Lie and Jordan structures of differentially semiprime rings

Orest D. Artemovych and Maria P. Lukashenko

Communicated by A. P. Petravchuk

Abstract. Properties of Lie and Jordan rings (denoted respectively by R^{L} and R^{J}) associated with an associative ring R are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of R, R^{L} and R^{J} are obtained.

1. Introduction

Throughout here, R is an associative ring (with respect to the addition "+" and the multiplication ".") with an identity, Der R is the set of all derivations in R. On the set R we consider two operations: the Lie multiplication " $[-,-]$ " and the Jordan multiplication " $(-,-)$ " defined by the rules

$$
[a, b]=a \cdot b-b \cdot a
$$

and

$$
(a, b)=a \cdot b+b \cdot a
$$

for any $a, b \in R$. Then

$$
R^{L}=(R,+,[-,-])
$$

is a Lie ring and

$$
R^{J}=(R,+,(-,-))
$$

2010 MSC: Primary 16W25, 16N60; Secondary 17B60, 17C50.
Key words and phrases: Derivation, semiprime ring, Lie ring.
is a Jordan ring (see [13] and [14]) associated with the associative ring R. Recall that an additive subgroup A of R is called:

- a Lie ideal of R if

$$
[a, r] \in A
$$

- a Jordan ideal of R if

$$
(a, r) \in A
$$

for all $a \in A$ and $r \in R$. Obviously, A is a Lie (respectively Jordan) ideal of R if and only if A^{L} (respectively A^{J}) is an ideal of R^{L} (respectively R^{J}).

In all that follows Δ will be any subset of $\operatorname{Der} R$ (in particular, $\Delta=\{0\}$) and $\delta \in \operatorname{Der} R$. A subset K of R is called Δ-stable if $d(a) \in K$ for all $d \in \Delta$ and $a \in K$. An ideal I of a (Lie, Jordan or associative) ring A is said to be a Δ-ideal if I is Δ-stable. A (Lie, Jordan or associative) ring A is said to be:

- simple (respectively Δ-simple) if there no two-sided ideals (respectively Δ-ideals) other 0 or A,
- prime (respectively Δ-prime) if, for all two-sided ideals (respectively Δ-ideals) K, S of A, the condition $K S=0$ implies that $K=0$ or $S=0($ if $\Delta=\{\delta\}$ and A is Δ-prime, then we say that A is δ-prime $)$,
- semiprime (respectively Δ-semiprime) if, for any two-sided ideal (respectively Δ-ideal) K of A, the condition $K^{2}=0$ implies that $K=0$,
- primary if, for any two-sided ideals K, S of A, the condition $K S=0$ implies that $K=0$ or S is nilpotent.

Every non-commutative Δ-simple ring is Δ-prime and every Δ-prime ring is Δ-semiprime. We say that R is \mathbb{Z}-torsion-free if, for any $r \in R$ and integers n, the condition $n r=0$ holds if and only if $r=0$. If the implication

$$
2 r=0 \Rightarrow r=0
$$

is true for any $r \in R$, then R is said to be 2-torsion-free. Let

$$
\begin{gathered}
F_{p}(R)=\left\{a \in R \mid a \text { has an additive order } p^{k}\right. \\
\text { for some non-negative } k=k(a)\}
\end{gathered}
$$

be the p-part of R, where p is a prime. Then $F_{p}(R)$ is a Δ-ideal of R. If R is Δ-semiprime, then

$$
p F_{p}(R)=0
$$

In particular, in a Δ-prime ring R it holds $F_{p}(R)=0$ (and so the characteristic char $R=0$) or $F_{p}(R)=R$ (and therefore char $R=p$). Obviously that the additive group R^{+}of a Δ-prime ring R is torsion-free if and only if char $R=0$. Recall that a ring R is said to be of bounded index m, if m is the least positive integer such that $x^{m}=0$ for all nilpotent elements $x \in R$. We say that a ring R satisfies the condition (X) if one of the following holds:
(1) R or $R / \mathbb{P}(R)$ is \mathbb{Z}-torsion-free, where $\mathbb{P}(R)$ is the prime radical of R,
(2) R is of bounded index m such that an additive order of every nonzero torsion element of R, if any, is strictly larger than m.

As noted in [16, p.283], a \mathbb{Z}-torsion-free δ-prime ring is semiprime. In this way we prove the following

Proposition 1. For a ring R the following hold:
(1) if R is a Δ-semiprime ring with the condition (X), then it is semiprime,
(2) if R is both semiprime (respectively satisfies the condition (X)) and Δ-prime, then R is prime.

Relations between properties of an associative ring R, a Lie ring R^{L} and a Jordan ring R^{J} was studied by I.N. Herstein and his students (see [7, 8, 11] and bibliography in [9] and [5]); he has obtained, for a ring R of characteristic different from 2 , that the simplicity of R implies the simplicity of a Jordan ring R^{J} [7, Theorem 1], and also that every Lie ideal of a simple Lie ring R is contained in the center $Z(R)$ [7, Theorem 3]. K. McCrimmon [20, Theorem 4] has proved that R is a simple algebra if and only if R^{J} is a simple Jordan algebra. Our result is the following

Theorem 1. For a 2-torsion-free ring R the following statements are true:
(1) R is a Δ-simple ring if and only if R^{J} is a Δ-simple Jordan ring,
(2) R is a Δ-prime ring if and only if R^{J} is a Δ-prime Jordan ring,
(3) R is a Δ-semiprime ring if and only if R^{J} is a Δ-semiprime Jordan ring.

Let us $d \in \Delta$. Since $C(R)$ and ann $C(R)$ are Δ-ideals, the rule
$\bar{d}: R / \operatorname{ann} C(R) \ni r+\operatorname{ann} C(R) \mapsto d(r)+\operatorname{ann} C(R) \in R / \operatorname{ann} C(R)$ determines a derivation \bar{d} of the quotient ring $R / \operatorname{ann} C(R)$. Then

$$
\bar{\Delta}=\{\bar{d} \mid d \in \Delta\} \subseteq \operatorname{Der}(R / \operatorname{ann} C(R))
$$

Inasmuch $d(Z(R)) \subseteq Z(R)$, the rule

$$
\widehat{d}: R^{L} / Z(R) \ni r+Z(R) \mapsto d(r)+Z(R) \in R^{L} / Z(R)
$$

determines a derivation \hat{d} of the Lie ring $R^{L} / Z(R)$. Then

$$
\widehat{\Delta}=\{\widehat{d} \mid d \in \Delta\} \subseteq \operatorname{Der}\left(R^{L} / Z(R)\right)
$$

Since the center $Z(R)$ is a nonzero Lie ideal of an associative ring R with an identity, a Lie ring R^{L} is not Δ-simple. Our next result is the following

Theorem 2. Let R be a 2-torsion-free ring. Then the following are true:
(1) if the quotient ring $R^{L} / Z(R)$ is a $\widehat{\Delta}$-simple Lie ring, then R is non-commutative and $R /$ ann $C(R)$ is a $\bar{\Delta}$-simple ring,
(2) if R is a Δ-simple ring, then $R^{L} / Z(R)$ is a $\widehat{\Delta}$-simple Lie ring or R is commutative,
(3) if $R^{L} / Z(R)$ is a $\widehat{\Delta}$-semiprime Lie ring, then R is non-commutative and the quotient ring $R /$ ann $C(R)$ is a $\bar{\Delta}$-semiprime ring,
(4) if R is a Δ-semiprime ring, then $R^{L} / Z(R)$ is a $\widehat{\Delta}$-semiprime Lie ring or R is commutative,
(5) if $R^{L} / Z(R)$ is a $\widehat{\Delta}$-prime Lie ring, then R is non-commutative and $R /$ ann $C(R)$ is a $\bar{\Delta}$-prime ring,
(6) if R is a Δ-prime ring, then $R^{L} / Z(R)$ is a $\widehat{\Delta}$-prime Lie ring or R is commutative.

Throughout, let $Z(R)$ denote the center of $R,[A, B]$ (respectively $(A, B))$ an additive subgroup of R generated by all commutators $[a, b]$ (respectively (a, b)), where $a \in A$ and $b \in B, C(R)$ the commutator ideal of $R, N(R)$ the set of nilpotent elements in R, char R the characteristic of $R, \operatorname{ann}_{l} I=\{a \in R \mid a I=0\}$ the left annihilator of I in $R, \operatorname{ann}_{r} I=\{a \in$ $R \mid I a=0\}$ the right annihilator of I in R, ann $I=\left(\operatorname{ann}_{r} I\right) \cap\left(\operatorname{ann}_{l} I\right)$, $C_{R}(I)=\{a \in R \mid a i=i a$ for all $i \in I\}$ the centralizer of I in R and $\partial_{a}(x)=[a, x]$ for $a, x \in R$.

All other definitions and facts are standard and it can be found in [10], [17] and [19].

2. Differentially prime right Goldie rings

Let agree that

$$
d^{0}=\operatorname{id}_{R}
$$

is the identity endomorphism for $d \in \Delta$.
Lemma 1. The following conditions are equivalent:
(1) R is a Δ-semiprime ring,
(2) for any Δ-ideals A, B of R the implication

$$
A B=0 \Rightarrow A \cap B=0
$$

is true,
(3) if $a \in R$ is such that

$$
a R \delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a)=0
$$

for any integers $k \geqslant 1, m_{i} \geqslant 0$ and derivations $\delta_{i} \in \Delta(i=1, \ldots, k)$, then $a=0$.

Proof. A simple modification of Proposition 2 from [17, §3.2].
Lemma 2. The following conditions are equivalent:
(1) R is a Δ-prime ring,
(2) a left annihilator $\operatorname{ann}_{l} I$ of a left Δ-ideal I of R is zero,
(3) a right annihilator $\operatorname{ann}_{r} I$ of a right Δ-ideal I of R is zero,
(4) if $a, b \in R$ are such that

$$
a R \delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(b)=0
$$

for any integers $k \geqslant 1, m_{j} \geqslant 0$ and derivations $\delta_{j} \in \Delta(j=1, \ldots, k)$, then $a=0$ or $b=0$.

Proof. A simple consequence of Lemma 2.1.1 from [10].
If I is an ideal of a ring R, then
$\mathcal{C}_{R}(I)=\{x \in R \mid x+I$ is regular in the quotient ring $R / I\}$
(see [19, Chapter 2, §1]). The next lemma extends Proposition 1 of [15].

Lemma 3. Let R be a right Goldie ring and $\delta \in \operatorname{Der} R$. If R is δ-prime, then:
(a) the set $N=N(R)$ of nilpotent elements of R is its prime radical,
(b) $\bigcap_{i=1}^{k} \delta^{-1}(N)=0$ for some integer k,
(c) $\mathcal{C}_{R}(0)=\mathcal{C}_{R}(N)$.

Proof. From Theorem 2.2 of [16] (see the part $(i i) \Rightarrow($ (iii) of its proof), we obtain (a) and (b). By Proposition 4.1 .3 of [19], $\mathcal{C}_{R}(0) \subseteq \mathcal{C}_{R}(N)$. By the same argument as in [16, p.284], we can obtain that $\mathcal{C}_{R}(0)=\mathcal{C}_{R}(N)$.

Corollary 1. If R is a commutative δ-prime Goldie ring and $\delta \in \operatorname{Der} R$, then $N(R)$ contains all zero-divisors of R.

By Corollary 1.4 of [6], if I is a δ-prime ideal of a right Noetherian ring R and R / I has characteristic 0 , then I is prime. The following lemma is an extension of Lemma 2.5 from [6].

Lemma 4. Let R be a 2-torsion-free commutative Goldie ring and $\delta \in$ Der R. If R is δ-prime, then it is an integral domain.

Proof. Assume that $a \in \operatorname{ann} N(R), b \in N(R)$ and $r \in R$. Then

$$
\begin{aligned}
0 & =\delta^{2}(a r b)=\delta(\delta(a) r b+a \delta(r) b+a r \delta(b)) \\
& =\delta^{2}(a) r b+2 \delta(a) \delta(r) b+2 \delta(a) r \delta(b)+a \delta^{2}(r) b+2 a \delta(r) \delta(b)+a r \delta^{2}(b)
\end{aligned}
$$

and so

$$
2 \delta(a) R \delta(b) \subseteq N(R)
$$

This means that $\delta(a) \in N(R)$ or $\delta(b) \in N(R)$. Hence $N(R)$ is δ-stable. By Lemma 3, $N(R)$ is a ideal and therefore $N(R)=0$. By Lemma 1.2 of [4], R is prime and consequently it is an integral domain.

Proof of Proposition 1.

(1) By Proposition 1.3 of [6] and Theorem 1 of [1], the prime radical $\mathbb{P}(R)$ is a Δ-ideal and so $\mathbb{P}(R)=0$ is zero.
(2) Since $\mathbb{P}(R)=0, R$ is prime by Lemma 1.2 from [4].

By Theorem 4 of [22], a Δ-simple ring R of characteristic 0 is prime. Since every non-commutative Δ-simple ring is Δ-prime, in view of Proposition 1 we obtain the following

Corollary 2. Let R be a semiprime ring (respectively a ring R satisfy the condition (X)). If R is Δ-simple, then it is prime.

3. Differential analogues of Herstein's results

For the proof of Theorem 2 we need the next results. In the proofs below we use the same consideration, as in [12, Chapter 1, §1], and present them here in order to have the paper more self-contained. Let agree that everywhere in this section $k \geqslant 1$ and $m_{i} \geqslant 0$ are integers ($i=1, \ldots, k$).

Lemma 5. Let R be a Δ-semiprime ring, A and B its Δ-ideals. Then the following statements hold:
(i) if $A B=0$, then $B A=0$.
(ii) $\operatorname{ann}_{l} A=\operatorname{ann}_{r} A$.
(iii) $A \cap \operatorname{ann}_{r} A=0$.

Proof. (i) Indeed, $B A$ is a Δ-ideal and $(B A)^{2}=0$ and so $B A=0$.
(ii) We denote $\left(\operatorname{ann}_{r} A\right) A$ by X. Since X is a Δ-ideal and $X^{2}=0$, we deduce that $X=0$. This means that

$$
\operatorname{ann}_{r} A \subseteq \operatorname{ann}_{l} A
$$

The inverse inclusion we can prove similarly.
(iii) Since $A \cap \operatorname{ann}_{r} A$ is a nilpotent Δ-ideal, the assertion holds.

Henceforth

$$
\begin{aligned}
X_{a}= & \left\{\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), x\right] \mid x \in R, \delta_{i} \in \Delta, m_{i} \geqslant 0\right. \\
& \text { and } k \geqslant 1 \text { are integers }(i=1, \ldots, k)\} .
\end{aligned}
$$

It is clear that $[a, x] \in X_{a}$.
Lemma 6. Let R be a Δ-semiprime ring and $a \in R$. Then the following statements hold:
(i) if

$$
a\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), R\right]=0
$$

for any integers $k \geqslant 1, m_{i} \geqslant 0$ and derivations $\delta_{i} \in \Delta(i=1, \ldots, k)$, then $a \in Z(R)$,
(ii) if I is a right Δ-ideal of R, then $Z(I) \subseteq Z(R)$,
(iii) if I is a commutative right Δ-ideal of R and I is nonzero, then $I \subseteq Z(R)$. If, moreover, R is Δ-prime, then it is commutative.

Proof. (i) Let $x, y \in R$ and $d, \delta \in \Delta$. Since

$$
\begin{equation*}
[b, x y]=[b, x] y+x[b, y] \tag{3.1}
\end{equation*}
$$

for any $b \in X_{a}$ and $a[b, x y]=0$, we conclude that $a x[b, y]=0$. This gives that $a y x[b, y]=0$ and $y a x[b, y]=0$ and consequently

$$
\begin{equation*}
(R[a, y] R)^{2}=0 \tag{3.2}
\end{equation*}
$$

In addition,

$$
0=d(a[b, x])=d(a)[b, x] .
$$

Multiplying (3.1) by $d(a)$ on left we get $d(a) x[b, y]=0$. Moreover,

$$
0=\delta(a x[d(b), y])=\delta(a) x[d(b), y]
$$

and, by the similar argument, we obtain that

$$
\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a) x\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), y\right]=0
$$

for any integers $k \geqslant 1, m_{i} \geqslant 0$ and derivations $\delta_{i} \in \Delta(i=1, \ldots, k)$. As in the proof of the condition (3.2), we deduce that

$$
\left(R\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), y\right] R\right)^{2}=0
$$

Then

$$
I=\sum_{k=1}^{\infty} \sum_{\substack{\delta_{1} \ldots \delta_{k} \in \Delta \\ y \in R}} R\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), y\right] R
$$

is a sum of nilpotent ideals and therefore it is a nil ideal. Since I is a Δ-ideal, we conclude that $I=0$ and, as a consequence, $a \in Z(R)$.
(ii) Let $a \in Z(I)$ and $y \in R$. Then, for $\delta_{1}, \ldots, \delta_{k} \in \Delta$, we have

$$
\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a) \in Z(I)
$$

and $a y \in I$. This gives that

$$
a\left(\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a) y\right)=\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a)(a y)=a\left(y \delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a)\right)
$$

and thus

$$
a\left[\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a), y\right]=0
$$

By $(i), a \in Z(R)$ is central.
(iii) $\mathrm{By}($ (ii), $I \subseteq Z(R)$. Assume that R is Δ-prime, $u, v \in R$ and $a \in I$. Then $a u \in I$ and so $a u \in Z(R)$. Since

$$
a(u v)=(a u) v=v(a u)=(v a) u=a(v u)
$$

we see that

$$
[u, v] \in \operatorname{ann}_{r} I
$$

By Lemma 2(3), $[u, v]=0$ and hence R is commutative.
Lemma 7. Let R be a Δ-prime ring and $a \in R$. If $a \in C_{R}(I)$ for some nonzero right Δ-ideal I of R, then $a \in Z(R)$.

Proof. Let us $y \in R$ and $b \in I$. Then by $\in I$ and so $b a y=a(b y)=b y a$. This yields that

$$
I[a, y]=0=[a, y] I
$$

By Lemma 2(3), $[a, y]=0$. Hence $a \in Z(R)$.

Lemma 8. The left annihilator $\operatorname{ann}_{l}\left(X_{a}\right)$ is a left Δ-ideal of R.
Proof. Immediate from the definition.

Lemma 9. If R is a Δ-semiprime ring, then $C_{R}([R, R]) \subseteq Z(R)$.
Proof. Let us $a \in C_{R}([R, R]), d, \delta \in \Delta$ and $x, y \in R$. Putting x for a and $x d(a)$ for $x y$ in (3.1) we obtain

$$
[x, x d(a)]=[x, x] d(a)+x[x, d(a)]
$$

and, as a consequence, $[a, x[x, d(a)]]=0$ and $[a, x][x, d(a)]=0$. Then, by the same reasons as in the proof of Lemma 6(i), we obtain that $[a, x] \in \operatorname{ann}_{l}\left(X_{a}\right)$ and $A=\operatorname{ann}_{l}\left(X_{a}\right)$ is a Δ-ideal. Then

$$
[\delta(a), x][d(a), x]=\delta([a, x][d(a), x])=0
$$

Since $A \cap \operatorname{ann}_{l} A=0$, we deduce that is a nilpotent Δ-ideal and so $a \in Z(R)$.

Lemma 10. Let R be a 2 -torsion-free Δ-semiprime ring. If $a \in R$ commutes with all elements of X_{a}, then $a \in Z(R)$.

Proof. Let $r, x, y \in R$ and $d \in \Delta$. It is clear that $\partial_{a}^{2}(x)=0$. From $\partial_{a}^{2}(x y)=0$ it follows that

$$
2 \partial_{a}(x) \partial_{a}(y)=0
$$

and so $\partial_{a}(x) \partial_{a}(y)=0$. Since

$$
0=\partial_{a}(x) \partial_{a}(r x)=\partial_{a}(x) \partial_{a}(r) x+\partial_{a}(x) r \partial_{a}(x)=\partial_{a}(x) r \partial_{a}(x)
$$

we deduce that $\partial_{a}(x) R \partial_{a}(x)=0$ and $\left(\partial_{a}(x) R\right)^{2}=0$. Moreover, $a[b, x]=$ $[b, x] a$ for any $[b, x] \in X_{a}$ and therefore

$$
d(a)[b, x]+a[d(b), x]+a[b, d(x)]=[b, x] d(a)+[d(b), x] a+[b, d(x)] a
$$

From this it holds that

$$
d(a)[b, x]=[b, x] d(a)
$$

This means that $C_{R}\left(X_{a}\right)$ is Δ-stable and $\left(\partial_{d(a)}(x) R\right)^{2}=0$. As a consequence,

$$
I=\sum_{k=1}^{\infty} \sum_{\substack{x \in R \\ m_{k} \geqslant 0 \\ \delta_{1}, \ldots, \delta_{k} \in \Delta}} \partial_{\delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a)}(x) R
$$

is a sum of nilpotent ideals and so I is a nil ideal. Since I is a Δ-ideal, we deduce that $I=0$. Hence $a \in Z(R)$.

The next lemma is an extension of Lemma 1 from [11] in the differential case.

Lemma 11. Let R be a 2-torsion-free Δ-semiprime ring, T its Lie Δ ideal. If $[T, T] \subseteq Z(R)$, then $T \subseteq Z(R)$.

Proof. Let $x \in R$ and $t \in T$.

1) If $[T, T]=0$, then $[t, x] \in T$ and so $[t,[t, x]]=0$. By Lemma 10 , $T \subseteq Z(R)$.
2) Now assume that $0 \neq[a, b] \in[T, T]$ for some $a, b \in T$. Then

$$
\partial_{a}(b) \in Z(R) \text { and } \partial_{a}^{2}(R) \subseteq Z(R)
$$

Moreover, we have that

$$
\begin{aligned}
Z(R) \ni \partial_{a}^{2}(b x) & =\partial_{a}\left(\partial_{a}(b) x+b \partial_{a}(x)\right) \\
& =\partial_{a}^{2}(b) x+2 \partial_{a}(b) \partial_{a}(x)+b \partial_{a}^{2}(x) \\
& =2 \partial_{a}(b) \partial_{a}(x)+b \partial_{a}^{2}(x)
\end{aligned}
$$

and hence

$$
\left[2 \partial_{a}(b) \partial_{a}(x)+b \partial_{a}^{2}(x), b\right]=0
$$

Then

$$
\begin{align*}
0 & =2 \partial_{b}\left(\partial_{a}(b)\right) \partial_{a}(x)+2 \partial_{a}(b) \partial_{b}\left(\partial_{a}(x)\right)+\partial_{b}(b) \partial_{a}^{2}(x)+b \partial_{b}\left(\partial_{a}^{2}(x)\right) \tag{3.3}\\
& =2 \partial_{a}(b) \partial_{b}\left(\partial_{a}(x)\right)
\end{align*}
$$

and

$$
\partial_{a}(b a)=\partial_{a}(b) a+b \partial_{a}(a)=\partial_{a}(b) a
$$

Replacing $b a$ for x in (3.3) we have

$$
0=2 \partial_{a}(b) \partial_{b}\left(\partial_{a}(b) a\right)=2 \partial_{a}(b)\left(\partial_{b}\left(\partial_{a}(b)\right)+\partial_{a}(b) \partial_{b}(a)\right)=-2 \partial_{a}(b)^{3}
$$

and thus $\partial_{a}(b)^{3}=0$. Then $R \partial_{a}(b)$ is a nilpotent ideal in R and, as a consequence,

$$
\sum_{a, b \in T} R \partial_{a}(b)
$$

is a nonzero nil Δ-ideal, a contradiction.
Lemma 12. If U is a Lie Δ-ideal of a ring R and $I(U)=\{u \in R \mid$ $u R \subseteq U\}$, then $I(U)$ is the largest Δ-ideal of R such that $I(U) \subseteq U$.

Proof. Let $u, v \in I(U), x, y \in R$ and $\delta \in \Delta$. Clearly that $I(U)$ is an additive subgroup of $R, I(U) \subseteq U$ and $(u x) y=u(x y) \in(u x) R=u(x R) \subseteq$ $u R \subseteq U$ that is $u x \in I(U)$. From

$$
u(x y)-(y u) x=(u x) y-y(u x)=[u x, y] \in U
$$

(and so $(y u) x \in U)$ it holds that $y u \in I(U)$. Hence U is a two-sided ideal of R. Moreover,

$$
\delta(u) x+u \delta(x)=\delta(u x) \in \delta(U) \subseteq U
$$

and $u \delta(x) \in u R \subseteq U$. Therefore $\delta(u) x \in U$. This means that $I(U)$ is a Δ ideal of R. If A is a Δ-ideal of R that is contained in U, then $A R \subseteq A \subseteq U$ and hence $A \subseteq I(U)$.

Lemma 13. Let U be a Lie Δ-ideal of R. If U is an associative subring of R, then $[U, U]=0$ or U contains a nonzero Δ-ideal of R.

Proof. Assume that $x \in R$ and $[U, U] \neq 0$. Then $[u, v] \neq 0$ for some $u, v \in U$ and

$$
[u, v x]=u(v x)-(v x) u=(u v-v u) x+v(u x-x u)
$$

Since $[u, x],[u, v x] \in U$ and $v[u, x] \in U$, we deduce that $[u, v] x \in U$. This means that $[u, v] \in I(U)$. In view of Lemma $12, I(U)$ is a nonzero Δ-ideal of R that is contained in U.

Proposition 2. If U is a Lie Δ-ideal of R, then $[U, U]=0$ or there exists a nonzero Δ-ideal I_{U} of R such that $\left[I_{U}, R\right] \subseteq U$.

Proof. By Lemma 3 of [7],

$$
T(U)=\{t \in R \mid[t, R] \subseteq U\}
$$

is both a Lie ideal and an associative subring of R and $U \subseteq T(U)$. Moreover, for $\delta \in \Delta$, we have

$$
[\delta(t), R]+[t, \delta(R)]=\delta([t, R]) \subseteq \delta(U) \subseteq U
$$

and so $[\delta(t), R] \subseteq U$. Hence $T(U)$ is Δ-stable. If $[U, U] \neq 0$, then, by Lemmas 12 and 13,

$$
I_{U}=I(T(U)) \subseteq T(U)
$$

is a nonzero Δ-ideal of R such that $\left[I_{U}, R\right] \subseteq U$.
Lemma 14. Let U be a Lie Δ-ideal of a ring R. If $[U, U]=0$, then the centralizer $C_{R}(U)$ is a Lie Δ-ideal and an associative subring of R.

Proof. Is immediately.
We extend Theorem 1.3 of [9] in the following
Proposition 3. Let R be a Δ-simple ring of characteristic 2 . If U is a Lie Δ-ideal of R, then one of the following holds:
(1) $[R, R] \subseteq U$,
(2) $U \subseteq Z(R)$,
(3) R contains a subfield P such that $U \subseteq P$ and $[P, R] \subseteq P$.

Proof. If $[U, U] \neq 0$, then $[R, R] \subseteq U$ by Proposition 2. Therefore we assume that $[U, U]=0$. By Lemma $14, C_{R}(U)$ is a Lie Δ-ideal and an associative subring of R such that $U \subseteq C_{R}(U)$.
a) If $C_{R}(U)$ is non-commutative, then $C_{R}(U)=R$ by Lemma 13 . Hence $U \subseteq Z(R)$.
b) Now assume that the centralizer $C_{R}(U)$ is commutative. If $c \in$ $C_{R}(U)$ and $x \in R$, then

$$
c^{2} \in C_{R}(U) \text { and }\left[c^{2}, x\right]=[[c, x], x]=2 c[c, x]=0 .
$$

This gives that $c^{2} \in Z(R)$. By Theorem 2 of [22], $Z(R)$ is a field. As a consequence, c^{2} (and so c) is invertible in $C_{R}(U)$. Hence $C_{R}(U)$ is a field.

Corollary 3. Let R be a Δ-simple ring. If U is a Lie Δ-ideal of R, then one of the following holds:
(1) $[R, R] \subseteq U$,
(2) $U \subseteq Z(R)$,
(3) char $R=2$ and R contains a subfield P such that $U \subseteq P$ and $[P, R] \subseteq P$.

4. Jordan properties

Lemma 15. Let R be a Δ-simple ring of characteristic $\neq 2, U$ its proper Jordan Δ-ideal and $a \in U$. If $[a, R] \subseteq U$, then $a=0$.

Proof. Let us $x, y \in R$. Since $[a, x] \in U$ and $(a, x) \in U$, we obtain that $2 a x \in U$ and, as a consequence, $a x \in U$ and $(a x, y) \in U$. Moreover, from $a x y \in U$ it follows that $y a x \in U$. This means that $R a R \subseteq U$. Since $d(a) \in U$ for any $d \in \Delta$, in view of [21, Lemma 1.1] we obtain that

$$
\sum_{k=1}^{\infty} \sum_{\substack{\delta_{1}, \ldots, \delta_{k} \in \Delta \\\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}}} R \delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(a) R
$$

is a proper Δ-ideal of R that is contained in U. Hence $a=0$.
Remark 1. Let R be a 2 -torsion-free ring, U its Jordan Δ-ideal. If Δ contains all inner derivations of R, then U is an ideal of R.

In fact, we have

$$
2 x a=[a, x]+(a, x) \in U
$$

for any $a, b, x \in U$ and so $x a \in U$. By the same argument, we can conclude that $a x \in U$.

Proof of Theorem 1.

$(1)(\Leftarrow)$ If A is a nonzero proper Δ-ideal of a ring R, then A^{J} is a nonzero proper Δ-ideal of R^{J}, a contradiction.
(\Rightarrow) Let U be a proper Jordan Δ-ideal of $R, a, b \in U$ and $x \in R$. By Lemma 1 of $[7],[(a, b), x] \in U$, and, by Lemma 15 , we see that

$$
\begin{equation*}
(a, b)=0 \tag{4.4}
\end{equation*}
$$

In particular, $2 a^{2}=0$ and, as a consequence, $a^{2}=0$ and $2 a x a=$ $(a,(a, x))=0$. It follows that $a x a=0$. Since

$$
0=(a+b) x(a+b)=a x b+b x a
$$

and

$$
0=(b,(a, x))=b(a x+x a)+(a x+x a) b=b a x+b x a+a x b+x b a
$$

we deduce that $b a x+x a b=0$. But $a b=-b a$ and so $b a x-x b a=0$. This means that $b a \in Z(R)$. Then $(R a b R)^{2}=0$. Since

$$
I=\sum_{k=1}^{\infty} \sum_{\substack{a, b \in U,\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}}} R a \delta_{1}^{m_{1}} \ldots \delta_{k}^{m_{k}}(b) R
$$

is a Δ-ideal of R that is a sum of nilpotent ideals, we obtain that $I=0$. Therefore

$$
0=(b, x) a=(b x+x b) a=b x a+x b a=2 b x a
$$

We conclude that $U R U=0$. From $(R U R)^{2}=0$ and $\delta(R U R) \subseteq R U R$ for any $\delta \in \Delta$ it holds that $U=0$.
$(2)(\Leftarrow)$ If A, B are Δ-ideals of R such that $A B=0$, then $(B A)^{2}=0$ and so $B A$ is a Jordan ideal of R satisfying the condition

$$
(B A, B A)=0
$$

Thus the condition (4.4) is true for $U=B A$. As in the proof of the part (1), we obtain that $B A=0$. Then A^{J}, B^{J} are Δ-ideals of a Jordan ring R^{J} such that

$$
\left(A^{J}, B^{J}\right)=0
$$

Hence $A=0$ or $B=0$.
(\Rightarrow) Let $a_{1}, a_{2} \in A$ and $x, y \in R$. Suppose that R^{J} is not Δ-prime and therefore there exist nonzero Jordan Δ-ideals A, B of R such that

$$
(A, B)=0
$$

By the same reasons as above, we conclude that $A \cap B=0$. Then, by Lemma 1 of $[7]$, we have $\left[\left(a_{1}, a_{2}\right), x\right] \in A$ and hence

$$
\left[\left(a_{1}, a_{2}\right), x\right] \pm\left(\left(a_{1}, a_{2}\right), x\right) \in A
$$

Therefore $x\left(a_{1}, a_{2}\right) y \in A$. Thus R contains Δ-ideals $R(A, A) R \subseteq A$ and $R(B, B) R \subseteq B$ such that

$$
R(A, A) R(B, B) R \subseteq A \cap B=0
$$

Hence $(A, A)=0$ or $(B, B)=0$ and this leads to a contradiction.
(3) (\Leftarrow) If A is a nonzero Δ-ideal of R such that $A^{2}=0$, then A^{J} is a nonzero Δ-ideal of the Jordan ring R^{J} such that

$$
\left(A^{J}, A^{J}\right)=0
$$

a contradiction.
(\Rightarrow) Suppose that R has a nonzero Jordan Δ-ideal U such that

$$
(U, U)=0
$$

Then the condition (4.4) is true for any $a, b \in U$. As in the proof of the part (1), we obtain that $U=0$.

If R is a ring, then on the set R we can to define a left Jordan multiplication " $\langle-,-\rangle$ " by the rule

$$
\langle a, b\rangle=2 a b
$$

for any $a, b \in R$. Then the equalities

$$
\langle\langle\langle a, a\rangle, b\rangle, a\rangle=\langle\langle a, a\rangle,\langle b, a\rangle\rangle \text { and }\langle\langle a, b\rangle, a\rangle=\langle a,\langle b, a\rangle\rangle
$$

are true and hence

$$
R^{l J}=(R,+,\langle-,-\rangle)
$$

is a non-commutative Jordan ring (which is called a left Jordan ring associated with an associative ring R). It is clear that, for commutative ring R, we have

$$
R^{J}=R^{l J}
$$

If A is an additive subgroup of R that $\langle a, r\rangle,\langle r, a\rangle \in A$ for any $a \in A$ and $r \in R$, then A is called an ideal of $R^{l J}$. If $\delta \in \Delta$ and $a, b \in R$, then

$$
\delta(\langle a, b\rangle)=\delta(2 a b)=2 \delta(a) b+2 a \delta(b)=\langle\delta(a), b\rangle+\langle a, \delta(b)\rangle
$$

and therefore $\delta \in \operatorname{Der}\left(R^{l J}\right)$. By the other hand, if $\delta \in \operatorname{Der}\left(R^{l J}\right)$, then

$$
2 \delta(a b)=\delta(\langle a, b\rangle)=\langle\delta(a), b\rangle+\langle a, \delta(b)\rangle=2(\delta(a) b+a \delta(b))
$$

If R is a 2 -torsion-free ring, then $\delta \in \operatorname{Der} R$. Similarly, as in Theorem 1, we can prove the following

Proposition 4. For a 2-torsion-free ring R the following conditions are true:
(1) R is a Δ-simple ring if and only if $R^{l J}$ is a Δ-simple Jordan ring,
(2) R is a Δ-prime ring if and only if $R^{l J}$ is a Δ-prime Jordan ring,
(3) R is a Δ-semiprime ring if and only if $R^{l J}$ is a Δ-semiprime Jordan ring.

5. Proofs

The next lemma in the prime case is contained in [18, Lemma 7].
Lemma 16 ([2, Lemma 1.7]). Let R be a ring. If $[[R, R],[R, R]]=0$, then the commutator ideal $C(R)$ is nil.

Corollary 4. If R is a non-commutative Δ-semiprime ring, then $[R, R]$ is non-commutative.

Proof of Theorem 2.

(1) It is clear that a ring R is non-commutative. If A is a nonzero proper Δ-ideal of R, then A^{L} is a nonzero proper Δ-ideal of R^{L}. Therefore $A \subseteq Z(R)$ and, as a consequence, $A \cdot C(R)=0$.
(2) Suppose that a Δ-simple ring R is non-commutative and U is its nonzero proper Lie Δ-ideal. By Proposition $2,[U, U]=0$. Then, by Lemma 11, $U \subseteq Z(R)$. Hence the quotient ring $R^{L} / Z(R)$ is $\widehat{\Delta}$-simple.
(3) Let A be a nonzero Δ-ideal of R such that $A^{2}=0$. Then A^{L} is a nonzero Δ-ideal of a Lie ring R^{L} and, moreover,

$$
\left[A^{L}, A^{L}\right]=0
$$

By Lemma 11, $A \subseteq Z(R)$ and hence $A \cdot C(R)=0$.
(4) Suppose that R is non-commutative. Let A be a nonzero Lie Δ-ideal of R such that $[A, A]=0$. Then, by Lemma $11, A \subseteq Z(R)$ and, as a consequence, the Lie ring $R^{L} / Z(R)$ is $\widehat{\Delta}$-semiprime.
(5) Let A, B be nonzero Δ-ideals of R such that $A B=0$. Obviously, $[A, B] \subseteq Z(R)$. Then $A \subseteq Z(R)$ or $B \subseteq Z(R)$.
(6) Assume that R is non-commutative and A, B are nonzero Lie Δ-ideals of R such that

$$
[A, B]=0
$$

Then $A \cap B \subseteq Z(R)$. Since $A \cap B \subseteq$ ann $C(R)$ in a Δ-prime ring R, we have that the intersection $A \cap B=0$ is zero. If $T(A)=R$ (see proof of Proposition 2), then $[R, R] \subseteq A$ and $B \subseteq C_{R}([R, R])$. By Lemma 9, $B \subseteq Z(R)$. So we assume that $T(A) \neq R$. If $[T(A), T(A)]=0$, then $[A, A]=0$ and, by Lemma 11, $A \subseteq Z(R)$. Suppose that $[T(A), T(A)] \neq 0$. By Lemma 13, $T(A)$ contains a nonzero Δ-ideal I of R. Since

$$
[I, B] \subseteq A \cap B=0
$$

we conclude that $B \subseteq Z(R)$ by Lemma 7 .
The map

$$
\partial_{a}: R \ni x \mapsto[a, x] \in R
$$

is called an inner derivation of a ring R induced by $a \in R$. The set IDer R of all inner derivations of R is a Lie ring. Every prime Lie ring is primary Lie.

Lemma 17. There is the Lie ring isomorphism

$$
\text { IDer } R \ni \partial_{a} \mapsto a+Z(R) \in R^{L} / Z(R)
$$

Proof. Evident.
Corollary 5. Let R be a ring. Then the following statements hold:
(1) IDer R is a simple Lie ring if and only if $R^{L} / Z(R)$ is a simple Lie ring,
(2) IDer R is a prime Lie ring if and only if $R^{L} / Z(R)$ is a prime Lie ring,
(3) IDer R is a semiprime Lie ring if and only if $R^{L} / Z(R)$ is a semiprime Lie ring,
(4) IDer R is a primary Lie ring if and only if $R^{L} / Z(R)$ is a primary Lie ring.

References

[1] K. I. Beidar, A. V. Mikhal'ev, Ortogonal completeness and minimal prime ideals (in Russian), Trudy Sem. Petrovski, 10, 1984, pp.227-234.
[2] H. E. Bell, A. A. Klein, Combinatorial commutativity and finiteness conditions for rings, Comm. Algebra, 29, 2001, pp.2935-2943.
[3] J. Bergen, I. N. Herstein, E. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71, 1981, pp.259-267.
[4] J. Bergen, S. Montgomery, D. S. Passmann, Radicals of crossed products of enveloping algebras, Israel J. Math., 59, 1987, pp.167-184.
[5] M. Brešar, M. A. Chebotar and W.S. Martindale, $3^{\text {rd }}$, Functional identities, Birkh' auser Verlag, Basel Boston Berlin, 2000.
[6] K. R. Goodearl, R. B. Warfield, Jr., Primitivity in differential operator rings, Math. Z., 180, 1982, pp.503-523.
[7] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math., 77, 1955, pp.279-285.
[8] I. N. Herstein, The Lie ring of a simple associative ring, Duke Math. J., 22, 1955, pp.471-476.
[9] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago London, 1965.
[10] I. N. Herstein, Noncommutative rings, The Mathematical Association of America, J. Wiley and Sons, 1968.
[11] I. N. Herstein, On the Lie structure of an associative ring, J. Algebra, 14, 1970, pp.561-571.
[12] I. N. Herstein, Rings with involution, The University of Chicago Press, Chicago London 1976.
[13] N. Jacobson, Lie algebras, Interscience, New York, 1962.
[14] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., V. 39, Providence, R.I., 1968.
[15] C. R. Jordan, D. A. Jordan, The Lie structure of a commutative ring with derivation, J. London Math. Soc.(2), 18, 1978, pp.39-49.
[16] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. (2), 10, 1975, pp.281-291.
[17] J. Lambek, Lectures on rings and modules, Blaisdell Publ. Co. A division of Ginn and Co. Waltham Mass. Toronto London, 1966.
[18] W. S. Martindale, $3^{\text {rd }}$, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc., 142, 1969, pp.437-455.
[19] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings. With the cooperation of L. W. Small. Revised edition. Grad. Stud. in Math., 30. Amer. Math. Soc., Providence, RI, 2001.
[20] K. McCrimmon, On Herstein's theorem relating Jordan and associative algebras, J. Algebra, 13, 1969, pp.382-392.
[21] A. Nowicki, The Lie structure of a commutative ring with a derivation, Arch. Math., 45, 1985, pp.328-335.
[22] E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc., 11, 1960, pp.337-343.
[23] I. I. Zuev, Lie ideals of associative rings (in Russian), Uspehi Mat. Nauk, 18, 1963, pp.155-158.

Contact information

O. D. Artemovych Institute of Mathematics
 Cracow University of Technology
 ul. Warszawska 24
 Cracow 31-155 POLAND
 $E-M a i l(s)$: artemo@usk.pk.edu.pl

M. P. Lukashenko Faculty of Mathematics and Informatics

PreCarpathian National University of Vasyl Stefanyk
Shevchenko St 57
Ivano-Frankivsk 76025 UKRAINE
E-Mail(s): bilochka.90@mail.ru
Received by the editors: 22.01.2015
and in final form 22.03.2015.

