sup{aglk < k*} is an
element of C' (cf. proof of Proposition 1.1.5).

Now, we inductively choose elements v,, of U and ordinals a, in C such
that apg > u, ||b]| and ||vp|| < @n < ||vnt1]| for all n < w; this is possible
since C' is unbounded and |U| = A, so the norms of the elements of U
also form an unbounded set in X. We put a = sup,,, o, = sup,,, ||vn ||
and define subsets I, of a of cardinality at most s by:

Io =BV {anln <w}u | [vn]

n<w

and

L1 =LV | ((In N ) U (I, N Imhﬂ)hgl) .
Beln

We put I* = |J,<, In. Then it is easy to check that P = @ ;- Req

n<w "N
is a canonical summand of B such that b € P, v, € P for all n < w
and ||P|| = [[I*|| = o = sup,,, ||vall, i-e. (P, (vn)n<w) is a canonical
Signac-pair.
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Finally, let P, = PN Ba, (Ba, = @s<q, Rep), e [Pa] = [P]Nay.
Then b € Py (C P,) since ||b]| < ap ([b] € ap) by the definition of C' and
vn € P, for any n < w since |vnll < an ([vn] € ay,) by the choice of the
vps and ays. Hence (P,,v,) € & for all n < w. Moreover, [Py] N p =
[PlNnp=[PlNp(n<w)sincep<ap<a; <...<ap<...(n<w).
Therefore (P, vy )n<w is an admissible sequence, say of type 7 € . By
the definition of C' we also have that || P,|| < B, = Bu(T, Po, ..., Pn) < ay
for any n < w and thus [P,+1]N S, = [Po]NBn = [Pa). Hence (P, vy)n<w
is 7-admissible for (3, )n<w, contradicting the assumption that it is not
for B, = Bun(7, Py, ..., P,). Therefore the original conclusion holds and
so the proof is finished. O

We are now ready to prove the main theorem of this subsection.

Proof of the Strong Black Box Theorem 3.1.3. Let pr(B) be the
set of all pure elements of B and put P = pr(B) x R. Then |P| = \-2F =
A

First we decompose the given stationary set F into |¥| < p pairwise
disjoint stationary subsets, say E = (J ¢ £r. Moreover, for each 7 € %,
we decompose E into |P| = X pairwise disjoint stationary subsets: E, =
UpeP E.,. Note, for p = (b,7) € P and 7 € T, we may assume that
|Ib]] < a for all @ € Ery,.

For each 7 € ¥ and each p € P we choose a ladder system {n,|a €
E. ,} such that the set {a € E; p|Imn, C C'} is stationary for any cub C'
(cf. Lemma 1.1.6).

Let 7€ ¥, p=(b,7) € Pand a € E;,; note ||b]| < a. We define €, to
be the set of all traps ¢ = (P, (v )n<w, b, ) such that ||t|| = || P|| = « and
P = U,<, P for some T-admissible sequence (P, vn)n<w of canonical
pairs with [P,] = [P] N na(n). Note, for t, t' € &, with [¢t] = [t] (iff
P = P’), we clearly deduce t = t’ since by = b = by, m = ® = 7y, and
[Pt,n] = [Pt’,n]7 (Pt,n; Ut,n) = (Pt/,na vt’,n) imply (Rf,na Ut,n) = (Pt’,rw Ut’,n)
for all n < w (cf. Definitions 3.1.2 and 3.1.4).

Now, we define €* to be the union of all these €,s, i.e. &* = UaeE (9

Clearly, condition (1) is satisfied.

To see (2) let ¢, t' € €* with ||¢|| = [|t'|| = «. Thent, ¢’ € €, and thus
t = (P, (vn)n<w, b,m), t' = (P, (V) n<w, b/, @) with b =¥, 7 = 7/, and
(P, (Vn)n<w), (P’ (v))n<w) are of the same type 7 (o € E. 4 r)) where
P = Unews Pa P = Upooy Py [P 00(0) = [Py, [P A7 (n) = [L).

Suppose, for contradiction, that || [t] N [t']|| = a (recall: [t] = [P] and
[t'] = [P']). Then there are o, € [P] N [P'] with sup,, ., o, = a (w.lo.g.
ap, > u). Now, ([P]Np)ha, = [P]Nay, and ([P'|Np)ha, = [P]Nay, since
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P, P" are canonical summands of B (see Definition 3.1.1). Moreover,
[Plnp=[R]np=[F]np=[P]nu
and therefore

(Pl=U (PInaa) = | ([P]new) = [P].

n<w n<w

This implies (P, (vn)n<w) = (P, (v],)n<w) and so property (2) is proven.

It remains to show (3). To do so let U be a set of pure elements of B
of cardinality A and let p = (b,7) € P = pr(B) x R. By Proposition 3.1.6
there is a type 7 € ¥ such that

A(Po,v9) € RYBy > [|Poll ... (P, vpn) € RYGn > || Pl -

with (P, vp)n<w is T-admissible for (5,,)n<w where & = {(P,v) € Blv €
U, be P}.

Let C be the set of all ordinals av < A such that oo > p, a > || Pyl and,
if (Pp,vn)n<k is a finite part of one of the above T-admissible sequences
for (Bn)n<k with B < a, then there is (Pyy1, vg+1) € & with [P,11] C «
and (P, Un)n<k+1 18 T-admissible. Obviously, C' is a cub. Therefore

={a € Erp[lmn, C C} is stationary.

In the following let a € EJ , be fixed, i.e. n4(n) € C for all n < w.
By the definition of C' we have ||P|| < 74(0) < 14(1) and so there is
(P1,v1) € R with || P1|| < 1a(1) such that (P, vy)n<1 is T-admissible for
(1(0),ma(1)). We proceed like this for each n < w, i.e. whenever we have
a sequence (P, vy,)n<) which is 7-admissible for (77&( ))n<k we can find
(Pr1, Vg+1) € R with || Pry1|| < 5a(k + 1) such that (P, vp)n<g+1 is 7-
admissible for (14(n))n<k+1. Therefore we obtain an infinite 7-admissible
sequence (P, Up)n<w With || P]] < na(n) and [Pri1] Nna(n) = [P]. We
put P = Uy, Pa Thert |\P]] = sup, [ Pall = uDcmaln) = a
and [P] N1a(n) = Uisn ([P} 0 na(n)) = [Pn]. Hence (P, (vn)n<w, b, m) €
€y. Since a € E%p was arbitrary and E%p is stationary, the proof is
finished. O

We finish this subsection with an “enumerated” version of the Strong
Black Box. For the proof we refer the reader to the proof of Corol-
lary 1.1.7.

Corollary 3.1.7. Let the assumptions be the same as in the Strong Black
Box Theorem 3.1.5.

Then there exists a family (tg = (P, (v3n)n<w: b3 ®3)) 5 of traps
such that
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(i) |Itgll € E for all B < A;
(i) [ty < [[tgll for all v < B < A;
(i) [ [t5] OV [ts] 1| < il for all v < 5 < A;

(iv) PREDICTION: For any set U of pure elements of B of cardinality
A, for any pure element b of B and for any m € R, the set

{a S EB,@ <A ||t5” = qQ, {vﬁmln < w} CUb= bg,ﬂ = 71—/3}

18 stationary. ]

3.2. Constructing ultra-cotorsion-free modules

In this final subsection we shall apply the Strong Black Box as given in
Corollary 3.1.3 to prove the following theorem:

Theorem 3.2.1. Let R, S and k, u, X\ be as before.
Then there exists an ultra-cotorsion-free R-module G of cardinality .

Before we construct the desired module we show:

Step Lemma 3.2.2. Let M be a pure S-cotorsion-free submodule of
B let b be a pure element of BN M and let m € R. Moreover, let
v = (Un)n<w be a Signac-branch with v, € M for all n < w such that
161l < ol (= $uppcyy 0l and ) fm] A [e] | < [jo] for atlm € M.

Then M' = (M,y =3, _. Gnvn + mb)_ is also S-cotorsion-free.

Proof. Let the assumptions be as above and consider a homomorphism
¢: R — M. Since 1p € M’ there is k < w such that gx(1¢) € M + Ry,
say

ak(lp) =m+ry

for some m € M,r € R. Moreover, for any p € ﬁ, let k <k, <w,m,e€
M,r, € R such that

Gk, (pp) = mp +7py.
Hence, since pp = p(1y¢) by the continuity of ¢, we deduce

dk
0= gk, (pp) = ar,p(1) = mp +7py — q_;:p(m +ry),

respectively



42 STRONG BLACK Box

From g = m, — ?—:pm it follows that g € RM and thus | [g] N [v] || <
||lv]| by the assumption. On the other hand, g = ((Z“—k”pr —7,)y and so
gl N[l = [v]] = |yl unless r, = % pr, ie. g = 0. Therefore

ar
?—:pr =r, € R and qq%”pm = m, € M for all p € R and so, since

%" €S, pre Rand pm € M for all p € R. The cotorsion-freeness of R
and M now implies r = 0, m = 0 and thus 1 = 0, respectively ¢ = 0,

as required. O
We are now ready to construct the desired module.

Construction 3.2.3. Let (i3 = (P, (vgn)n<w, bg, 78)) 5, be a family
of traps as given by Corollary 3.1.7.

We inductively define elements y, € ]/3; and pure submodules G of
B such that, for all v < 3 < A,

(1) yy = 0or flyyll = 1251l (= lIE51D),
(2) G?=(B,y,(y < B)),, and
(3) GP is S-cotorsion-free.

First we put G° = B = DB« Rea; B is clearly a pure S-cotorsion-free
submodule of B satisfying (2). Note, condition (1) is not relevant.

Next let 3 be a limit ordinal and suppose the G7s (v < () are given
satisfying all the required conditions.  We put G# = U7 <3 G7. Then,
obviously, the y,s and G satisfy (1) and (2). Moreover, G” is S-cotorsion-
free since, for a homomorphism ¢ : R —GP , we have 1o € G7 for some
v < (B and [pp] C [lg] for all p € R; thus we obtain Imy C GV by (1),
(2) and condition (iii) in Corollary 3.1.7.

Now, suppose that G? is given satisfying the above properties and let
tg = (P3, (V8n)n<w,bg, mg) be the trap from the above family.

We differentiate two cases.

Ifvg, € G? for all n < w, then we define yg € ]/3\5 by

ys = Z qnVg.n + T3bg

n<w

and put
G = (Gys) = (B (r S B)),.

From the Step Lemma 3.2.2 we know that GP*1 is also a pure S-cotorsion-
free submodule of B. Moreover, yg # 0 satisfies (1) since |yg| =
SUP, <, |[Vg.n | and GP*! satisfies (2) and (3).
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If vgp ¢ GP for some n < w then we do not extend G?, i.e. we put
Gl =GP (ys = 0). Clearly, the above conditions remain satisfied.
Finally, let

G=J 6" =(B. ys(B <)
B<A

Note, that G# # GP*+1 (i.e. y3 # 0) happens “often” since the predic-
tion in Corollary 3.1.7 can, for example, be applied to the set U = pr(B)
of all pure elements of B = G°. O

It is immediate from the construction that |G| = A and that G is a
pure S-cotorsion-free submodule of B.
Next we describe the elements of G.

Lemma 3.2.4. Let G be as in Construction 3.2.35.

(a) The set {eqa|a < A} U{yg|lB < A yg # 0} is linearly independent
(over R), i.e. (B, yg(B < \)) = B®&@gs.\ Ryp is a free R-module.

(b) Ifg € G\B then there are a finite non-empty subset N of A and k <

w such that grg € BO@gen Ryg and || [g]0[ysl | = llysll = lIts]l iff
B € N. In particular, if ||g]| is @ limit ordinal then ||g|| = ||Ymax N]|-

Proof. The conclusion of part (a) follows easily from || [y,] N [yg]| <

llysll = ||tg]| for v < B < A and yg # 0. Part (b) follows from q,g €
B ® @50\ Ryg for some k < w (cf. proofs of the Lemmas 1.2.4 and
2.2.4). O

Using the above lemma we prove further properties of the module G.

Lemma 3.2.5. Let G be as in Construction 3.2.3 and define G, (o < \)
by Go :={g € G|||g|| < a}. Then:

(a) {Gala < A} is a A-filtration of G;
(b) if 3< A\, a <A\ are ordinals such that ||tg| = a then G, C G¥;
(c) if a ¢ E then Got1/Gy is free; and

(d) if « € E and Gay1/Ga # 0 then Gay1/Go contains a non-zero
S-divisible submodule.

Proof. First we show (a). Let a < X\ be arbitrary. Then we clearly have
Go C Gat1. Moreover, |Goz‘ < ‘B;‘ < |Bo¢|NO = (|R’ ) |O‘|)NO < :U’NO =

p < X (recall: B, = @;., Res). It is easy to see that the increasing
chain of the G4s is smooth and that G = Ua<)\ G, holds.
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To see (b) let § < A, o < A with ||tg]| = a and let g € G,. If g € B
we are finished. Otherwise, by Lemma 3.2.4, qrg € B & ®76N Ry, for
some finite N C X and k < w such that [g]N[y,] is infinite iff v € IN. This
implies ||t = |lyy]| < [lg]] < a = ||tg]| for all v € N and thus N C § by
Corollary 3.1.7(ii). Hence g € G? C, G and so (b) is proven.

Next we show (c). Let a < A with @ ¢ E. If «v is a limit ordinal then,
by Corollary 3.1.7(i) and Lemma 3.2.4, there is no element of norm « in
G and s0 Go4+1/Go = 0 in this case.

Ifaa=0+1(0 € )) then |les|| = o and any element ¢ € G with
llgll = a can be written as g = res + ¢ (r € R,¢g" € Gqo). Therefore
Gat1/Ga = (65 + Go) = R in this case. Thus Go41/Gq is free for a ¢ E
as required.

Finally we show (d). To do so let a € E with G, # G4+1. Then there
is an element g € G with ||g|] = a. It hence follows from Lemma 3.2.4
that there exists 3 < A such that yg # 0 and a = |jyg|| (= |/ts]]).
This implies G® # GP*! and hence vg, € G” with |jvg,| < a (see
Construction 3.2.3 and Definition 3.1.1 of a Signac-branch). Therefore
vgn € G for all n < w. We also know that bg € Pg C G,. Thus we

deduce yg = qp <Zk2n g—zv@k + Wén)bg) mod G, for all n < w, where

75 — qumy”) € R. S0 ys + Go is an S-divisible element of Ga+1/Ga. O

Note, that not all of the above properties are of importance in the
here considered context; we included them for completeness.

Finally we are ready to prove the main theorem of this subsection,
i.e. the existence of an ultra-cotorsion-free R-module G.

Proof of Theorem 3.2.1. Let G be the R-module as constructed
in 3.2.3. We already know that |G| = A and that G C, B is S-cotorsion-
free.

It remains to show that G is ultra-cotorsion-free. To do so let H be
a submodule of G and let ¢ : G — G/H be the canonical epimorphism.
Suppose, for contradiction, that 0 # G/H is S-cotorsion-free and |H| =
A (= |G|). Since G/H is S-reduced and G/B C, B/B is S-divisible
H cannot contain B. Therefore, by the S-torsion-freeness of G/H (iff
H C, G), there is a pure element b of B such that b ¢ H(= ker)), i.e.
by # 0. We are going to show that 0 # 7wbyy € G/H for all m € R.
Let U = pr(H) and let 7 € R be arbitrary. Then |U| = A and so, by
Corollary 3.1.7(iv), there exists 8 < A such that {vg,|n < w} C U C
H C G,b=bgand m = mg. Let | Pg|| = o. By the definitions of a Signac-
branch and of a trap we then obtain {vg,|n < w} C G, where G, C G”
by Lemma 3.2.5. Therefore it follows from the Construction 3.2.3 that
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0 # ys (= X pew tVsn +7b) € G and so ygyp € G/H. Identifying v

~

with its unique extension to B and using the continuity of 1 we deduce

Yot = (Z qnvg,n> Yt () = 3 g (vga) +r(bid) = m(by)

n<w n<
w -0

and thus 7(by)) € G/H. Since m € R was arbitrary and b # 0, we
deduce 0 # w(by)) € G/H for all © € R, contradicting the S-cotorsion-
freeness of G/H. Therefore such a submodule H does not exist, i.e. for
G/H to be S-cotorsion-free we need G = H or |H| < A as required, and
so the proof is finished. O

Finally note, that the above R-module can be shown to be Wi-free
using standard arguments (e.g. see [GSW] or [P]).
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