Lie and Jordan structures of differentially semiprime rings

Orest D. Artemovych and Maria P. Lukashenko

Communicated by A. P. Petravchuk

ABSTRACT. Properties of Lie and Jordan rings (denoted respectively by R^L and R^J) associated with an associative ring R are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of R, R^L and R^J are obtained.

1. Introduction

Throughout here, R is an associative ring (with respect to the addition "+" and the multiplication " \cdot ") with an identity, Der R is the set of all derivations in R. On the set R we consider two operations: the Lie multiplication "[-, -]" and the Jordan multiplication "(-, -)" defined by the rules

$$[a,b] = a \cdot b - b \cdot a$$

and

$$(a,b) = a \cdot b + b \cdot a$$

for any $a, b \in R$. Then

$$R^{L} = (R, +, [-, -])$$

is a Lie ring and

$$R^J = (R, +, (-, -))$$

²⁰¹⁰ MSC: Primary 16W25, 16N60; Secondary 17B60, 17C50.

Key words and phrases: Derivation, semiprime ring, Lie ring.

is a Jordan ring (see [13] and [14]) associated with the associative ring R. Recall that an additive subgroup A of R is called:

• a Lie ideal of R if

 $[a,r] \in A,$

• a Jordan ideal of R if

 $(a,r) \in A$

for all $a \in A$ and $r \in R$. Obviously, A is a Lie (respectively Jordan) ideal of R if and only if A^L (respectively A^J) is an ideal of R^L (respectively R^J).

In all that follows Δ will be any subset of Der R (in particular, $\Delta = \{0\}$) and $\delta \in \text{Der } R$. A subset K of R is called Δ -stable if $d(a) \in K$ for all $d \in \Delta$ and $a \in K$. An ideal I of a (Lie, Jordan or associative) ring A is said to be a Δ -ideal if I is Δ -stable. A (Lie, Jordan or associative) ring A is said to be:

- simple (respectively Δ -simple) if there no two-sided ideals (respectively Δ -ideals) other 0 or A,
- prime (respectively Δ -prime) if, for all two-sided ideals (respectively Δ -ideals) K, S of A, the condition KS = 0 implies that K = 0 or S = 0 (if $\Delta = \{\delta\}$ and A is Δ -prime, then we say that A is δ -prime),
- semiprime (respectively Δ -semiprime) if, for any two-sided ideal (respectively Δ -ideal) K of A, the condition $K^2 = 0$ implies that K = 0,
- primary if, for any two-sided ideals K, S of A, the condition KS = 0 implies that K = 0 or S is nilpotent.

Every non-commutative Δ -simple ring is Δ -prime and every Δ -prime ring is Δ -semiprime. We say that R is \mathbb{Z} -torsion-free if, for any $r \in R$ and integers n, the condition nr = 0 holds if and only if r = 0. If the implication

$$2r = 0 \Rightarrow r = 0$$

is true for any $r \in R$, then R is said to be 2-torsion-free. Let

$$F_p(R) = \{a \in R \mid a \text{ has an additive order } p^k \text{ for some non-negative} k = k(a)\}$$

be the *p*-part of *R*, where *p* is a prime. Then $F_p(R)$ is a Δ -ideal of *R*. If *R* is Δ -semiprime, then

$$pF_p(R) = 0$$

In particular, in a Δ -prime ring R it holds $F_p(R) = 0$ (and so the characteristic char R = 0) or $F_p(R) = R$ (and therefore char R = p). Obviously that the additive group R^+ of a Δ -prime ring R is torsion-free if and only if char R = 0. Recall that a ring R is said to be of bounded index m, if m is the least positive integer such that $x^m = 0$ for all nilpotent elements $x \in R$. We say that a ring R satisfies the condition (X) if one of the following holds:

- (1) R or $R/\mathbb{P}(R)$ is \mathbb{Z} -torsion-free, where $\mathbb{P}(R)$ is the prime radical of R,
- (2) R is of bounded index m such that an additive order of every nonzero torsion element of R, if any, is strictly larger than m.

As noted in [16, p.283], a \mathbb{Z} -torsion-free δ -prime ring is semiprime. In this way we prove the following

Proposition 1. For a ring R the following hold:

- (1) if R is a Δ -semiprime ring with the condition (X), then it is semiprime,
- (2) if R is both semiprime (respectively satisfies the condition (X)) and Δ-prime, then R is prime.

Relations between properties of an associative ring R, a Lie ring R^L and a Jordan ring R^J was studied by I.N. Herstein and his students (see [7,8,11] and bibliography in [9] and [5]); he has obtained, for a ring Rof characteristic different from 2, that the simplicity of R implies the simplicity of a Jordan ring R^J [7, Theorem 1], and also that every Lie ideal of a simple Lie ring R is contained in the center Z(R) [7, Theorem 3]. K. McCrimmon [20, Theorem 4] has proved that R is a simple algebra if and only if R^J is a simple Jordan algebra. Our result is the following

Theorem 1. For a 2-torsion-free ring R the following statements are true:

- (1) R is a Δ -simple ring if and only if R^J is a Δ -simple Jordan ring,
- (2) R is a Δ -prime ring if and only if R^J is a Δ -prime Jordan ring,
- (3) R is a Δ -semiprime ring if and only if R^J is a Δ -semiprime Jordan ring.

Let us $d \in \Delta$. Since C(R) and ann C(R) are Δ -ideals, the rule

 $\overline{d}: R/\operatorname{ann} C(R) \ni r + \operatorname{ann} C(R) \mapsto d(r) + \operatorname{ann} C(R) \in R/\operatorname{ann} C(R)$

determines a derivation \overline{d} of the quotient ring $R/\operatorname{ann} C(R)$. Then

$$\overline{\Delta} = \{ \overline{d} \mid d \in \Delta \} \subseteq \operatorname{Der}(R/\operatorname{ann} C(R)).$$

Inasmuch $d(Z(R)) \subseteq Z(R)$, the rule

$$\widehat{d}: R^L/Z(R) \ni r + Z(R) \mapsto d(r) + Z(R) \in R^L/Z(R)$$

determines a derivation \hat{d} of the Lie ring $R^L/Z(R)$. Then

$$\widehat{\Delta} = \{\widehat{d} \mid d \in \Delta\} \subseteq \operatorname{Der}(R^L/Z(R)).$$

Since the center Z(R) is a nonzero Lie ideal of an associative ring R with an identity, a Lie ring R^L is not Δ -simple. Our next result is the following

Theorem 2. Let R be a 2-torsion-free ring. Then the following are true:

- (1) if the quotient ring $R^L/Z(R)$ is a $\widehat{\Delta}$ -simple Lie ring, then R is non-commutative and $R/\operatorname{ann} C(R)$ is a $\overline{\Delta}$ -simple ring,
- (2) if R is a Δ -simple ring, then $R^L/Z(R)$ is a $\widehat{\Delta}$ -simple Lie ring or R is commutative,
- (3) if $R^L/Z(R)$ is a $\widehat{\Delta}$ -semiprime Lie ring, then R is non-commutative and the quotient ring $R/\operatorname{ann} C(R)$ is a $\overline{\Delta}$ -semiprime ring,
- (4) if R is a Δ -semiprime ring, then $R^L/Z(R)$ is a $\widehat{\Delta}$ -semiprime Lie ring or R is commutative,
- (5) if R^L/Z(R) is a Δ-prime Lie ring, then R is non-commutative and R/ ann C(R) is a Δ-prime ring,
- (6) if R is a Δ -prime ring, then $R^L/Z(R)$ is a $\widehat{\Delta}$ -prime Lie ring or R is commutative.

Throughout, let Z(R) denote the center of R, [A, B] (respectively (A, B)) an additive subgroup of R generated by all commutators [a, b] (respectively (a, b)), where $a \in A$ and $b \in B$, C(R) the commutator ideal of R, N(R) the set of nilpotent elements in R, char R the characteristic of R, ann_l $I = \{a \in R \mid aI = 0\}$ the left annihilator of I in R, ann_r $I = \{a \in R \mid Ia = 0\}$ the right annihilator of I in R, ann $I = (\operatorname{ann}_r I) \cap (\operatorname{ann}_l I)$, $C_R(I) = \{a \in R \mid ai = ia \text{ for all } i \in I\}$ the centralizer of I in R and $\partial_a(x) = [a, x]$ for $a, x \in R$.

All other definitions and facts are standard and it can be found in [10], [17] and [19].

2. Differentially prime right Goldie rings

Let agree that

$$d^0 = \mathrm{id}_R$$

is the identity endomorphism for $d \in \Delta$.

Lemma 1. The following conditions are equivalent:

- (1) R is a Δ -semiprime ring,
- (2) for any Δ -ideals A, B of R the implication

$$AB = 0 \Rightarrow A \cap B = 0$$

is true,

(3) if $a \in R$ is such that

$$aR\delta_1^{m_1}\dots\delta_k^{m_k}(a)=0$$

for any integers $k \ge 1$, $m_i \ge 0$ and derivations $\delta_i \in \Delta$ (i = 1, ..., k), then a = 0.

Proof. A simple modification of Proposition 2 from $[17, \S{3.2}]$.

Lemma 2. The following conditions are equivalent:

- (1) R is a Δ -prime ring,
- (2) a left annihilator $\operatorname{ann}_{l} I$ of a left Δ -ideal I of R is zero,
- (3) a right annihilator $\operatorname{ann}_r I$ of a right Δ -ideal I of R is zero,
- (4) if $a, b \in R$ are such that

$$aR\delta_1^{m_1}\dots\delta_k^{m_k}(b)=0$$

for any integers $k \ge 1$, $m_j \ge 0$ and derivations $\delta_j \in \Delta$ (j = 1, ..., k), then a = 0 or b = 0.

Proof. A simple consequence of Lemma 2.1.1 from [10].

If I is an ideal of a ring R, then

 $\mathcal{C}_R(I) = \{x \in R \mid x + I \text{ is regular in the quotient ring } R/I\}$

(see [19, Chapter 2, §1]). The next lemma extends Proposition 1 of [15].

Lemma 3. Let R be a right Goldie ring and $\delta \in \text{Der } R$. If R is δ -prime, then:

- (a) the set N = N(R) of nilpotent elements of R is its prime radical,
- (b) $\bigcap_{i=1}^{k} \delta^{-1}(N) = 0$ for some integer k,
- (c) $\mathcal{C}_R(0) = \mathcal{C}_R(N).$

Proof. From Theorem 2.2 of [16] (see the part $(ii) \Rightarrow (iii)$ of its proof), we obtain (a) and (b). By Proposition 4.1.3 of [19], $C_R(0) \subseteq C_R(N)$. By the same argument as in [16, p.284], we can obtain that $C_R(0) = C_R(N)$. \Box

Corollary 1. If R is a commutative δ -prime Goldie ring and $\delta \in \text{Der } R$, then N(R) contains all zero-divisors of R.

By Corollary 1.4 of [6], if I is a δ -prime ideal of a right Noetherian ring R and R/I has characteristic 0, then I is prime. The following lemma is an extension of Lemma 2.5 from [6].

Lemma 4. Let R be a 2-torsion-free commutative Goldie ring and $\delta \in$ Der R. If R is δ -prime, then it is an integral domain.

Proof. Assume that $a \in \operatorname{ann} N(R)$, $b \in N(R)$ and $r \in R$. Then

$$0 = \delta^2(arb) = \delta(\delta(a)rb + a\delta(r)b + ar\delta(b))$$

= $\delta^2(a)rb + 2\delta(a)\delta(r)b + 2\delta(a)r\delta(b) + a\delta^2(r)b + 2a\delta(r)\delta(b) + ar\delta^2(b)$

and so

$$2\delta(a)R\delta(b) \subseteq N(R).$$

This means that $\delta(a) \in N(R)$ or $\delta(b) \in N(R)$. Hence N(R) is δ -stable. By Lemma 3, N(R) is a ideal and therefore N(R) = 0. By Lemma 1.2 of [4], R is prime and consequently it is an integral domain.

Proof of Proposition 1.

(1) By Proposition 1.3 of [6] and Theorem 1 of [1], the prime radical $\mathbb{P}(R)$ is a Δ -ideal and so $\mathbb{P}(R) = 0$ is zero.

(2) Since $\mathbb{P}(R) = 0$, R is prime by Lemma 1.2 from [4].

By Theorem 4 of [22], a Δ -simple ring R of characteristic 0 is prime. Since every non-commutative Δ -simple ring is Δ -prime, in view of Proposition 1 we obtain the following

Corollary 2. Let R be a semiprime ring (respectively a ring R satisfy the condition (X)). If R is Δ -simple, then it is prime.

3. Differential analogues of Herstein's results

For the proof of Theorem 2 we need the next results. In the proofs below we use the same consideration, as in [12, Chapter 1, §1], and present them here in order to have the paper more self-contained. Let agree that everywhere in this section $k \ge 1$ and $m_i \ge 0$ are integers (i = 1, ..., k).

Lemma 5. Let R be a Δ -semiprime ring, A and B its Δ -ideals. Then the following statements hold:

- (*i*) if AB = 0, then BA = 0.
- (*ii*) $\operatorname{ann}_l A = \operatorname{ann}_r A$.

(*iii*) $A \cap \operatorname{ann}_r A = 0$.

Proof. (i) Indeed, BA is a Δ -ideal and $(BA)^2 = 0$ and so BA = 0.

(*ii*) We denote $(\operatorname{ann}_r A)A$ by X. Since X is a Δ -ideal and $X^2 = 0$, we deduce that X = 0. This means that

$$\operatorname{ann}_r A \subseteq \operatorname{ann}_l A.$$

The inverse inclusion we can prove similarly.

(*iii*) Since $A \cap \operatorname{ann}_r A$ is a nilpotent Δ -ideal, the assertion holds.

Henceforth

$$X_a = \{ [\delta_1^{m_1} \dots \delta_k^{m_k}(a), x] \mid x \in R, \ \delta_i \in \Delta, \ m_i \ge 0 \\ \text{and } k \ge 1 \text{ are integers } (i = 1, \dots, k) \}.$$

It is clear that $[a, x] \in X_a$.

Lemma 6. Let R be a Δ -semiprime ring and $a \in R$. Then the following statements hold:

(i) if

$$a[\delta_1^{m_1}\dots\delta_k^{m_k}(a),R]=0$$

for any integers $k \ge 1$, $m_i \ge 0$ and derivations $\delta_i \in \Delta$ (i = 1, ..., k), then $a \in Z(R)$,

- (ii) if I is a right Δ -ideal of R, then $Z(I) \subseteq Z(R)$,
- (iii) if I is a commutative right Δ -ideal of R and I is nonzero, then $I \subseteq Z(R)$. If, moreover, R is Δ -prime, then it is commutative.

Proof. (i) Let $x, y \in R$ and $d, \delta \in \Delta$. Since

$$[b, xy] = [b, x]y + x[b, y]$$
(3.1)

for any $b \in X_a$ and a[b, xy] = 0, we conclude that ax[b, y] = 0. This gives that ayx[b, y] = 0 and yax[b, y] = 0 and consequently

$$(R[a, y]R)^2 = 0. (3.2)$$

In addition,

$$0 = d(a[b, x]) = d(a)[b, x].$$

Multiplying (3.1) by d(a) on left we get d(a)x[b, y] = 0. Moreover,

$$0 = \delta(ax[d(b), y]) = \delta(a)x[d(b), y]$$

and, by the similar argument, we obtain that

$$\delta_1^{m_1} \dots \delta_k^{m_k}(a) x[\delta_1^{m_1} \dots \delta_k^{m_k}(a), y] = 0$$

for any integers $k \ge 1$, $m_i \ge 0$ and derivations $\delta_i \in \Delta$ (i = 1, ..., k). As in the proof of the condition (3.2), we deduce that

$$(R[\delta_1^{m_1}\dots\delta_k^{m_k}(a),y]R)^2 = 0.$$

Then

$$I = \sum_{k=1}^{\infty} \sum_{\substack{\delta_1 \dots \delta_k \in \Delta \\ y \in R}} R[\delta_1^{m_1} \dots \delta_k^{m_k}(a), y]R$$

is a sum of nilpotent ideals and therefore it is a nil ideal. Since I is a Δ -ideal, we conclude that I = 0 and, as a consequence, $a \in Z(R)$.

(*ii*) Let $a \in Z(I)$ and $y \in R$. Then, for $\delta_1, \ldots, \delta_k \in \Delta$, we have

$$\delta_1^{m_1} \dots \delta_k^{m_k}(a) \in Z(I)$$

and $ay \in I$. This gives that

$$a(\delta_1^{m_1}\dots\delta_k^{m_k}(a)y) = \delta_1^{m_1}\dots\delta_k^{m_k}(a)(ay) = a(y\delta_1^{m_1}\dots\delta_k^{m_k}(a)),$$

and thus

$$a[\delta_1^{m_1}\dots\delta_k^{m_k}(a),y]=0.$$

By $(i), a \in Z(R)$ is central.

(*iii*) By (*ii*), $I \subseteq Z(R)$. Assume that R is Δ -prime, $u, v \in R$ and $a \in I$. Then $au \in I$ and so $au \in Z(R)$. Since

$$a(uv) = (au)v = v(au) = (va)u = a(vu),$$

we see that

$$[u, v] \in \operatorname{ann}_r I.$$

By Lemma 2(3), [u, v] = 0 and hence R is commutative.

Lemma 7. Let R be a Δ -prime ring and $a \in R$. If $a \in C_R(I)$ for some nonzero right Δ -ideal I of R, then $a \in Z(R)$.

Proof. Let us $y \in R$ and $b \in I$. Then $by \in I$ and so bay = a(by) = bya. This yields that

$$I[a, y] = 0 = [a, y]I.$$

By Lemma 2(3), [a, y] = 0. Hence $a \in Z(R)$.

Lemma 8. The left annihilator $\operatorname{ann}_l(X_a)$ is a left Δ -ideal of R.

Proof. Immediate from the definition.

Lemma 9. If R is a Δ -semiprime ring, then $C_R([R, R]) \subseteq Z(R)$.

Proof. Let us $a \in C_R([R, R]), d, \delta \in \Delta$ and $x, y \in R$. Putting x for a and xd(a) for xy in (3.1) we obtain

$$[x, xd(a)] = [x, x]d(a) + x[x, d(a)]$$

and, as a consequence, [a, x[x, d(a)]] = 0 and [a, x][x, d(a)] = 0. Then, by the same reasons as in the proof of Lemma 6(i), we obtain that $[a, x] \in \operatorname{ann}_l(X_a)$ and $A = \operatorname{ann}_l(X_a)$ is a Δ -ideal. Then

$$[\delta(a), x][d(a), x] = \delta([a, x][d(a), x]) = 0.$$

Since $A \cap \operatorname{ann}_l A = 0$, we deduce that is a nilpotent Δ -ideal and so $a \in Z(R)$.

Lemma 10. Let R be a 2-torsion-free Δ -semiprime ring. If $a \in R$ commutes with all elements of X_a , then $a \in Z(R)$.

Proof. Let $r, x, y \in R$ and $d \in \Delta$. It is clear that $\partial_a^2(x) = 0$. From $\partial_a^2(xy) = 0$ it follows that

$$2\partial_a(x)\partial_a(y) = 0$$

and so $\partial_a(x)\partial_a(y) = 0$. Since

$$0 = \partial_a(x)\partial_a(rx) = \partial_a(x)\partial_a(r)x + \partial_a(x)r\partial_a(x) = \partial_a(x)r\partial_a(x),$$

we deduce that $\partial_a(x)R\partial_a(x) = 0$ and $(\partial_a(x)R)^2 = 0$. Moreover, a[b, x] = [b, x]a for any $[b, x] \in X_a$ and therefore

$$d(a)[b,x] + a[d(b),x] + a[b,d(x)] = [b,x]d(a) + [d(b),x]a + [b,d(x)]a$$

From this it holds that

$$d(a)[b,x] = [b,x]d(a).$$

This means that $C_R(X_a)$ is Δ -stable and $(\partial_{d(a)}(x)R)^2 = 0$. As a consequence,

$$I = \sum_{k=1}^{\infty} \sum_{\substack{x \in R \\ m_k \ge 0 \\ \delta_1, \dots, \delta_k \in \Delta}} \partial_{\delta_1^{m_1} \dots \delta_k^{m_k}(a)}(x) R$$

is a sum of nilpotent ideals and so I is a nil ideal. Since I is a Δ -ideal, we deduce that I = 0. Hence $a \in Z(R)$.

The next lemma is an extension of Lemma 1 from [11] in the differential case.

Lemma 11. Let R be a 2-torsion-free Δ -semiprime ring, T its Lie Δ -ideal. If $[T,T] \subseteq Z(R)$, then $T \subseteq Z(R)$.

Proof. Let $x \in R$ and $t \in T$.

1) If [T,T] = 0, then $[t,x] \in T$ and so [t,[t,x]] = 0. By Lemma 10, $T \subseteq Z(R)$.

2) Now assume that $0 \neq [a, b] \in [T, T]$ for some $a, b \in T$. Then

$$\partial_a(b) \in Z(R)$$
 and $\partial_a^2(R) \subseteq Z(R)$.

Moreover, we have that

$$Z(R) \ni \partial_a^2(bx) = \partial_a(\partial_a(b)x + b\partial_a(x))$$

= $\partial_a^2(b)x + 2\partial_a(b)\partial_a(x) + b\partial_a^2(x)$
= $2\partial_a(b)\partial_a(x) + b\partial_a^2(x)$

and hence

$$[2\partial_a(b)\partial_a(x) + b\partial_a^2(x), b] = 0.$$

Then

$$0 = 2\partial_b(\partial_a(b))\partial_a(x) + 2\partial_a(b)\partial_b(\partial_a(x)) + \partial_b(b)\partial_a^2(x) + b\partial_b(\partial_a^2(x))$$

= $2\partial_a(b)\partial_b(\partial_a(x))$ (3.3)

and

$$\partial_a(ba) = \partial_a(b)a + b\partial_a(a) = \partial_a(b)a.$$

Replacing ba for x in (3.3) we have

$$0 = 2\partial_a(b)\partial_b(\partial_a(b)a) = 2\partial_a(b)(\partial_b(\partial_a(b)) + \partial_a(b)\partial_b(a)) = -2\partial_a(b)^3$$

and thus $\partial_a(b)^3 = 0$. Then $R\partial_a(b)$ is a nilpotent ideal in R and, as a consequence,

$$\sum_{a,b\in T} R\partial_a(b)$$

is a nonzero nil Δ -ideal, a contradiction.

Lemma 12. If U is a Lie Δ -ideal of a ring R and $I(U) = \{u \in R \mid uR \subseteq U\}$, then I(U) is the largest Δ -ideal of R such that $I(U) \subseteq U$.

Proof. Let $u, v \in I(U), x, y \in R$ and $\delta \in \Delta$. Clearly that I(U) is an additive subgroup of $R, I(U) \subseteq U$ and $(ux)y = u(xy) \in (ux)R = u(xR) \subseteq uR \subseteq U$ that is $ux \in I(U)$. From

$$u(xy) - (yu)x = (ux)y - y(ux) = [ux, y] \in U$$

(and so $(yu)x \in U$) it holds that $yu \in I(U)$. Hence U is a two-sided ideal of R. Moreover,

$$\delta(u)x + u\delta(x) = \delta(ux) \in \delta(U) \subseteq U$$

and $u\delta(x) \in uR \subseteq U$. Therefore $\delta(u)x \in U$. This means that I(U) is a Δ -ideal of R. If A is a Δ -ideal of R that is contained in U, then $AR \subseteq A \subseteq U$ and hence $A \subseteq I(U)$.

Lemma 13. Let U be a Lie Δ -ideal of R. If U is an associative subring of R, then [U, U] = 0 or U contains a nonzero Δ -ideal of R.

Proof. Assume that $x \in R$ and $[U, U] \neq 0$. Then $[u, v] \neq 0$ for some $u, v \in U$ and

$$[u, vx] = u(vx) - (vx)u = (uv - vu)x + v(ux - xu).$$

Since $[u, x], [u, vx] \in U$ and $v[u, x] \in U$, we deduce that $[u, v]x \in U$. This means that $[u, v] \in I(U)$. In view of Lemma 12, I(U) is a nonzero Δ -ideal of R that is contained in U.

Proposition 2. If U is a Lie Δ -ideal of R, then [U,U] = 0 or there exists a nonzero Δ -ideal I_U of R such that $[I_U, R] \subseteq U$.

Proof. By Lemma 3 of [7],

$$T(U) = \{t \in R \mid [t, R] \subseteq U\}$$

is both a Lie ideal and an associative subring of R and $U \subseteq T(U)$. Moreover, for $\delta \in \Delta$, we have

$$[\delta(t), R] + [t, \delta(R)] = \delta([t, R]) \subseteq \delta(U) \subseteq U$$

and so $[\delta(t), R] \subseteq U$. Hence T(U) is Δ -stable. If $[U, U] \neq 0$, then, by Lemmas 12 and 13,

$$I_U = I(T(U)) \subseteq T(U)$$

is a nonzero Δ -ideal of R such that $[I_U, R] \subseteq U$.

Lemma 14. Let U be a Lie Δ -ideal of a ring R. If [U, U] = 0, then the centralizer $C_R(U)$ is a Lie Δ -ideal and an associative subring of R.

Proof. Is immediately.

We extend Theorem 1.3 of [9] in the following

Proposition 3. Let R be a Δ -simple ring of characteristic 2. If U is a Lie Δ -ideal of R, then one of the following holds:

- (1) $[R,R] \subseteq U$,
- (2) $U \subseteq Z(R)$,
- (3) R contains a subfield P such that $U \subseteq P$ and $[P, R] \subseteq P$.

Proof. If $[U, U] \neq 0$, then $[R, R] \subseteq U$ by Proposition 2. Therefore we assume that [U, U] = 0. By Lemma 14, $C_R(U)$ is a Lie Δ -ideal and an associative subring of R such that $U \subseteq C_R(U)$.

a) If $C_R(U)$ is non-commutative, then $C_R(U) = R$ by Lemma 13. Hence $U \subseteq Z(R)$.

b) Now assume that the centralizer $C_R(U)$ is commutative. If $c \in C_R(U)$ and $x \in R$, then

$$c^2 \in C_R(U)$$
 and $[c^2, x] = [[c, x], x] = 2c[c, x] = 0.$

This gives that $c^2 \in Z(R)$. By Theorem 2 of [22], Z(R) is a field. As a consequence, c^2 (and so c) is invertible in $C_R(U)$. Hence $C_R(U)$ is a field.

Corollary 3. Let R be a Δ -simple ring. If U is a Lie Δ -ideal of R, then one of the following holds:

- (1) $[R,R] \subseteq U$,
- (2) $U \subseteq Z(R)$,
- (3) char R = 2 and R contains a subfield P such that $U \subseteq P$ and $[P, R] \subseteq P$.

4. Jordan properties

Lemma 15. Let R be a Δ -simple ring of characteristic $\neq 2$, U its proper Jordan Δ -ideal and $a \in U$. If $[a, R] \subseteq U$, then a = 0.

Proof. Let us $x, y \in R$. Since $[a, x] \in U$ and $(a, x) \in U$, we obtain that $2ax \in U$ and, as a consequence, $ax \in U$ and $(ax, y) \in U$. Moreover, from $axy \in U$ it follows that $yax \in U$. This means that $RaR \subseteq U$. Since $d(a) \in U$ for any $d \in \Delta$, in view of [21, Lemma 1.1] we obtain that

$$\sum_{k=1}^{\infty} \sum_{\substack{\delta_1, \dots, \delta_k \in \Delta \\ (m_1, \dots, m_k) \in \mathbb{N}^k}} R \delta_1^{m_1} \dots \delta_k^{m_k}(a) R$$

is a proper Δ -ideal of R that is contained in U. Hence a = 0.

Remark 1. Let R be a 2-torsion-free ring, U its Jordan Δ -ideal. If Δ contains all inner derivations of R, then U is an ideal of R.

In fact, we have

$$2xa = [a, x] + (a, x) \in U$$

for any $a, b, x \in U$ and so $xa \in U$. By the same argument, we can conclude that $ax \in U$.

Proof of Theorem 1.

(1) (\Leftarrow) If A is a nonzero proper Δ -ideal of a ring R, then A^J is a nonzero proper Δ -ideal of R^J , a contradiction.

 (\Rightarrow) Let U be a proper Jordan Δ -ideal of R, $a, b \in U$ and $x \in R$. By Lemma 1 of [7], $[(a, b), x] \in U$, and, by Lemma 15, we see that

$$(a,b) = 0. (4.4)$$

In particular, $2a^2 = 0$ and, as a consequence, $a^2 = 0$ and 2axa = (a, (a, x)) = 0. It follows that axa = 0. Since

$$0 = (a+b)x(a+b) = axb + bxa$$

and

$$0 = (b, (a, x)) = b(ax + xa) + (ax + xa)b = bax + bxa + axb + xba,$$

we deduce that bax + xab = 0. But ab = -ba and so bax - xba = 0. This means that $ba \in Z(R)$. Then $(RabR)^2 = 0$. Since

$$I = \sum_{k=1}^{\infty} \sum_{\substack{a,b \in U, \ \delta_1, \dots, \delta_k \in \Delta \\ (m_1, \dots, m_k) \in \mathbb{N}^k}} Ra\delta_1^{m_1} \dots \delta_k^{m_k}(b)R$$

is a Δ -ideal of R that is a sum of nilpotent ideals, we obtain that I = 0. Therefore

$$0 = (b, x)a = (bx + xb)a = bxa + xba = 2bxa.$$

We conclude that URU = 0. From $(RUR)^2 = 0$ and $\delta(RUR) \subseteq RUR$ for any $\delta \in \Delta$ it holds that U = 0.

(2) (\Leftarrow) If A, B are Δ -ideals of R such that AB = 0, then $(BA)^2 = 0$ and so BA is a Jordan ideal of R satisfying the condition

$$(BA, BA) = 0.$$

Thus the condition (4.4) is true for U = BA. As in the proof of the part (1), we obtain that BA = 0. Then A^J, B^J are Δ -ideals of a Jordan ring R^J such that

$$(A^J, B^J) = 0.$$

Hence A = 0 or B = 0.

 (\Rightarrow) Let $a_1, a_2 \in A$ and $x, y \in R$. Suppose that R^J is not Δ -prime and therefore there exist nonzero Jordan Δ -ideals A, B of R such that

$$(A,B) = 0.$$

By the same reasons as above, we conclude that $A \cap B = 0$. Then, by Lemma 1 of [7], we have $[(a_1, a_2), x] \in A$ and hence

$$[(a_1, a_2), x] \pm ((a_1, a_2), x) \in A.$$

Therefore $x(a_1, a_2)y \in A$. Thus R contains Δ -ideals $R(A, A)R \subseteq A$ and $R(B, B)R \subseteq B$ such that

$$R(A, A)R(B, B)R \subseteq A \cap B = 0.$$

Hence (A, A) = 0 or (B, B) = 0 and this leads to a contradiction.

(3) (\Leftarrow) If A is a nonzero Δ -ideal of R such that $A^2 = 0$, then A^J is a nonzero Δ -ideal of the Jordan ring R^J such that

$$(A^J, A^J) = 0,$$

a contradiction.

 (\Rightarrow) Suppose that R has a nonzero Jordan Δ -ideal U such that

$$(U,U)=0.$$

Then the condition (4.4) is true for any $a, b \in U$. As in the proof of the part (1), we obtain that U = 0.

If R is a ring, then on the set R we can to define a left Jordan multiplication " $\langle -, - \rangle$ " by the rule

$$\langle a, b \rangle = 2ab$$

for any $a, b \in R$. Then the equalities

$$\langle \langle \langle a, a \rangle, b \rangle, a \rangle = \langle \langle a, a \rangle, \langle b, a \rangle \rangle$$
 and $\langle \langle a, b \rangle, a \rangle = \langle a, \langle b, a \rangle \rangle$

are true and hence

$$R^{lJ} = (R, +, \langle -, - \rangle)$$

is a non-commutative Jordan ring (which is called a *left Jordan ring* associated with an associative ring R). It is clear that, for commutative ring R, we have

$$R^J = R^{lJ}$$

If A is an additive subgroup of R that $\langle a, r \rangle, \langle r, a \rangle \in A$ for any $a \in A$ and $r \in R$, then A is called an *ideal* of R^{lJ} . If $\delta \in \Delta$ and $a, b \in R$, then

$$\delta(\langle a,b\rangle)=\delta(2ab)=2\delta(a)b+2a\delta(b)=\langle\delta(a),b\rangle+\langle a,\delta(b)\rangle$$

and therefore $\delta \in \text{Der}(\mathbb{R}^{lJ})$. By the other hand, if $\delta \in \text{Der}(\mathbb{R}^{lJ})$, then

$$2\delta(ab) = \delta(\langle a, b \rangle) = \langle \delta(a), b \rangle + \langle a, \delta(b) \rangle = 2(\delta(a)b + a\delta(b)).$$

If R is a 2-torsion-free ring, then $\delta \in \text{Der } R$. Similarly, as in Theorem 1, we can prove the following

Proposition 4. For a 2-torsion-free ring R the following conditions are true:

- (1) R is a Δ -simple ring if and only if R^{lJ} is a Δ -simple Jordan ring,
- (2) R is a Δ -prime ring if and only if R^{lJ} is a Δ -prime Jordan ring,
- (3) R is a Δ -semiprime ring if and only if R^{lJ} is a Δ -semiprime Jordan ring.

5. Proofs

The next lemma in the prime case is contained in [18, Lemma 7].

Lemma 16 ([2, Lemma 1.7]). Let R be a ring. If [[R, R], [R, R]] = 0, then the commutator ideal C(R) is nil.

Corollary 4. If R is a non-commutative Δ -semiprime ring, then [R, R] is non-commutative.

Proof of Theorem 2.

(1) It is clear that a ring R is non-commutative. If A is a nonzero proper Δ -ideal of R, then A^L is a nonzero proper Δ -ideal of R^L . Therefore $A \subseteq Z(R)$ and, as a consequence, $A \cdot C(R) = 0$.

(2) Suppose that a Δ -simple ring R is non-commutative and U is its nonzero proper Lie Δ -ideal. By Proposition 2, [U, U] = 0. Then, by Lemma 11, $U \subseteq Z(R)$. Hence the quotient ring $R^L/Z(R)$ is $\widehat{\Delta}$ -simple.

(3) Let A be a nonzero Δ -ideal of R such that $A^2 = 0$. Then A^L is a nonzero Δ -ideal of a Lie ring R^L and, moreover,

$$[A^L, A^L] = 0.$$

By Lemma 11, $A \subseteq Z(R)$ and hence $A \cdot C(R) = 0$.

(4) Suppose that R is non-commutative. Let A be a nonzero Lie Δ -ideal of R such that [A, A] = 0. Then, by Lemma 11, $A \subseteq Z(R)$ and, as a consequence, the Lie ring $R^L/Z(R)$ is $\hat{\Delta}$ -semiprime.

(5) Let A, B be nonzero Δ -ideals of R such that AB = 0. Obviously, $[A, B] \subseteq Z(R)$. Then $A \subseteq Z(R)$ or $B \subseteq Z(R)$.

(6) Assume that R is non-commutative and A, B are nonzero Lie Δ -ideals of R such that

[A, B] = 0.

Then $A \cap B \subseteq Z(R)$. Since $A \cap B \subseteq \operatorname{ann} C(R)$ in a Δ -prime ring R, we have that the intersection $A \cap B = 0$ is zero. If T(A) = R (see proof of Proposition 2), then $[R, R] \subseteq A$ and $B \subseteq C_R([R, R])$. By Lemma 9, $B \subseteq Z(R)$. So we assume that $T(A) \neq R$. If [T(A), T(A)] = 0, then [A, A] = 0 and, by Lemma 11, $A \subseteq Z(R)$. Suppose that $[T(A), T(A)] \neq 0$. By Lemma 13, T(A) contains a nonzero Δ -ideal I of R. Since

$$[I,B] \subseteq A \cap B = 0,$$

we conclude that $B \subseteq Z(R)$ by Lemma 7.

The map

$$\partial_a: R \ni x \mapsto [a, x] \in R$$

is called an inner derivation of a ring R induced by $a \in R$. The set IDer R of all inner derivations of R is a Lie ring. Every prime Lie ring is primary Lie.

Lemma 17. There is the Lie ring isomorphism

IDer
$$R \ni \partial_a \mapsto a + Z(R) \in R^L/Z(R)$$
.

Proof. Evident.

Corollary 5. Let R be a ring. Then the following statements hold:

 \square

- (1) IDer R is a simple Lie ring if and only if $R^L/Z(R)$ is a simple Lie ring,
- (2) IDer R is a prime Lie ring if and only if $R^L/Z(R)$ is a prime Lie ring,
- (3) IDer R is a semiprime Lie ring if and only if $R^L/Z(R)$ is a semiprime Lie ring,
- (4) IDer R is a primary Lie ring if and only if $R^L/Z(R)$ is a primary Lie ring.

References

- K. I. Beidar, A. V. Mikhal'ev, Ortogonal completeness and minimal prime ideals (in Russian), Trudy Sem. Petrovski, 10, 1984, pp.227-234.
- [2] H. E. Bell, A. A. Klein, Combinatorial commutativity and finiteness conditions for rings, Comm. Algebra, 29, 2001, pp.2935-2943.
- [3] J. Bergen, I. N. Herstein, E. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra, **71**, 1981, pp.259-267.
- [4] J. Bergen, S. Montgomery, D. S. Passmann, Radicals of crossed products of enveloping algebras, Israel J. Math., 59, 1987, pp.167-184.
- [5] M. Brešar, M. A. Chebotar and W.S. Martindale, 3rd, Functional identities, Birkh² auser Verlag, Basel Boston Berlin, 2000.
- K. R. Goodearl, R. B. Warfield, Jr., Primitivity in differential operator rings, Math. Z., 180, 1982, pp.503-523.
- [7] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math., 77, 1955, pp.279-285.
- [8] I. N. Herstein, The Lie ring of a simple associative ring, Duke Math. J., 22, 1955, pp.471-476.
- [9] I. N. Herstein, *Topics in Ring Theory*, The University of Chicago Press, Chicago London, 1965.
- [10] I. N. Herstein, *Noncommutative rings*, The Mathematical Association of America, J. Wiley and Sons, 1968.
- [11] I. N. Herstein, On the Lie structure of an associative ring, J. Algebra, 14, 1970, pp.561-571.
- [12] I. N. Herstein, *Rings with involution*, The University of Chicago Press, Chicago London 1976.
- [13] N. Jacobson, *Lie algebras*, Interscience, New York, 1962.
- [14] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., V. 39, Providence, R.I., 1968.
- [15] C. R. Jordan, D. A. Jordan, The Lie structure of a commutative ring with derivation, J. London Math. Soc.(2), 18, 1978, pp.39-49.
- [16] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. (2), 10, 1975, pp.281-291.

- [17] J. Lambek, *Lectures on rings and modules*, Blaisdell Publ. Co. A division of Ginn and Co. Waltham Mass. Toronto London, 1966.
- [18] W. S. Martindale, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc., 142, 1969, pp.437-455.
- [19] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings. With the cooperation of L. W. Small. Revised edition. Grad. Stud. in Math., 30. Amer. Math. Soc., Providence, RI, 2001.
- [20] K. McCrimmon, On Herstein's theorem relating Jordan and associative algebras, J. Algebra, 13, 1969, pp.382-392.
- [21] A. Nowicki, The Lie structure of a commutative ring with a derivation, Arch. Math., 45, 1985, pp.328-335.
- [22] E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc., 11, 1960, pp.337-343.
- [23] I. I. Zuev, Lie ideals of associative rings (in Russian), Uspehi Mat. Nauk, 18, 1963, pp.155–158.

CONTACT INFORMATION

O. D. Artemovych	Institute of Mathematics
	Cracow University of Technology
	ul. Warszawska 24
	Cracow 31-155 POLAND
	E-Mail(s): artemo@usk.pk.edu.pl
M. P. Lukashenko	Faculty of Mathematics and Informatics
	PreCarpathian National University of Vasyl Ste-
	fanyk
	Shevchenko St 57
	Ivano-Frankivsk 76025 UKRAINE
	E-Mail(s): bilochka.90@mail.ru

Received by the editors: 22.01.2015 and in final form 22.03.2015.