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On large indecomposable modules, endo-wild

representation type and right pure semisimple

rings

Daniel Simson

Abstract. The existence of large indecomposable right R-
modules over a right artinian ring R is discussed in connection
with the pure semisimplicity problem and the endo-wildness of the
category Mod(R) of right R-modules. Some conjectures and open
problems are presented.

1. Introduction

Throughout we assume that R is an associative ring with an identity
element. We denote by J(R) the Jacobson radical of R, by Mod(R) the
category of all right R-modules and by mod (R) the full subcategory
of Mod(R) formed by finitely generated R-modules. Throughout, K
denotes a field.

Recall that a ring R is said to be of finite representation type if R
is both left and right artinian and the number of the isomorphism classes
of finitely generated indecomposable right (and left) R-modules is finite.
A ring R is said to be right pure semisimple if any of the following
equivalent conditions is satisfied (see [2], [3], [18], [32], [44], [46], [49],
[63], [64])

(P1) Every right R-module is a direct sum of finitely generated modules.

(P2) The right pure global dimension of R is zero.

(P3) Every right R-module is algebraically compact.
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h.94 Large indecomposable modules

(P4) The ring R is right artinian and for any sequence

X1
f1
→ X2 → · · · → Xm

fm
→ Xm+1 → · · ·

of indecomposable modules X1, X2, . . . in mod (R) connected by
non-isomorphisms f1, f2, . . . there exists m > 2 such that

fmfm−1 · · · f2f1 = 0.

It is shown by Auslander [3] that if R is a finite dimensional K-algebra
then R is right pure semisimple if and only if R is of finite representation
type. Moreover, it was shown in [3] that if R is not right pure semisimple
then there exits an indecomposable module in Mod(R) of infinite length.

One of the aims of this note is to discuss a connection between the
right pure semisimplicity of a right artinian ring R and the existence of
an indecomposable R-module Xℵ of cadinality > ℵ, for any arbitrarily
large cardinal number ℵ. We conjecture in Section 2 that if R is right
artinian and R is not right pure semisimple then there exist arbitrarily
large indecomposable R-modules, that is, for each infinite cardinal num-
ber λ, there exists an indecomposable module in Mod(R) of cardinality
> λ (see Conjecture 1∞ and Conjecture 2∞ presented in Section 2 in re-
lation with the Brauer-Thrall conjectures). It follows from Theorem 2.8
that this is the case for a large class of finite dimensional K-algebras R.
In connection to this problems we also discuss the endo-wild representa-
tion type [59] and the endomorphism ring realisation problem studied by
Corner in [8], [9], [10] (see also [21], [22], [59]). We collect in Section 2
several facts related with the existence of large indecomposable modules
and we formulate some open problems on right pure semisimple rings.
In Section 3 the existence of large indecomposable prinjective modules is
discussed. In Section 4 we briefly outline some difficulties in solving the
pure semisimplicity problem in relation to the product conjecture.

2. Large indecomposable modules over non pure

semisimple rings

For the reader’s convenience, we start this section by recalling various
characterisations of right pure semisimple rings.

Theorem 2.1. Let R be a right artinian ring. The following conditions
are equivalent.

(a) R is right pure semisimple.

(b) Every indecomposable right R-module is of finite length.
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(c) Every (algebraically compact) right R-module is a direct sum of
indecomposable modules.

(d) There exists a cardinal number λ such that every (algebraically
compact) right R-module is a direct sum of modules generated by a
set of cardinality at most λ.

(e) There exists a module U in Mod(R) such that every algebraically
compact right R-module is a direct summand of a direct sum of
copies of U .

(f) Every right R-module is a direct sum of modules that are pure-
injective or pure-projective.

(g) Every right R-module is a direct sum of modules that are pure-
injective or countably generated.

Proof. The equivalence of (a) and (b) is proved in [3]. The equivalence of
(a) and (c) is proved in [62, Corollary 2], the equivalence of (a), (c) and
(d) is proved in [23, Proposition 10.7], [47, Theorem 1.9], [48, Theorem
1.3] (see also [24, Theorem 3.4]). Finally, the equivalence of (a) and (e)
follows from [47, Theorem 1.9], but the equivalence of (a), (f) and (g) is
proved in [24, Theorem 3.2].

The following characterisation given by Shelah [41] shows that a ring
R is right pure semisimple if and only if the Kaplansky’s Test Problems
for right R-modules have a positive solution (see also [17, Theorem 6]).

Theorem 2.2. Let R be an associative ring with an identity element.
The following conditions are equivalent.

(a) The ring R is not right pure semisimple.

(b) There is a pair M , N of non-isomorphic right R-modules such that
M is isomorphic to a direct summand of N and N is isomorphic
to a direct summand of M .

(c) There is a pair M , N of non-isomorphic right R-modules such that
the modules M ⊕ M and N ⊕ N are isomorphic.

(d) There exists a right module U in Mod(R) such that, for some r > 2,
Um ∼= Un if and only if m ≡ n(mod r), where U j means the direct
sum of j copies of U .
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At the origin of the recent developments of representation theory of
finite dimensional algebras are the following two conjectures attributed
to Brauer and Thrall.

Conjecture 1. A finite dimensional K-algebra is either representation-
finite, or there exist indecomposable modules with arbitrarily large dimen-
sion.

Conjecture 2. A finite dimensional algebra over an infinite field K is
either representation-finite, or there exists an infinite sequence of num-
bers di ∈ N such that, for each i, there exists an infinite number of
non-isomorphic indecomposable modules of dimension di.

Both of these statements has now be shown to hold true, whenever
the field K is algebraically closed. Moreover, the first one also holds true
for artin algebras (see [2]).

In [2], Auslander has proved a kind of the Conjecture 1 for artinian
rings, by showing that an artinian ring is either of finite representation
type, or there exist finitely generated indecomposable right R-modules
with arbitrarily large length.

In [36, p. 272], Ringel has shown that the obvious generalisation of
the Conjecture 2 for artinian PI rings does not hold. He constructs in [36,
7.5] a hereditary artinian PI ring R such that, for each positive integer
n, the number of indecomposable right R-modules of length n is equal
to 1 or 2. The ring R is of the form

RM =

(
F F MG

0 G

)
, (2.3)

where F , G are isomorphic division rings and F MG is a non-simple F -
G-bimodule such that dimF M = 2 and dimMG = 2. It is easy to see
that the ring RM constructed in [36, 7.5] is not right pure semisimple.

In [54], the author describes a method of construction of a ring of
the form RM such that RM is right pure semisimple (not a PI ring), the
bimodule F MG is simple, dimF M = ∞, dimMG = 1, RM has two non-
isomorphic simple right modules and, for each positive integer n > 2, the
number of indecomposable right RM -modules of length n is equal to 0
or 1.

Since a finite dimensional algebra R is right pure semisimple if and
only if R is of finite representation type, then the Brauer-Thrall conjec-
tures, the results in [6] and the observations above suggest the following
two conjectures.

Conjecture 1∞. A right artinian (or right noetherian) ring R is either
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right pure semisimple or else, for each infinite cardinal λ, there exists an
indecomposable R-module of cardinality > λ.

Conjecture 2∞. A right artinian (or right noetherian) ring R is either
right pure semisimple or else, there exists an infinite sequence λ1 < λ2 <
. . . < λn < . . . of infinite cardinal numbers such that, for each n, the
set of the isomorphism classes of the indecomposable right R-modules of
cardinality λn has the cardinality strictly greater than λn.

Since every indecomposable pure-projective module over any Artin
algebra is of finite length (hence pure-injective), and there is an upper
bound of the cardinalities of indecomposable pure-injective R-modules,
then Conjecture 1∞ for Artin algebras is just the Problem 3.2 in [56] and
can be restated as follows.

Conjecture 3 . Let R be an Artin algebra. If every indecomposable
right R-module is pure-injective then R is of finite representation type.

Remark. In the conjectures 1∞ and 2∞, the assumption that R is ar-
tinian or R is noetherian can not be omitted. Indeed, the conjectures
are not valid for non-noetherian right semi-artinian V -rings R, because
every indecomposable right module over such a ring R is simple injec-
tive, and every indecomposable right R-module is simple injective and
therefore. We recall that R is a V -ring, if every non-zero right R-module
contains a non-zero injective submodule. It was shown by N.V. Dung
and P.F. Smith in [16] that the class of non-noetherian algebras which
are semi-artinian V -rings is rather large.

There is a close connection of the above problems to the wild, fully
wild and endo-wild representation types and to the endomorphism ring
realisation problem studied by Corner in [8], [9], [10] (see also [21],
[22], [59]). In order to describe it, we denote by K〈t1, t2〉 the free asso-
ciative K-algebra of polynomials in two non-commuting indeterminates
t1, t2 with coefficients in K, and by modf K〈t1, t2〉 the category of finite
dimensional right K〈t1, t2〉-modules.

Following [14], [39] and [51] we introduce the following definition.

Definition 2.4. Let K be a field, Λ a K-algebra and let C be an additive
exact full K-subcategory of the module category Mod(Λ). The category
C is defined to be K-Wild (resp. K-wild), if there exists an exact
K-linear functor T : ModK〈t1, t2〉 −→ C (resp. exact K-linear functor
T : modf K〈t1, t2〉 −→ C) which respects the isomorphism classes and
preserves indecomposables.
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If, in addition, the functor T is full, we call C Fully K-Wild and
fully K-wild, respectively.

It follows from Lemma 2.5 below, that C has fully K-wild representa-
tion type if and only if it has strictly K-wild representation type in the
sense [11], see also below.

Remark. Let us warn the reader that we distinguish between the K-
wildness and the wildness. For this purpose, we recall from [11, 8.2]
and [36] that the category mod (R) of finite dimensional right mod-
ules over a finite dimensional K-algebra R is defined to be wild (resp.
strictly wild), if there exist a finite field extension K ′ of K and a faithful
exact additive functor T ′ : modf K ′〈t1, t2〉 −→ mod (R) which respects
isomorphism classes and preserves indecomposables (resp. fully faithful,
exact, additive functor T ′ : modf K ′〈t1, t2〉 −→ mod (R)). In case K
is algebraically closed, K-wildness (resp. fully K-wildness) and wildness
(resp. strict wildness) of mod (R) coincide, because of the following
useful result.

Lemma 2.5. Let K be a field, Λ a K-algebra and let C be an additive
exact full K-subcategory of the module category Mod(Λ).

(a) The category C is of K-wild representation type if and only if there
exists an exact K-linear functor H : modf K〈t1, t2〉 −→ C, which is
faithful, respects the isomorphism classes and preserves indecom-
posables.

(b) The category C is of fully K-wild representation type if and only if
there exists a fully faithful exact K-linear functor

H : modf K〈t1, t2〉 −→ C.

In both cases, H has the form H = (−)⊗K〈t1,t2〉 N , where K〈t1,t2〉NΛ is a
K〈t1, t2〉-Λ-bimodule such that the left K〈t1, t2〉-module K〈t1,t2〉N is free
of finite rank.

Proof. The equivalence in (a) is a simple consequence of the Wildness
Correction Lemma 2.6 in [51].

(b) The sufficiency is easy, because a fully faithful exact functor
H : modf K〈t1, t2〉 −→ C respects the isomorphism classes and preserves
indecomposables.

To prove the necessity, assume that C is of fully K-wild represen-
tation type, that is, there exists a fully faithful exact K-linear functor
T : modf K〈t1, t2〉 −→ C, which respects the isomorphism classes and
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preserves indecomposables. By the Wildness Correction Lemma 2.6 in
[51], there exists an endofunctor T ′ : modf K〈t1, t2〉 −→ modf K〈t1, t2〉
such that the composite functor T ◦ T ′ : modf K〈t1, t2〉 −→ C satisfies
the required conditions and has the form required in the final statement
of the lemma.

Now, following [59, Section 5], we introduce weak substitutes of K-
wildness and fully K-wildness for arbitrary additive K-categories as fol-
lows.

Definition 2.6. Let K be an arbitrary field and let C be an arbitrary
additive K-category.

(a) C is defined to be weak Fully K-Wild, (resp. weak fully K-
wild) if there exists a fully faithful K-linear functor

T : ModK〈t1, t2〉 −→ C

(resp. fully faithful K-linear functor T : modf K〈t1, t2〉 −→ C).

(b) C is defined to be K-Endo-Wild, (resp. K-endo-wild), if for
each K-algebra A (resp. for each finite dimensional K-algebra A)
there is an object U of C and a K-algebra isomorphism A ∼= EndU .

(c) C is defined to be Corner type K-Endo-Wild, (resp. Corner
type K-endo-wild), if for each K-algebra A (resp. for each finite
dimensional K-algebra A) there is an object U of C, a nilpotent
ideal A of EndU and a K-algebra isomorphism A ∼= EndU/A.

It is clear that Fully K-Wildness and fully K-wildness implies the K-
Wildness and K-wildness, as well as weak Fully K-Wildness and weak
fully K-wildness, respectively. The following simple observation is very
useful.

Lemma 2.7. Let K be a field and let C be an arbitrary additive K-
category.

(a) If C is weak Fully K-Wild, then C is K-Endo-Wild.

(b) If C is weak fully K-wild, then C is K-endo-wild.

Proof. We recall that for any finite dimensional K-algebra B there ex-
ists a fully faithful exact K-linear functor ModB −→ ModK〈t1, t2〉,
which restricts to the functor mod B −→ modf K〈t1, t2〉, see [5], [50,
Section 14.2], [51]. On the other hand, by [22, Theorem 1.2], for each K-
algebra A there exists a fully faithful exact K-linear functor ModA −→
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ModΓ2(K), where Γ2(K) =

(
K K2

0 K

)
is the Kronecker K-algebra of

K-dimension four. Consequently, if C is weak Fully K-Wild (resp. C is
weak fully K-wild), then for any K-algebra A (resp. any finite dimen-
sional K-algebra A), there exists a fully faithful exact K-linear functor
H : ModA −→ C (resp. fully faithful K-linear functor H : ModA −→ C).
Then the functor H induces a K-algebra isomorphism A ∼= EndU , where
U = H(A), and the lemma follows.

It is known that for any radical square zero K-algebra A of finite
dimension, the following two equivalences hold, see [25].

(a) The category mod A is fully K-wild if and only if mod A is
K-endo-wild.

(b) The category mod A is K-wild if and only if mod A is Corner
type K-endo-wild.

In this case, for the category mod A, the following representation types
coincide: K-endo-wild, weak fully K-wild and fully K-wild representa-
tion type.

One of the main aims of this section is to prove the Conjecture 1∞
for a large class of finite dimensional algebras. To do that, we recall
from [4] and [50] that the Jacobson radical of mod (R) is the two-sided
ideal radR = rad( mod (R)) of the category mod (R) generated by
all non-isomorphisms between indecomposable R-modules. The infinite
radical rad∞

R = rad∞( mod (R)) of mod (R) is defined to be the in-
tersection

rad∞
R =

∞⋂

j=1

radj( mod (R))

of all powers radj( mod (R)), j > 1, of the radical radR of mod (R)
(see [4, p. 179]).

Following Skowroński [61], we call an artin algebra R loop-finite if
the abelian subgroup rad∞

R (X, X) of the Jacobson radical radR(X, X) of
the endomorphism ring EndR(X) is zero, for all indecomposable modules
X in mod (R).

The class of loop-finite artin algebras is rather large, because accord-
ing to [61, Section 6] it contains tame tilted algebras, tubular algebras
[38] and multicoil algebras [1].

Assume that R has the form R ∼= KQ/I, where Q = (Q0, Q1) is a
finite quiver with the set of vertices Q0 = {1, 2, . . . , n}, the set of arrows
Q1 and I ⊂ KQ is an admissible relation ideal of the path K-algebra
KQ of Q (see [4], [50, Chapter 14]).
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The algebra R = KQ/I is defined to be strongly simply con-
nected if the quiver Q has no oriented cycles and, for any convex
subquiver Q′ of Q, the path algebra R′ = KQ′/I ′ defined by Q′ and
the restriction I ′ of I to Q′ has the first Hochschild cohomology group
H1(R′) = H1(R′, R′) equal to zero, or equivalently, every such an algebra
R′ has the separation property (see [60, Theorem 4.1]).

Theorem 2.8. Let K be an algebraically closed field and let R be a finite
dimensional K-algebra of any of the following four types:

(i) R is loop-finite.

(ii) R is strongly simply connected.

(iii) The square of the Jacobson radical J(R) of R is zero.

(iv) R is the group K-algebra KG of a finite group G.

Then the following four conditions are equivalent.

(a) R is of finite representation type.

(b) R is right pure semisimple.

(c) There exists a cardinal number λ such that any indecomposable
right R-module is of cardinality 6 λ.

(d) There exists a cardinal number λ (finite or infinite) such that
dimK X 6 λ, for any indecomposable right R-module.

Proof. By [3], the conditions (a) and (b) are equivalent. The equivalence
of (c) and (d) is an easy exercise. Since (b) obviously implies (c) then it
remains to prove that (d) implies (a).

Suppose, to the contrary, that R is of infinite representation type.
We prove that, for each infinite cardinal number λ, there exists an inde-
composable R-module of dimension > λ. We split the proof into three
cases.

Case 1◦ Assume that R is either loop-finite or strongly simply con-
nected. Since R is of infinite representation type then, according to [59,
Theorem 1.2], for any K-algebra A there exists a right R-module X and
a K-algebra isomorphism

A ∼= EndR X.

Let λ be an infinite cardinal number and let Tλ = {tj}j∈Tλ
be a fixed set

of cardinality 2λλ

. Denote by

Aλ = K[Tλ]
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the polynomial K-algebra in the variables tj ∈ Tλ with coefficients in

K. Note that dimK Aλ > 2λλ

. By applying the above statement to
the K-algebra A = Aλ, we find a right R-module Xλ and a K-algebra
isomorphism Aλ

∼= EndR Xλ. Since Aλ has no non-trivial idempotents
then the R-module Xλ is indecomposable.

Note that dimK Aλ 6 dimK EndK Xλ = (dimK Xλ)dimK Xλ . It fol-
lows that dimK Xλ > λ, because otherwise dimK Xλ 6 λ and we get

2λλ

6 dimK Aλ 6 (dimK Xλ)dimK Xλ 6 λλ.

This contradicts the well-known inequality 2ℵ > ℵ, for any cardinal ℵ.

Case 2◦ Assume that R is an arbitrary finite dimensional K-algebra
with the Jacobson radical J(R) such that J(R)2 = 0. We set J =
J(R). Following Gabriel [19, 9.1], we associate to R the hereditary finite
dimensional K-algebra

RJ =




R/J (R/J)J(R/J)

0 R/J




and the reduction functor (see also [4])

F : Mod(R) −→ Mod(RJ)

defined by attaching to any module Y in Mod(R) the triple F(Y ) =
(Y ′, Y ′′, t), where Y ′ = Y/Y J , Y ′′ = Y J are viewed as right R/J-
modules and t : Y ′⊗R/J JR/J → Y ′′

R/J is an R/J-module homomorphism

defined by the formula t(y⊗r) = y ·r for y = y+J and r ∈ J . The triple
F(Y ) is viewed as a right RJ -module in a natural way. If f : Y → Z is an
R-module homomorphism we set F(f) = (f ′, f ′′), where f ′′ : Y ′′ → Z ′′

is the restriction of f to Y ′′ = Y J and f ′ : Y ′ → Z ′ is the R/J-module
homomorphism induced by f .

The functor F has the following properties.

(i) F is full and establishes a representation equivalence between
Mod(R) and the category ImF, that is, a homomorphism f : Y → Z
in Mod(R) is an isomorphism if and only if F(f) is an isomorphism
in Mod(RJ). Moreover, F restricts to the functor F : mod (R) −→
mod (RJ).

(ii) A right RJ -module M belongs to ImF if and only if M has no non-
zero summand isomorphic to a simple projective right RJ -module.
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(iii) The functor F carries a homomorphism f : Y → Z in Mod(R) to
zero if and only if Imf ⊆ ZJ . In particular, for any R-module
Y , the algebra homomorphism FY : EndY −→ End F(Y ), given by
f 7→ F(f), is surjective, KerFY = HomR(Y, Y J) and (KerFY )2 = 0.

(iv) The functor F preserves the indecomposability, projectivity and the
dimension of modules. Moreover, F defines a bijection between the
isomorphism classes of indecomposable modules in Mod(R) and
the isomorphism classes of indecomposable modules in Mod(RJ),
which are not simple nor projective.

(v) The ring R is right pure semisimple (resp. of finite representation
type) if and only if RJ is right pure semisimple (resp. of finite
representation type).

The statements (i)–(iv) are essentially proved in [19, Section 9] (see also
[4, Lemma X.2.1]).

For the proof of (v), we note that, by (ii)–(iii), the ring R is of fi-
nite representation type if and only if RJ of finite representation type.
To finish the proof of (v) we recall from [44] and [46] that a right ar-
tinian ring S is right pure semisimple if and only if the ideal radR =
rad( mod R) is right T-nilpotent, that is, for every sequence

X1
f1
→ X2 → · · · → Xm

fm
→ Xm+1 → · · ·

of indecomposable modules X1, X2, . . . in mod R connected by non-
isomorphisms f1, f2, . . . there exists m > 2 such that fmfm−1 · · · f2f1 = 0.
Hence, in view of (i)–(iv), the ring R is right pure semisimple if and only
if RJ is right pure semisimple. The details are left to the reader.

To finish the proof in the Case 2◦, we note that since the algebra
S = R/J is semisimple, then the algebra RJ is hereditary. Since R is
of infinite representation type then, by (v), the algebra RJ is also of
infinite representation type. We claim that there exists a fully faithful
exact K-linear functor

G : ModΓ2(K) −→ ModRJ ,

where Γ2(K) =

(
K K2

0 K

)
is the Kronecker K-algebra. This is obvious

when RJ is of K-wild representation type (see [50, Chapter 14] for def-
inition), because RJ is hereditary and, according to [11, Theorem 8.4],
the category mod RJ is of fully K-wild representation type and [51,
Theorem 2.9] applies. If the algebra RJ is of tame representation type
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(see [50, Chapter 14] for definition), the existence of the functor G follows
from [13].

It follows from [22] and the properties of G that, for any K-algebra
A, there exists a right RJ -module X and a K-algebra isomorphism

A ∼= EndRJ
X,

because we know from [22] that any K-algebra A has the form A ∼=
EndΓ2(K) U, where U is a right Γ2(K)-module.

Let λ be an infinite cardinal number. By the arguments used in
the Case 1◦, there exists an indecomposable RJ -module Mλ such that
dimK Mλ > λ. Since Mλ is not simple projective then, according to (iv),
there exists an indecomposable R-module Xλ such that F(Xλ) ∼= Mλ and
dimK Xλ = dimK Mλ > λ. This finishes the proof in Case 2◦.

Case 3◦ Assume that R is the group K-algebra KG, where G a finite
group. Since R is of infinite representation type, then the characteristic
p of K is a prime, p divides the order of G and according to Higman’s
theorem [26] a p-Sylow subgroup H of G is not cyclic. It follows that
there is a group epimorphism H → H ′, where H ′ is the direct sum of
two copies of the cyclic group of order p (see [12, 6.10]). Since

KH ′ ∼= K[t1, t2]/(tp1 − 1, tp2 − 1) ∼= K[t1, t2]/(tp1, t
p
2),

then there are K-algebra surjections

KG → KH → KH ′ → K[t1, t2]/(t1, t2)
p → S,

where S = K[t1, t2]/(t1, t2)
2. The composite K-algebra surjection KG →

S induces a fully faithful exact embedding

Mod(S) −→ Mod(R).

Since J(S)2 = 0 and S is of infinite representation type, then the Case 2◦

applies to S and we are done. This completes the proof of the theorem.

Corollary 2.9. Let K be an algebraically closed field and let R be a finite
dimensional K-algebra which is loop-finite or strongly simply connected.
Then the following four conditions are equivalent.

(a) R is of infinite representation type.

(b) For any cardinal number λ there exists an indecomposable right
R-module X such that dimK X > λ.
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(c) The category ModR is Fully K-Wild.

(d) The category ModR is K-Endo-Wild, that is, any K-algebra A
has, up to isomorphism, the form A = EndR X, for some right
R-module X.

Proof. By Theorem 2.8, the conditions (a) and (b) are equivalent.

To prove that (a) implies (c), assume that the algebra R is loop-finite
or strongly simply connected. It follows from Corollary 2.2 and Theo-
rem 3.1 in [59] that there exists a fully faithful exact K-linear functor
ModΓ2(K) −→ ModR which restricts to the functor mod Γ2(K) −→
mod R, where Γ2(K) is the Kronecker K-algebra. On the other hand,
by [22, Theorem 1.2], for any K-algebra A there exists a fully faithful ex-
act K-linear functor ModA −→ ModΓ2(K). It follows that the category
ModR is Fully K-Wild.

Since (c) implies (d), by Corollary 2.7, it remains to prove that (d)
implies (a). By (d) applied to the polynomial algebra A = K[t], there
exists a right R-module X such that EndX ∼= K[t]. It follows that R
is not right pure semisimple, because the module X is indecomposable
of infinite K-dimension. By Theorem 2.8, R is of infinite representation
type. This finishes the proof.

We now collect some questions and open problems related with the
results and conjectures stated above.

Questions and problems 2.10. (P1) We do not know if Theorem 2.8
and Corollary 2.9 remain valid in case the field K is not algebraically
closed and R is a loop-finite K-algebra. By [59, Theorem 2.1], the proof
reduces to the question if the category ModRM is Fully K-Wild, where
RM is a finite dimensional hereditary K-algebra of the triangular form

RM =

(
F F MG

0 G

)
, F , G are division K-algebras and F MG is a simple

F -G-bimodule such that dimF M · dimMG = 4.

(P2) Suppose that K is algebraically closed and R is a loop-finite or
strongly simply connected K-algebra. It would be interesting to know if
some of the following conditions are equivalent:

(a) the category mod R is K-wild,

(b) the category mod R is fully K-wild,

(c) the category mod R is weak fully K-wild,

(d) the category mod R is K-endo-wild,
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(e) the category mod R is Corner type K-endo-wild.

(P3) The validity of Conjecture 1◦ remains an open problem. We
are not able to prove it even for hereditary rings of the form RM shown
in (2.3), where F MG is a simple F -G-bimodule. Note that, in case the
bimodule F MG is not simple, the results of Ringel [36] apply.

(P4) Is a semiperfect ring R right artinian or right pure semisim-
ple if every indecomposable right R-module is pure-injective or pure-
projective?

(P5) Let R be a ring and suppose that there exists a cardinal number
ℵ such that every (pure-injective) right R-module is a direct sum of mod-
ules that are pure-injective or ℵ-generated. Is R right pure-semisimple?
(We do not know the answer even for ℵ = ℵ1).

(P6) Let R be a right noetherian (or right artinian) ring and sup-
pose that the isomorphism classes of the indecomposable right R-modules
form a set. Is R right pure semisimple?

(P7) Let G be a group and Λ a G-graded artinian ring (or a finite
dimensional algebra over a field K). Let ModG(Λ) be the Grothendieck
category of G-graded right Λ-modules. Give necessary and sufficient con-
ditions for G and Λ to be ModG(Λ) pure semisimple, compare with [20,
Example 4].

3. The existence of large prinjective modules

Now we show an analogue of Theorem 2.8 for the category Prin(KI)
of prinjective right modules over the incidence K-algebra KI of a finite
poset (I,¹) with coefficients in K (see [50]). We recall from [52] that
the algebra KI is of finite global dimension, the right socle of KI is
projective and the simple projective right ideals are of the form epKI,
up to isomorphism, where p runs through the set max I of all maximal
elements of the poset I. We recall from [52] that a right KI-module X
is said to be prinjective if the projective dimension of X is at most 1
and there exists a short exact sequence

0 −→ P1 −→ P0 −→ X −→ 0

in Mod(KI) such that the module P0 is projective and P1 is semisimple
projective. We denote by Prin(KI) the full subcategory of Mod(KI)
consisting of all prinjective modules, and by prin(KI) the full subcate-
gory of Prin(KI) consisting of finite dimensional modules. Together with
the hereditary subcategory Prin(KI) of Mod(KI) we also study the full
subcategory Modsp(KI) of Mod(KI) formed by all modules X such that
the socle socX of X is a projective module. Denote by modsp(KI) the



Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.D. Simson 107

full subcategory of Modsp(KI) consisting of finite dimensional modules.
We recall from [52] that there is a full and dense K-linear functor

Θ : prin(KI) −→ modsp(KI)

preserving finite, tame and K-wild representation type. The functor Θ
vanishes only on finitely many indecomposable KI-modules, namely the
projective KI−-modules ejKI−, where j ∈ I− = I \ max I and ej ∈ KI
is the standard matrix idempotent corresponding to j ∈ I−. The kernel
of Θ consists of all the KI-homomorphisms f : X → Y that have a
factorisation through a direct sum of copies of the modules ejKI−, with
j ∈ I−.

The additive category modsp(KI) is not abelian, has enough projec-
tives, the global homological dimension of modsp(KI) is finite and equals
gl.dim KI. The categories prin(KI) and modsp(KI) are playing an im-
portant role in representation theory of algebras and matrix problems
(see [50] and [52]).

The idea of the proof of Theorem 2.8 leads to the following results.

Theorem 3.1. Let K be an arbitrary field, let I be a finite poset and let
KI be the incidence K-algebra of I with coefficients in K. The following
conditions are equivalent.

(a) The category prin(KI) has only a finite number of indecomposable
modules, up to isomorphism.

(b) qI(v) > 0, for any non-zero vector v ∈ N
I , where qI : Z

I −→ Z is
the Tits quadratic form

qI(x) =
∑

i∈I

x2
i +

∑

i≺j

j /∈max I

xixj −
∑

p∈max I

(
∑

i≺p

xi)xp

of the poset I, see [52].

(c) There exists a cardinal number λ such that any indecomposable
KI-module in Prin(KI)is of cardinality 6 λ.

(d) There exists a cardinal number λ (finite or infinite) such that
dimK X 6 λ, for any indecomposable module X in Prin(KI).

(d′) There exists a cardinal number λ (finite or infinite) such that
dimK X 6 λ, for any indecomposable module X in Modsp(KI).
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Proof. The equivalence of (a) and (b) is proved in [52], and equivalence
of (c) and (d) is an easy exercise. Since (a) obviously implies (d), and
the equivalence of (d) and (d′) easily follows from the properties of the
functor Θ : Prin(KI) −→ Modsp(KI) proved in [52], it remains to prove
that (d) implies (a).

Suppose, to the contrary, that the category prin(KI) has an infi-
nite number of indecomposable modules, up to isomorphism. It follows
from [52] that the Tits quadratic form qI : Z

I −→ Z is not weakly posi-
tive.

We prove that, for each infinite cardinal number λ, there exists an
indecomposable module in Prin(KI) of dimension > λ.

Since qI is not weakly positive then, according to [21, Theorem 1.8],
any K-algebra A is isomorphic to an algebra of the form End X, where
X is a module in Prin(KI).

Let λ be an infinite cardinal number and let Tλ = {tj}j∈Tλ
be a fixed

set of cardinality 2λλ

. Then, for the polynomial K-algebra Aλ = K[Tλ] in
the variables tj ∈ Tλ with coefficients in K, there exists a module Xλ in
Prin(KI) and a K-algebra isomorphism Aλ

∼= EndKI Xλ. Since Aλ has
no non-trivial idempotents then the R-module Xλ is indecomposable.
One shows, as in the proof of Theorem 2.8, that dimK Xλ > λ. This
finishes the proof of the theorem.

The following corollary is a consequence of Theorem 3.1 and the ar-
guments used in the proof of Corollary 2.9.

Corollary 3.2. Let K be an arbitrary field, I a finite poset and let KI
be the incidence K-algebra of I with coefficients in K. Let qI : Z

I −→ Z

be the Tits quadratic form of I. The following conditions are equivalent.

(a) The category prin(KI) has an infinite number of indecomposable
modules, up to isomorphism.

(b) There exists a non-zero vector v ∈ N
I such that qI(v) = 0.

(c) For any cardinal number λ there exists an indecomposable X in
Prin(KI) such that dimK X > λ.

(c′) For any cardinal number λ there exists an indecomposable X in
Modsp(KI) such that dimK X > λ.

(d) The category Prin(KI) is Fully K-Wild.

(d′) The category Modsp(KI) is weak Fully K-Wild.

(e) The category Prin(KI) is K-Endo-Wild.
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(e′) The category Modsp(KI) is K-Endo-Wild.

Proof. By Theorem 3.1, the conditions (a), (c) and (c′) are equivalent.
Moreover, the conditions (a) and (b) are equivalent, because, by [52,
Theorem 3.1], the existence of a non-zero vector v ∈ N

I such that qI(v) 6

0 implies that I contains, as a peak subposet, any of the critical posets
P1, . . . ,P114 listed in [52, Section 5], say I contains Pj . Let µPj

∈ N
Pj be

the vector in KerqPj
, shown in [52, Section 5], such that KerqPj

= ZµPj
.

Then qI(µPj
) = 0, where µPj

∈ N
I is an obvious extension of µPj

defined
by the formulae (µPj

)s = (µPj
)s for s ∈ Pj , and (µPj

)s = 0 for s 6∈ Pj .

Now we prove the implications (a)⇒(d) and (a)⇒(d′). Assume
that the category prin(KI) is of infinite representation type. It follows
from [21, Theorem 1.7] and [31, Theorem 3.16] that there exist a fully
faithful K-linear functors

H : ModΓ2(K) −→ Prin(KI) and H ′ : ModΓ2(K) −→ Modsp(KI),

where Γ2(K) is the Kronecker K-algebra, and the functor H is exact.
On the other hand, by [22, Theorem 1.2], for any K-algebra A there
exists a fully faithful exact K-linear functor ModA −→ ModΓ2(K). It
follows that the category Prin(KI) is Fully K-Wild and the category
Modsp(KI) is weak Fully K-Wild.

The implications (d)⇒(e) and (d′)⇒(e′) are a consequence of Corol-
lary 2.7. Since the remaining implications (e)⇒(a) and (e′)⇒(a) follow
in a similar way as (d)⇒(a) in the proof of Corollary 2.9, the proof is
complete.

We finish this section with a discussion of K-endo-wildness of the
category modsp(KI).

Proposition 3.3. Let K be an arbitrary field, I a finite poset and let KI
be the incidence K-algebra of I with coefficients in K. Let qI : Z

I −→ Z

be the Tits quadratic form of I. The following conditions are equivalent.

(a) The category prin(KI) is fully K-wild if and only if there exists a
non-zero vector v ∈ N

I such that qI(v) = −1.

(b) If the category prin(KI) is fully K-wild then the category
modsp(KI) is weak fully K-wild and K-endo-wild.

Outline of proof. (a) Assume that the category prin(KI) is fully K-wild.
By [30, Theorem 1.3], the poset I contains, as a peak subposet, a poset
H isomorphic to one of the hypercritical posets listed in [29, Table 2], up
to peak-reduction procedure. It is shown in [29, Lemma 5.6] that each
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such a poset has the form H = P ∪ {a}, where P is isomorphic to one
of the critical posets P1, . . . ,P110 shown in [29, Table 1] and a ∈ H is a
point (marked as a black point in [29, Table 2]) such that the index

indH
P (a) = 2(ηa, µP)H

is negative, where ηa ∈ Z
H is the a-th standard basis vector, µP ∈ Z

P

is the vector shown in [29, Table 1] such that Ker qP = ZµP , (−,−)H :
Z
H × Z

H −→ Z is the symmetric Z-bilinear form associated to the Tits
form qH and µH ∈ Z

H is defined by the formulae µH(t) = µP(t) for
t ∈ P, and µH(a) = 0.

A case by case inspection of the posets in [29, Table 2] shows that

indH
P (a) = −2, if H is one of the posets N ∗

1 ,
˜̃
A
∗
3,1,

˜̃
A
∗
3,2,

˜̃
D
∗
4,2,

˜̃
D
∗
n+6,8 and

H24, whereas indH
P (a) = −1 for the remaining posets listed in [29, Table

2]. Define the vector wH ∈ Z
H by the formula

wH =

{
ηa + µH; if indH

P (a) = −2,

ηa + 2µH; if indH
P (a) = −1.

It follows that qH(wH) = −1. Indeed, if indH
P (a) = −2, then wH =

ηa + µH and

qH(wH) = (wH,wH)H = qH(µH) + indH
P (a) + qH(ηa) = −2 + 1 = −1.

Similarly, if indH
P (a) = −1, then wH = ηa + 2µH and

qH(wH) = (wH,wH)H = 4qH(µH) + 2indH
P (a) + qH(ηa) = −2 + 1 = −1.

Since the poset I contains H, as a peak subposet, then obviously
qI(wH) = −1, where wH ∈ N

I is an obvious extension of the cor-
responding vector wH. The converse implication in the statement (a)
follows from [30, Theorem 1.3].

(b) Assume that the category prin(KI) is fully K-wild and let H be
a hypercritical peak subposets of I chosen as in the proof of (a) above.
A case by case inspection of the poset listed in [30, Table 1] shows that
there exists a minimal element a ∈ H− = H \ maxH such that

(1) the subposet a△ = {j ∈ H−; j º a} of H− is linearly ordered,

(2) the elements of a△ are incomparable with all elements of H− \ a△,
and

(3) the subposet H′
a = H \ {a} of H is of infinite prinjective type and

every proper subposet of H′
a is of finite prinjective type.
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Consider the Z-linear map ℓ̂a : Z
H −→ Z defined by the formula

ℓ̂a(v) =
∑

a≺p∈maxH

∑

i≺p

v(i) −
∑

i≻a

v(i), (3.4)

for any v ∈ Z
I , see [31, (3.5)].

Following the idea of the proof of Lemma 3.8 in [30] and of Theorem
3.6 in [31] (or by applying Corollary 3.17 in [28]) one can show that
there exists an indecomposable non-projective module U in prin(KH′

a)∩
modspKH′

a such that EndKH′
a
U ∼= K and ℓ̂a(cdnÛ) > 3, where Û is a

KH-module obtained from U by completing it with the zero space over
a and cdnÛ ∈ N

I is the coordinate vector of the module Û , see [52]. It
follows from [31, Lemma 3.4] that

• the indecomposable KH-module Pa = eaKH is hereditary projec-
tive and belongs to prin(KH) ∩ modspKH′

a,

• the module Û belongs to prin(KH) ∩ modspKH′
a,

• HomKH(Û , Pa) = 0, HomKH(Pa, Û) = 0, EndPa
∼= K and

End Û ∼= EndU ∼= K, and

• dimKExt1KH(Û , Pa) = ℓ̂a(cdnÛ) > 3.

It follows that for V = Pa and Û we get a fully faithful exact K-linear

functor T
V,Û

: mod

(
K K3

0 K

)
−→ mod(KH). Since the modules V = Pa

and Û are both prinjective and socle projective and the subcategory
(prinKH) ∩ modspKH of mod(KH) is closed under forming extensions,
then the image of T

V,Û
is contained in (prinKH) ∩ modspKH (see the

proof of Lemma 3.6 in [30]).
The above remains also valid if the poset H is peak-reducible to a

hypercritical poset listed in [30, Table 1] (apply the arguments used in
the proof of Theorem 3.16 in [31]).

Consider the pair of fully faithful K-linear functors

mod

(
K K3

0 K

)
T

V,Û
−−−−→modspKH

TH−−−−→modspKI,

where TH is the subposet induced functor [31, (3.13)]. Since there is a

fully faithful K-linear exact functor modf k〈t1, t2〉−−−−→mod

(
K K3

0 K

)
,

see [5] and [50, Section 14.2], then the category modspKI is weak fully
K-wild and, according to Lemma 2.7, it is K-endo-wild.

Remark 3.5. We do not know if the K-endo-wildness of modsp(KI)
implies that the categories modsp(KI) and prin(KI) are fully K-wild.
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4. The pure semisimplicity problem

It is well known that a ring R is of finite representation type if and
only if R is right pure semisimple and R is left pure semisimple (see [2],
[40], [44], [46], [64]). However, the following pure semisimplicity con-
jecture

(pssR) A right pure semisimple ring R is of finite representation
type

remains an open problem (see [3] and [46], [49], [53], [54]). The problem
is related with the following old problem of Köthe [33]:

”Give a characterisation of unitary rings R such that every left R-
module and every right R-module is a direct sum of cyclic modules”,

see Ringel [37] for more details.

In [27], Ivo Herzog proves the conjecture (pssR) for arbitrary quasi-
Frobenius ring R and for arbitrary PI-ring R. An alternative proof of
(pssR), for any PI-ring R, was given later by Krause [34] and by Schmid-
meier [42].

It was shown by the author in Corollaries 3.16 and 5.1 of [53] that
the conjecture (pssR) has a positive solution for all rings R if and only
if for any pair of division rings F , G and any simple F -G-bimodule

F MG such that dimMG is finite and dimF M = ∞ one can construct an
indecomposable right module of infinite length over the hereditary right
artinian ring

RM =

(
F F MG

0 G

)

or equivalently, one can construct a sequence X1
f1
→ X2 → · · · → Xm

fm
→

Xm+1 → · · · , where X1, X2, . . . are indecomposable right RM -modules
of finite length and f1, f2, . . . are non-isomorphisms such that

fmfm−1 · · · f2f1 6= 0

for any m > 1.

It follows that if there is a counter-example R to the pure semisim-
plicity conjecture, then there exists a hereditary counter-example of the
form RM , where F , G are division rings and F MG is a simple F -G-
bimodule such that dimMG is finite, dimF M is infinite and the infinite
dimension-sequence d−∞(F GG) associated to the bimodule F GG in [58,
4.2] satisfies the conditions [54, Proposition 3.1 (b)].

On the other hand it was shown in [53] how a construction of a
counter-example R to the pure semisimplicity conjecture depends on a
generalized Artin problem for division ring extensions, which is much
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more difficult than Artin′s problem for division ring extensions solved by
Cohn in [7] and by Schofield in [43] (see also [55, Section 2], [57]).

It was shown in [53] how a problem of finding a counter-example to the
pure semisimplicity conjecture (pssR) formulated below depends on the
existence of a division ring embedding F ⊆ G such that dimF G is infinite,
dimGF is finite and countably many additional dimension conditions are
satisfied. In other words the existence of such an embedding F ⊆ G is
a generalized version of an Artin problem for division ring extensions
solved in [7], [43] (see also [55, Section 2] and [57]).

In particular, it was shown in [54] that the hereditary ring

RG =

(
F G
0 G

)

is a counter-example to the pure semisimplicity conjecture, if F ⊆ G
is a pair of division rings such that the infinite dimension-sequence
d−∞(F GG) of the bimodule F GG (see [58, (4.2)]) is the sequence

ω = (. . . , 2, 2, . . . , 2, 2, 1,∞)

In the recent paper [58] we develop a technique introduced in [54] for
constructing a class of potential counter-examples to the pure semisim-
plicity conjecture by means of suitable division ring extensions. We con-
struct there a set DSpss of cardinality 2ℵ0 consisting of sequences

v = (. . . , v−m, v−m+1, . . . , v−2, v−1, v0,∞)

with vj ∈ N, (see [58, Definition 4.4]) in such a way that the hereditary
right artinian ring RM shown in (2.3) is a counter-example to the pure
semisimplicity conjecture, if F and G is a pair of division rings, and F MG

is a F -G-bimodule such that the infinite dimension-sequence d−∞(F MG)
of the bimodule F MG (see [58, (4.2)]) belongs to DSpss. Since the set
DSpss is of cardinality c = 2ℵ0 the result can observably help in finding
a suitable pair of division rings F , G and an F -G-bimodule F MG such
that d−∞(F MG) ∈ DSpss and the ring RM is a counter-example to the
pure semisimplicity conjecture. On the other hand, this result might
discourage people from seeing an easy solution of the pure semisimplicity
conjecture.

The reader is referred to [55, Section 2] and [58] for a brief intro-
duction to Artin′s problems and related problems in the representation
theory of artinian rings. We use here the notation introduced in [58] (see
also [4], [50]).

The following problem was stated in [58].
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Problem 4.1. Assume that F , G are division rings, F MG is
F -G-bimodule such that the associated infinite dimension-sequence

d−∞(F MG) belongs to DSpss = DS
(1)
pss ∪ DS

(2)
pss. In relation to questions

of Auslander [3, p.11] the following two problems arise.

(a) Find a decomposition of the right RM -module

L(QM ) =
∞∏

m=0

Q(0)
m /

∞⊕

m=0

Q(0)
m (4.2)

in a direct sum of indecomposable modules, where Q
(0)
1 , Q

(0)
2 , . . . ,

Q
(0)
m , . . . is the complete set, up to isomorphism, of the preinjective

RM -modules shown in [58, (2.8)].

(b) Give a characterization of F -G-bimodules F MG for which the RM -
module L(QM ) is projective.

We note that if F MG is an F -G-bimodule as in 4.1 and satisfies
the condition dim F M = ∞, then the hereditary ring RM is right pure
semisimple and representation-infinite. Hence the RM -module L(QM ) is
a direct sum of indecomposable modules and, according to [3, Proposition
2.4], L(QM ) has an indecomposable projective direct summand, because,
in view of the condition dim F M = ∞, every indecomposable module in
mod (RM ) is either preinjective or projective (see [58, Proposition 4.17]).

A partial answer to the Problem 4.1 (b) was recently given by
Okoh [35]. It is shown there that the RM -module L(QM ) is projec-
tive, for every F -G-bimodule F MG such that dim F M = ∞ and the

dimension-sequence d−∞(F MG) belongs to DSpss = DS
(1)
pss ∪ DS

(2)
pss. It

follows that the module L(QM ) is a direct sum of copies of two inde-
composable projective right RM -modules: the simple direct summand

P0 =

(
0 0
0 G

)
of RM and the non-simple one P1 =

(
F F MG

0 0

)
. Unfor-

tunately, the multiplicities the modules P0 and P1 appear in L(QM ), as
direct summands, are not yet determined.

It would be also interesting to know if the condition dim F M =
∞ is necessary for the projectivity of the module L(QM ), in case the

dimension-sequence d−∞(F MG) belongs to DSpss = DS
(1)
pss ∪ DS

(2)
pss.

There is a close connection of the pure semisimplicity conjecture to
the following product conjecture of Okoh [35] (see also [3]).

Product Conjecture 4.3. Assume that R is an arbitrary ring with an
identity element and let {Mj}j∈Z be an infinite family of pairwise non-
isomorphic indecomposable finitely generated right R-modules. Then the
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product
∏

j∈Z

Mj is not a direct sum of indecomposable finitely generated

right R-modules.

Note that the product conjecture for an artinian ring R implies the
pure semisimplicity conjecture for R.
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