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Abstract. A field F is n-real if −1 is not the sum of n
squares in F . It is shown that a field F is m-real if and only

if rank (AAt) = rank (A) for every n × m matrix A with entries

from F . An n-real field F is n-real closed if every proper algebraic

extension of F is not n-real. It is shown that if a 3-real field F
is 2-real closed, then F is a real closed field. For F a quadratic

extension of the field of rational numbers, the greatest integer n
such that F is n-real is determined.

A field F is formally real if −1 is not a sum of squares in F , or
equivalently if 0 is not a sum of squares in F with non-zero summand. The
study of these fields was initiated by Artin and Schreier, [1]. Many results
on vector spaces over a subfield of the field of real numbers remain valid
if the field of scalars is formally real; e.g. many results on real quadratic
forms. For finite dimensional vector spaces the following weaker condition
often suffices:

Definition. Let n be a positive integer, and let ν = (a1, . . . , an), ω =
(b1, . . . , bn) ∈ Fn. The scalar product ν ·ω = a1b1 + . . .+ anbn. A field F
is n-real if for every non zero-vector ν ∈ Fn the scalar product ν · ν 6= 0.

Clearly every field is 1-real. For n > 1, a field F is n-real if and only
if −1 is not the sum of n− 1 squares, and F is a formally real field if and
only if F is n-real for every positive integer n. If F is n-real then F is
m-real for every m < n.

Example. The field Q(
√
−5) is 2-real but not 3-real.
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Theorem 1. A field F is m-real if and only if for every positive integer n,
and every n×m matrix A with entries from F , the rank r(AAt) = r(A).

Proof. Suppose that F is m-real, and let r(A) = k. Performing a Gram-
Schmidt like process on k linearly independent rows of A, with the scalar
product replacing the inner product, yields orthogonal vectors ν1, ..., νk ∈
Fm . The n×m matrix B with first k rows ν1, ..., νk , and with remain-
ing n − k rows the 0-vector, can be obtained by performing a series of
elementary row operations on A. Therefore there exists an n × n matrix
C with entries from F such that B = CA. The matrix BBt is diagonal
with first k diagonal entries non-zero, and remaining entries 0. Therefore
k = r(BBt) ≤ r(AAt) ≤ r(A) = k, and so r(AAt) = r(A). If F is not
m-real then there exists a non-zero vector ν ∈ Fm such that ν · ν = 0.
For any positive integer n let A be the n × m matrix all of whose rows
are ν. Then r(A) = 1, but r(AAt) = 0.

If every proper algebraic extension of a formally real field F is not
formally real, then F is said to be a real closed field. The obvious parallel
concept for n-real fields is:

Definition. An n-real field F is an n-real closed field if every proper
algebraic extension of F is not n-real.

A simple Zorn’s Lemma argument yields:

Lemma 2. Every n-real field, n > 1, is contained in an n-real closed
field.

Lemma 3. Let F be a 2-real closed field and let a ∈ F . Then either a
or −a is a square in F .

Proof. If a is not a square in F then F (
√

a) is not 2-real, so there exist
b, c ∈ F such that (b + c

√
a)2 = −1, i.e., b2 + c2a + 2bc

√
a = −1. Since√

a /∈ F , and F is 2-real it follows that b = 0, and −a = (c−1)2.

Recall [4], p. 271, that a field F is ordered if there exists a subset P
of F such that F = P

⋃
{0}

⋃
−P is a disjoint union, and a + b, ab ∈ P

for all a, b ∈ P . A well known result of Artin-Schreier is that a field is
formally real if and only if it is ordered.

Corollary 4. Let F be a 2-real closed field. If F is 3-real then F is real
closed.

Proof. Let F be a 2-real closed, 3-real field. It suffices to show that F
is ordered. Let P be the set of non-zero squares in F . It follows from
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Lemma 3 that F = P
⋃{0}⋃−P . If a ∈ P

⋂−P , then there exist non-
zero elements b, c ∈ F such that a = b2 = −c2, and so b2 + c2 = 0, a
contradiction. Therefore the above union is a disjoint union. Let a, b ∈ P .
Clearly ab ∈ P , so it suffices to show that a + b ∈ P . If not, then by
Lemma 3 there exists c ∈ F such that a + b = −c2. Since a, b ∈ P there
exist a1, b1 ∈ F such that a = a2

1, and b = b2
1. Therefore a2

1 + b2
1 + c2 = 0

contradicting the fact that F is 3-real.

If F is a real closed field, and f(x) ∈ F [x] is a polynomial of odd
degree, then f(x) has a root in F ; see [8], p. 226, Theorem 2. An almost
identical argument yields:

Theorem 5. If F is an n-real closed field, n > 1, and f(x) ∈ F [x] is a
polynomial of odd degree, then f(x) has a root in F .

Let F be a field of prime characteristic p. Since 0 is the sum of p
copies of 12 it follows that F is not formally real. The following known
number theory result yields that properties of p determine completely
whether or not F is n-real for every positive integer n.

Proposition 6. Let n be a positive integer.
1) n is the sum of two squares of integers if and only if the prime

decomposition of n has no factor of the form qe, with q a prime satisfying
q ≡ 3 mod 4, and e odd.

2) n is not the sum of three squares of integers if and only if n =
4m(8k + 7), with m, k non-negative integers.

Proof. See [5], p. 110 Corollary 5.14, and [7], p. 45, Theorem (Gauss).

Theorem 7. A field F of prime characteristic p is not 3-real. It is 2-real
if and only if p ≡ 3 mod 4.

Proof. Since 12 + 12 ≡ 0 mod 2 it may be assumed that p is odd. If
p.7 mod 8 then p is the sum of three squares of integers by Proposition
6.2, so F is not 3 - real. If p ≡ 7 mod 8 then 2p ≡ 6 mod 8 so 2p is the
sum of three squares of integers by Proposition 6.2 which yields that F is
not 3-real. The field F is 2-real if and only if −1 is a quadratic nonresidue
mod p, which occurs if and only if p ≡ 3 mod 4.

A well known result of Lagrange is that every positive integer is the
sum of 4 squares of integers. This yields:

Lemma 8. Let F = Q(
√

a), α ∈ Q be a quadratic extension of the field
of rational numbers. If F is not real then F is not 5-real.
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Proof. If F is not real then it may be assumed that α is a negative integer,
[5], Theorem 9.20. Since −α is the sum of 4 squares of integers, it follows
that F is not 5-real.

Definition. Let F be a field which is not formally real. The least positive
integer n such that −1 is the sum of n squares in F was called the Stuffe
of F by Pfister, [6]; it is, of course, the greatest positive integer n such
that F is n-real.

Pfister proved the following:

Proposition 9. Let n be a positive integer. There exists a field with
Stuffe n if and only if n = 2k, with k a non-negative integer.

Proof. See [6], Satz 4 and Satz 5.

Lemma 8 and Proposition 9 yield:

Corollary 10. Let F be a quadratic extension of Q. If F is not real then
the Stuffe of F is either 1, 2, or 4.

Fein, Gordon and Smith proved the following:

Proposition 11. For m a negative square free integer, −1 is the sum of
two squares in Q(

√
m) if and only if m ≡ 2 or 3 mod 4, or m ≡ 5 mod 8.

Proof. [3] Theorem 7.

Since every imaginary quadratic extension of Q is of the form Q(
√

m),
with m a square free negative integer, Corollary 10 and Proposition 11
completely determine the Stuffe of such extensions as follows:

Theorem 12. For m a square free negative integer the Stuffe of Q(
√

m)
is :

1 if m = −1,
2 if m ≡ 2 or 3 mod 4, or if m ≡ 5 mod 8, and
4 otherwise.

Example. The Stuffe of Q(
√
−7) is 4.

If A is a commutative ring and if a, b ∈ A are both the sum of four
squares in A, then an equality of Euler, [5], Lemma 5.3, yields that ab
is the sum of four squares in A. The following generalization of Euler’s
result for fields was proved by Pfister.

Proposition 13. Let F be a field, and let n = 2m, with m a non-negative
integer. If a, b ∈ F are both the sum of n squares in F then ab is the sum
of n squares in F .
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Proof. See [6], Satz 2.

Corollary 14. Let F be a field extension of Q. If F is formally real then
a ∈ F is the sum of four squares in F if and only if a ≥ 0. If F is not
formally real, then the Stuffe of F is ≤ 4 if and only if every rational
number is the sum of four squares in F .

Proof. Every positive integer is the sum of four squares of integers, [5],
Theorem 5.6. If a non-zero element a in a field E is the sum of n squares
in E, then it is readily seen that a−1 is the sum of n squares in E.
Therefore either Euler’s equality, or Proposition 13 yield that every non-
negative rational number is the sum of four squares of rational numbers.
If a negative rational number a is the sum of four squares in F then
−1 = a(1/ |a|) is the sum of four squares and the Stuffe of F is ≤ 4.
Conversely, if the Stuffe of F is ≤ 4 then every rational number is the
sum of four squares in F by Proposition 13.

The following Proposition combines two results of Cassels:

Proposition 15. Let F be a field with characteristic 6= 2, let a ∈ F , and
let x be an indeterminant. Then x2 + a is the sum of n > 1 squares in
F [x] if and only if either −1 or a is the sum of n − 1 squares in F .

Proof. See [2], Theorem 2.

A simple consequence of Proposition 15 is:

Corollary 16. If F is a non-formally real field with characteristic 6= 2,
and with Stuffe n, then every element in F is the sum of n + 1 squares
in F .

Proof. Let a ∈ F . By Proposition 15, there exist

pi(x) ∈ F [x], i = 1, ..., n + 1,

such that x2 + a =
∑

n+1

i=1
pi(x)2, so a =

∑
n+1

i=1
pi(0)2.
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