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Tiled orders over discrete valuation rings, finite
Markov chains and partially ordered sets. II

Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina,
V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev

Abstract. The main concept of this part of the paper is
that of a reduced exponent matrix and its quiver, which is strongly
connected and simply laced. We give the description of quivers of
reduced Gorenstein exponent matrices whose number s of vertices
is at most 7. For 2 6 s 6 5 we have that all adjacency matrices of
such quivers are multiples of doubly stochastic matrices. We prove
that for any permutation σ on n letters without fixed elements
there exists a reduced Gorenstein tiled order Λ with σ(E) = σ.
We show that for any positive integer k there exists a Gorenstein
tiled order Λk with inΛk = k. The adjacency matrix of any cyclic
Gorenstein order Λ is a linear combination of powers of a permu-
tation matrix Pσ with non-negative coefficients, where σ = σ(Λ).
If A is a noetherian prime semiperfect semidistributive ring of a
finite global dimension, then Q(A) be a strongly connected simply
laced quiver which has no loops.

1. Introduction

This is the second part of a work whose first part is [2]. We use termi-
nology, definitions and results given in [2]. All rings are associative with
1 6= 0. The terms “artinian”, “noetherian”, etc. will refer to both sides
of a ring, in particular, an “artinian ring” means a right artinian ring
which is also left artinian.

Let O be a complete discrete valuation ring with the field of frac-
tions K, A a finite-dimensional separable K-algebra and Λ a completely
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decomposable order in A, i.e. each local idempotent e ∈ Λ is a local
idempotent of A (see [24]). Then Λ is a finite direct product of tiled
orders if and only if Λ is the intersection of its maximal overrings.

A semiperfect semidistributive ring shall be called an SPSD-ring.
According to the “Decomposition theorem for noetherian semiprime
SPSD-rings” (see [25], [2], Theorem 3.8), the tiled orders over (non-
necessarily commutative) discrete valuation rings are exactly the noethe-
rian (but not artinian) prime SPSD-rings. Since no other orders are
considered in the paper, by a tiled order we shall always mean a tiled
order Λ over a discrete valuation ring O, and write Λ = {O, E(Λ)}, where
E(Λ) is the exponent matrix.

If E(Λ) is a (0, 1)-matrix, then Λ is a (0, 1)-order. The next condition
is often used in the theory of orders (see [10], [11], [32], [33], [40]): for a
given order Λ there exists a maximal order Γ such that

rad Γ ⊂ Λ ⊂ Γ.

It is easy to see that if a tiled order Λ satisfies the above condition is
tiled then Λ is necessarily a (0, 1)-order.

The main concept of this part of the work is that of a reduced ex-
ponent matrix and its quiver. Note that exponent matrices appeared
first in the study of completely decomposable orders (see [26], [42]) and
were used for the investigation of semimaximal rings of finite type (see
[43], [44]).

In Section 2 we introduce the notion of equivalence for reduced expo-
nent matrices and show that the quivers of equivalent exponent matrices
can be obtained from each other by a renumeration of vertices. We
observe that the quiver of a reduced exponent matrix is strongly con-
nected and simply laced. A strongly connected and simply laced quiver
Q is called admissible if there exists a reduced exponent matrix E with
Q(E) = Q.

We give the list of admissible quivers without loops for 2 6 s 6 4,
where s is the number of vertices of Q(E). The number of these quivers
for s = 2 is 1; for s = 3 is 2 and for s = 4 is 11 (Section 3). It is shown
in [38] and [39] that if we remove all loops from the admissible quivers
with 2 6 s 6 4 then we obtain all strongly connected quivers from [16]
(Appendix 2, Digraph diagrams).

Sections 4 and 5 are devoted to the description of quivers of reduced
Gorenstein exponent matrices whose number of vertices is at most 7. For
2 6 s 6 5 we have that all adjacency matrices of such quivers are mul-
tiples of doubly stochastic matrices. In Section 6 we prove that for any
permutation σ on n letters without fixed elements there exists a reduced
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Gorenstein exponent matrix E with σ(E) = σ. We also show that the
Cayley table of the elementary abelian 2-group of order 2k is a reduced
Gorenstein exponent matrix and its index equals k + 1. Therefore, for
any positive integer k there exists a Gorenstein tiled order Γk−1 such
that inΓk−1 = k (Section 7).

With respect to the results of Sections 6 and 7, it is natural to ask
the following question. Suppose that a Latin square E [21] defined on
S = {0, 1, . . . , n − 1} is an exponent matrix which is doubly symmetric,
that is E is symmetric with respect to the main diagonal and is also
symmetric with respect to the secondary diagonal. Suppose also that
the first row of E is {0 1 2 . . . n − 1}.

Is it true that E is necessarily the Cayley table of an elementary
abelian 2-group?

The main result of Section 8 is Theorem 8.7. Observe the following
fact (Proposition 8.8). The adjacency matrix of any cyclic Gorenstein
order Λ is a linear combination of powers of a permutation matrix Pσ

with non-negative coefficients, where σ = σ(Λ).
The last section deals with the global dimension of tiled orders. R.B.

Tarsy conjectured in [37] that the upper bound gl.dimΛ 6 n − 1 holds
for any tiled order in Mn(D), where D is a division ring of fractions of a
discrete valuation ring O. V.A. Jategaonkar (see [19], [20]) proved Tarsy’s
conjecture for triangular orders and for n =2,3,4, E. Kirkman and J.
Kuzmanovich did it for (0, 1)-orders (see [27]). Observe also that Tarsy’s
conjecture is true for tiled orders of width 2 (see [5]). In [12] H. Fujita
proved Tarsy’s conjecture for n =5 and constructed a counterexample
to this conjecture. More precisely, he showed that there exists a tiled
order Λn in Mn(D) with gl.dimΛn = n for n >6 (see [12], Example 2.5).
Tiled orders having large global dimension were considered in [35], [18]
and [13]. In what follows we shall often refer to a tiled order Λ and
its ideals, indicating only their exponent matrices. Using the approach,
proposed by K.W.Roggenkamp in [32] (see also [27], Proposition 2.4), we
prove that if a poset PΛ associated with a (0, 1)-order Λ has a unique
maximal element or unique minimal element, then gl.dimΛ < ∞. If PΛ

is disconnected, then gl.dimΛ = ∞ (see [10]). For the order Ωn (see
[37]) we construct a chain of the projective idempotent ideals I1 ⊂ I2 ⊂
. . . ⊂ In−1 ⊂ Ωn such that the quotient ring Ωn/I1 is quasi-hereditary
(see [4], [7], [30]).

We use the example by V. Dlab and C. Ringel ( [7], p. 283) for a
construction of a tiled order Λ of width 2 with gl.dimΛ = 4 such that
Q(Λ) has five vertices.

We show that all tiled orders of finite global dimension whose quiver
has at most four vertices have width 2, except the order F4 for which
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E(F4) =









0 0 0 0
1 1 0 1
1 1 0 1
1 1 1 0









. Note that PF4 =























2 3 4
• • •

Â | Á

•
1























.

In general case PFn
= {1, 2, . . . , n}, where 1 6 i for i = 2, . . . , n and the

elements 2, 3, . . . , n are pairwise non-comparable. It is easy to see that
gl.dimFn = 2 for any n.

In the case s=4, using the Drozd-Kirichenko rejection lemma (see
[9], [17]), we construct the sequence of tiled orders: Ω4 ⊂ E4 ⊂ E3 ⊂
E2 ⊂ H4 (see Section 3). These orders and F4 exhaust all orders Λ with
gl.dimΛ < ∞ for s=4 (see [12]).

In conclusion observe the following fact given in the last section: If A
is a noetherian prime semiperfect semidistributive ring of a finite global
dimension, then Q(A) is a strongly connected simply laced quiver which
has no loops (see also [41] and [6]).

2. Exponent matrices

Denote by Mn(Z) the ring of all square n × n-matrices over the ring of
integers Z. Let E ∈ Mn(Z).

Definition 2.1. We call a matrix E = (αij), an exponent matrix if
αij +αjk > αik for i, j, k = 1, . . . , n and αii = 0 for i = 1, . . . , n. These
relations are called ring inequalities. An exponent matrix E is called
reduced if αij + αji > 0 for i, j = 1, . . . , n.

Definition 2.2. We shall call two exponents matrices E = (αij) and
Θ = (θij) equivalent if they can be obtained from each other by trans-
formations of the following two types :

(1) subtracting an integer from the i-th row with simultaneous adding
it to the i-th column;

(2) simultaneous interchanging of two rows and the equally numbered
columns.

Let E = (αij) be a reduced exponent matrix. Set E(1) = (βij), where
βij = αij for i 6= j and βii = 1 for i = 1, . . . , n, and E(2) = (γij), where
γij = min

16k6n
(βik + βkj). Obviously, [Q] = E(2) − E(1) is a (0, 1)-matrix.

By Theorem 4.11 and Corollary 5.3 [2] we have the following assertion.
Theorem A. The matrix [Q] = E(2) − E(1) is the adjacency matrix

of the strongly connected simply laced quiver Q = Q(E).

Definition 2.3. The quiver Q(E) shall be called the quiver of the re-
duced exponent matrix E.
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Definition 2.4. A strongly connected simply laced quiver shall be called
admissible if it is a quiver of a reduced exponent matrix.

Definition 2.5. A reduced exponent matrix E = (αij) ∈ Mn(Z) shall be
called Gorenstein if there exists a permutation σ of {1, 2, . . . , n} such
that αik + αkσ(i) = αiσ(i) for i, k = 1, . . . , n.

The permutation σ is denoted by σ(E). Notice that σ(E) for a reduced
Gorenstein exponent matrix E has no cycles of length 1.

Definition 2.6. The index (in E) of a reduced exponent matrix E is the
maximal real eigenvalue of the adjacency matrix [Q(E)] of Q(E).

Example 1. The Cayley table of the Klein four-group (2)× (2) can
be written in such form:

K = K(4) =









0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









.

Then K(4) is a reduced Gorenstein exponent matrix with permutation
σ = σ(K(4)) = (14)(23). Obviously,

K(2) =









2 2 3 3
2 2 3 3
3 3 2 2
3 3 2 2









and

[Q(K)] = K(2) − K(1) =









1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1









= 3 · P1,

where P1 is a doubly stochastic matrix, and Q(K) is

µ´
¶³

t

?

6

µ´
¶³

t-¾

-¾ t?

6

µ´
¶³t

µ´
¶³

Obviously, in K = 3.
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Definition 2.7. (see [31], p. 140). A quasigroup Q which satisfies the
identity (xu)(vy) = (xv)(uy) for x, y, u, v ∈ Q is called entropic.

Example 2. ( [31], p. 141, V. 2.2.1. Example).
Let Q(5) = {0, 1, 2, 3, 4} is the quasigroup with the following Cayley

table

0 0 1 2 3 4

0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0

It is clearly, that Q(5) is an entropic quasigroup. The Cayley table

E(5) =













0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0













of Q(5) is a reduced Gorenstein exponent matrix with σ(E(5)) = (12345).
Obviously,

[Q(E(5))] =













1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1













= 2P2,

where P2 is a doubly stochastic matrix, and in E(5) = 2.

Definition 2.8. A reduced Gorenstein exponent matrix E is called cyclic
if σ(E) is a cycle.

Theorem B. Let E be a cyclic reduced Gorenstein exponent matrix.
Then [Q(E)] = λP , where λ is a positive integer and P is a doubly
stochastic matrix.

The proof follows from ( [34], Theorem 3.4).
Example 3. With any finite partially ordered set (poset) P we

relate a reduced exponent (0, 1)-matrix EP = (λij) by the following way:
λij = 0 ⇔ i 6 j, otherwise λij = 1.

It is easy to see that EP is indeed reduced exponent matrix.
The definition for a diagram Q(P ) of a finite poset see in [15] and [2].
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Denote by Pmax (resp. Pmin) the set of the maximal (resp. minimal)
elements of P and by Pmax × Pmin their Cartesian product.

From ( [2], Theorem 6.12) we have

Theorem C. The quiver Q(EP ) can be obtained from the diagram
Q(P ) by adding the arrows σij for all (pi, pj) ∈ Pmax × Pmin.

Recall that if X and Y are finite posets and X ⊕ Y is their ordinal

sum (see [1], pp. 198-199), then EX⊕Y =

(

EX 0m×n

Un×m EY

)

, where m

(resp. n) is a number of elements in X (resp. in Y ); 0m×n is the zero
m×n-matrix and Un×m is an n×m-matrix, whose every entry is 1. We
write Un×n = Un and 0n×n = 0n.

Proposition 2.9. Suppose that E = (αij) and Θ = (θij) are exponent
matrices and Θ is obtained from E by a transformation of type (1). Then
[Q(E)] = [Q(Θ)]. If E is a reduced Gorenstein exponent matrix with
permutation σ(E), then Θ is also reduced Gorenstein with σ(Θ) = σ(E).

Proof. We have

θij =















αij , if i 6= l, j 6= l,
0, for i = l, j = l,

αlj − t, if i = l, j 6= l,
αil + t, if i 6= l, j = l,

where t is an integer. It can be directly checked that if αij + αjk =
αik for some i, j, k, then θij + θjk = θik. Since these transformations
are invertible, the converse transformations have similar form. So the
equality θij +θjk = θik implies αij +αjk = αik. Therefore, θij +θjk = θik

if and only if αij + αjk = αik.

Denote Θ(1) = (µij) and Θ(2) = (νij).

The equalities γij = βij , νij = µij or inequalities γij > βij , νij > µij

simultaneously hold for the entries of the matrices (βij) = E(1), (µij) =

Θ(1), (γij) = E(2), (νij) = Θ(2). Therefore, E(2) − E(1) = Θ(2) − Θ(1) and
[Q(E)] = [Q(Θ)].

Suppose that E is a reduced Gorenstein exponent matrix with permu-
tation σ(E), i.e., αij + αjσ(i) = αiσ(i). Whence, θij + θjσ(i) = θiσ(i). This
means that the matrix Θ is also Gorenstein with the same permutation
σ(E).

Let τ be a permutation which determines simultaneous transpositions
of rows and columns of the reduced exponent matrix E under transfor-
mations of the second type. Then θij = ατ(i)τ(j) and Θ = P T

τ ΘPτ , where
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Pτ =
n
∑

i=1
eiτ(i) is the permutation matrix, and P T

τ stands for the trans-

posed matrix of Pτ . Since αij +αjσ(i) = αiσ(i) and αij = θτ−1(i)τ−1(j), we
have θτ−1(i)k + θkτ−1(σ(i)) = θτ−1(i)τ−1(σ(i)). Hence the permutation π of
Θ satisfies π(τ−1(i)) = τ−1(σ(i)) for all i. Whence, π = τ−1στ .

Since

µij = βτ(i)τ(j), νij = min
k

(µik + µkj) = min
l

(βτ(i)l + βlτ(j)) = γτ(i)τ(j),

it follows that,

q̃ij = νij − µij = γτ(i)τ(j) − βτ(i)τ(j) = qτ(i)τ(j),

where [Q̃] = (q̃ij) is the adjacency matrix of the quiver Q̃ of Θ. We
proved the following.

Proposition 2.10. Under transformations of the second type the ad-
jacency matrix [Q̃] of Q(Θ) changes according to the formula: [Q̃] =
P T

τ [Q]Pτ , where [Q] = [Q(E)]. If E is Gorenstein then Θ is also Goren-
stein and for the new permutation π we have: π = τ−1στ , i.e., σ(Θ) =
τ−1σ(E)τ .

Note that the type of the permutation does not change under trans-
formations of the second type. Therefore, in order to describe the reduced
Gorenstein exponent matrices, one needs to examine matrices with dif-
ferent types of permutations. Further, to simplify calculations we can
assume that a row or a column of E is zero. It can always be obtained
by transformations of the first type and entries of new exponent matrix
will be non-negative integers.

Indeed, let E(Λ) = (αij) be an exponent matrix. Subtracting αi1

from the entries of the i-th row and adding this number to the entries of
the i-th column, we obtain the matrix













0 α21 + α12 α31 + α13 · · · αs1 + α1s

0 0 α23 + α31 − α21 · · · α2s + αs1 − α21

0 α32 + α21 − α31 0 · · · α3s + αs1 − α31

· · · · · · · · · · · · · · ·
0 αs2 + α21 − αs1 αs3 + α31 − αs1 · · · 0













.

Since ring inequalities hold for the entries of the matrix E = (αij), it
follows that, αij +αj1−αi1 > 0, i.e., after these transformations we have
a matrix with non-negative elements.
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3. Adjacency matrices of admissible quivers without loops
(cases s = 2, 3, 4)

In [16] (Appendix 2, Digraph diagrams) there is a list of simply laced
digraphs without loops for s 6 4 (s is the number of vertices Q). The
number of such quivers for s = 2 is 3; for s = 3 is 16; for s = 4 is 218.
Using this list, it is easy to see that the number of strongly connected
quivers among them for s = 2 is 1; for s = 3 is 5; for s = 4 is 83.

We will give the list of admissible quivers without loops for 2 6 s 6 4.
The number of these quivers for s = 2 is 1; for s = 3 is 2 and for

s = 4 is 11.
We use such notations:

Hs =

















0 0 0 . . . 0 0
1 0 0 . . . 0 0
1 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .
1 1 1 . . . 0 0
1 1 1 . . . 1 0

















,

Fs =

















0 0 0 . . . 0 0
1 0 1 . . . 1 1
1 1 0 . . . 1 1

. . . . . . . . . . . . . . . . . .
1 1 1 . . . 0 1
1 1 1 . . . 1 0

















,

Ωs = (ωij), where ωij = 0 for i 6 j and ωij = i−j for i > j; Hs, Fs, Ωn ∈
Ms(Z).

Proposition 3.1. There exists only one admissible quiver without loops
for s = 2 which is C2 = Q(H2) and the two admissible quivers without
loops C3 = Q(H3) and Q(Ω3) for s = 3.

In what follows we assume that exponent matrices are reduced and
their first rows are zero.

Proof. Let s = 2. Then E =

(

0 0
α 0

)

, E(1) =

(

1 0
α 1

)

and E(2) =
(

(2, α) (1, α)
α + 1 (2, α)

)

, where (α1, . . . , αt) = min(α1, . . . , αt). So [Q(E)] =
(

(1, α − 1) 1
1 (1, α − 1)

)

and Q(E) is either C2 for α = 1 or LC2 for

α > 2 (Cn is a simple cycle with n vertices, [LCn] = [Cn]+En, En is the
identity n × n matrix).
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Let s = 3. Then E =





0 0 0
α 0 δ
β γ 0



 , E(1) =





1 0 0
α 1 δ
β γ 1



 and

E(2) =





(2, α, β) (1, γ) (1, δ)
(α + 1, β + δ) (2, α, γ + δ) (α, δ + 1)
(β + 1, α + γ) (β, γ + 1) (2, β, γ + δ)



 .

Obviously, one can suppose 1 6 α 6 β. Then α = 1. Really, if α > 2
we have a loop in the first vertex. If β = 1 we have either E ∼ H3 or
E ∼ F3. Obviously, Ω3 ∼ F3. If β = 2, then E ∼ Ω3.

Let s = 4. As above we obtain the admissible quivers without loops,
listed below. Notation E ∼ Θ means equivalence of these matrices by
transformations of the first type.

We put d = d(E) =
n
∑

i,j=1
αij for an exponent matrix E = (αij).

Obviously, d(E) = d(Θ) for equivalent reduced exponent matrices E and
Θ.

It is convenient for us to place the first six exponent matrices in the
following sequence:

(1) d =6, E1 = H4 =









0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0









, [Q(E1)] =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









;

(2) d =7, E2 =









0 0 0 0
1 0 0 0
1 1 0 0
2 1 1 0









, [Q(E2)] =









0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 0









and E2 ∼ Θ2, where Θ2 =









0 1 1 1
0 0 0 0
0 1 0 0
1 1 1 0









;

(3) d =8, E3 =









0 0 0 0
1 0 0 0
2 1 0 0
2 1 1 0









, [Q(E3)] =









0 1 0 0
1 0 1 0
0 0 0 1
0 1 0 0









and E3 ∼ Θ3, where Θ3 =









0 1 1 1
0 0 0 0
0 1 0 0
1 1 1 0









;
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(4) d =9, E4 =









0 0 0 0
1 0 0 0
2 1 0 0
2 2 1 0









, [Q(E4)] =









0 1 0 0
1 0 1 0
0 1 0 1
1 1 1 0









and E4 ∼ Θ4, where Θ4 =









0 0 1 1
1 0 1 1
1 0 0 0
1 1 1 0









;

(5) d =10, E5 = Ω4 =









0 0 0 0
1 0 0 0
2 1 0 0
3 2 1 0









, [Q(Ω4)] =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









;

(6) d =9, E6 = F4 =









0 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0









, [Q(F4)] =









0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0









;

(7) d =8, E7 =









0 0 0 0
1 0 1 0
1 1 0 0
2 1 1 0









, [Q(E7)] =









0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0









,

and E7 ∼ Θ7, where Θ7 =









0 0 0 1
1 0 1 1
1 1 0 1
1 0 0 0









;

(8) d =10, E8 =









0 0 0 0
1 0 0 0
2 2 0 0
2 2 1 0









, [Q(E8)] =









0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0









;

(9) d =10, E9 =









0 0 0 0
1 0 1 0
2 1 0 0
2 2 1 0









, [Q(E9)] =









0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0









,

σ(E9) = (1423);

(10) d =11, E10 =









0 0 0 0
1 0 1 0
2 2 0 0
2 2 1 0









, [Q(E10)] =









0 1 1 0
1 0 0 1
0 0 0 1
1 0 1 0









;

(11) d =11, E11 =









0 0 0 0
1 0 1 1
2 2 0 0
2 2 1 0









, [Q(E11)] =









0 1 1 0
1 0 0 0
0 0 0 1
1 0 1 0









.



Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.58 Tiled orders...

4. Quivers of reduced Gorenstein exponent matrices
(cases s = 2, 3, 4, 5)

In Sections 4 and 5 we shall assume that the first column of a reduced
Gorenstein exponent matrix E is zero.

Denote J−
s (0) = e21 + . . . + ess−1 – the lower nilpotent Jordan block

and

Tα,s =









0 α . . . α
0 0 . . . α

. . . . . . . . . . . .
0 0 . . . o









,

where α is a natural integer, Tα,s ∈ Ms(Z). Tα,s is a reduced Gorenstein
exponent matrix with σ(Tα,s) = (12 . . . s).

Proposition 4.1.
[Q(T1,s)] = J−

s (0) + e1s;

[Q(Tα,s)] = Es + J−
s (0) + e1s,

where Es is an identity s × s-matrix.

Proof is obviously.
Let s=2. Then any reduced exponent matrix E ∈ M2(Z) is equivalent

to Tα,2.
For s=3, σ(E) = (123) and it follows from Theorem 3.14 ( [2] that







α13 + α32 = α12,
α21 + α13 = α23,
α32 + α21 = α31.

Since α21 = α31 = 0, then α32 = 0 and α12 = α13 = α23. Set α12 = α.

Then, we have E =





0 α α
0 0 α
0 0 0



 = Tα,3.

Proposition 4.2. For s=2 every reduced tiled order is cyclic Gorenstein
and for s=3 every reduced Gorenstein tiled order is cyclic.

For s=4 we have two permutations (1234) and (12)(34). If σ =
(1234), using Theorem 3.14 [2], we obtain the following system of equa-
tions:















α13 + α32 = α14 + α42 = α12,
α21 + α13 = α24 + α43 = α23,
α31 + α14 = α32 + α24 = α34,
α42 + α21 = α43 + α31 = α41.
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The conditions α21 = α31 = α41 = 0 and α42 = α43 = 0 imply that
α34 = α14 = α12, α24 = α23 = α13, α32 = α12 − α13.

Put α12 = α, α13 = β. Whence, α32 = α − β.

Since E is a reduced order, we have α − β > 0, α > 0, β > 0.

Hence, Eα,β =









0 α β α
0 0 β β
0 α − β 0 α
0 0 0 0









. We have

[Q(Eα,β)] =









(1, β − 1) 0 (1, α − β) 1
1 (1, β − 1) 0 (1, α − β)

(1, α − β) 1 (1, β − 1) 0
0 (1, α − β) 1 (1, β − 1)









.

Then Q(E1,1) is the simple cycle C4. Obviously, Eα,α = Tα,4 and for
α > 2 Q(Eα,α) = LC4. For β = 1 we have α > 2 and

[Q(Eα,1)] =









0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0









.

General case: α > β > 1.

[Q(Eα,β)] =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









.

If σ = (12)(34), then

E(Eγ,δ ) =









0 γ + δ γ δ
0 0 0 0
0 δ 0 δ
0 γ γ 0









.

Obviously, [Q(E1,δ )] = [Q(Eγ,1)] and [Q(E1,δ)] =

[

O U2

U2 O

]

.

In general: if γ > 2 and δ > 2 we have [Q(Eγ,δ)] =

[

E2 U2

U2 E2

]

.

Let s=5. In this case we have two permutations: σ = (12345) and
σ = (123)(45).

Suppose σ = (12345) and take a reduced Gorenstein exponent matrix
E with σ, then we come to the following system of linear equations for
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elements of E :






















α13 + α32 = α14 + α42 = α15 + α52 = α12,
α21 + α13 = α24 + α43 = α25 + α53 = α23,
α31 + α14 = α32 + α24 = α35 + α54 = α34,
α41 + α15 = α42 + α25 = α43 + α35 = α45,
α52 + α21 = α53 + α31 = α54 + α41 = α51

.

Hence, putting α12 = α and α13 = β, we obtain the following expo-
nent matrix:

Eα,β =













0 α β β α
0 0 β 2β − α β
0 α − β 0 β β
0 α − β α − β 0 α
0 0 0 0 0













,

where α − β > 0, 2β − α > 0, α > 1, β > 1.
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[Q(Eα,β)] =













(1, β − 1) 0 (1, α − β) (1, α − β) (1, 2β − α)
(1, 2β − α) (1, β − 1) 0 (1, α − β) (1, α − β)
(1, α − β) (1, 2β − α) (1, β − 1) 0 (1, α − β)
(1, α − β) (1, α − β) (1, 2β − α) (1, β − 1) 0

0 (1, α − β) (1, α − β) (1, 2β − α) (1, β − 1)













If σ = (123)(45) we obtain analogously:

Eα =













0 3α 3α 2α 2α
0 0 3α α α
0 0 0 0 0
0 α 2α 0 2α
0 α 2α 2α 0













and

[Q(Eα)] =

(

[Q(T3α,3)] U3×2

U2×3 E2

)

=













1 0 1 1 1
1 1 0 1 1
0 1 1 1 1
1 1 1 1 0
1 1 1 0 1













and in Eα = 4.

Proposition 4.3. An adjacency matrix of the quiver of a reduced
Gorenstein exponent matrix G for s = 2, 3, 4, 5 has a form [Q(G)] = λS,
where S is doubly stochastic matrix.
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5. Quivers of reduced Gorenstein exponent
matrices (cases s = 6, 7)

Let s = 6. Then there are four types of permutations.

(a) σ = (123456).

E =

















0 α + β + γ β + γ α + γ β + γ α + β + γ
0 0 β + γ γ γ β + γ
0 α 0 α + γ γ α + γ
0 β β 0 β + γ β + γ
0 α β α 0 α + β + γ
0 0 0 0 0 0

















,

where α > 0, β > 0, γ > 0, β + γ > 1, α + γ > 1.

Then

[Q] =

















δ 0 (1, α, β) (1, β) (1, α, γ) (1, γ)
(1, γ) δ 0 (1, α, β) (1, β) (1, α, γ)

(1, α, γ) (1, γ) δ 0 (1, α, β) (1, β)
(1, β) (1, α, γ) (1, γ) δ 0 (1, α, β)

(1, α, β) (1, β) (1, α, γ) (1, γ) δ 0
0 (1, α, β) (1, β) (1, α, γ) (1, γ) δ

















,

where δ = (2, β + γ, γ + α) − 1.

(b) σ = (123)(456).

E =

















0 α + β + γ α + β + γ α + γ α + β β + γ
0 0 α + β + γ γ α β
0 0 0 0 0 0
0 β α + β 0 α + β β
0 γ β + γ γ 0 β + γ
0 α α + γ γ + α α 0

















,

where α + β > 1, β + γ > 1, γ + α > 1, α > 0, β > 0, γ > 0. Put
δ = (2, α + β, β + γ, γ + α). Then
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[Q] =

















δ − 1 0 (1, α, β, γ) (1, β) (1, γ) (1, α)
(1, α, β, γ) δ − 1 0 (1, α) (1, β) (1, γ)

0 (1, α, β, γ) δ − 1 (1, γ) (1, α) (1, β)
(1, β) (1, α) (1, γ) δ − 1 0 (1, α, β, γ)
(1, γ) (1, β) (1, α) (1, α, β, γ) δ − 1 0
(1, α) (1, γ) (1, β) 0 (1, α, β, γ) δ − 1

















.
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(c) σ = (1234)(56).

E =

















0 α + β + γ 2γ α + β + γ α + γ β + γ
0 0 2γ 2γ γ γ
0 α + β − γ 0 α + β + γ α β
0 0 0 0 0 0
0 β γ β + γ 0 β + γ
0 α γ α + γ α + γ 0

















,

where γ > 1, α > 0, β > 0, α + β > γ.

Then

[Q] =

















δ 0 ρ 1 (1, β) (1, α)
1 δ 0 ρ (1, α) (1, β)
ρ 1 δ 0 (1, β) (1, α)
0 ρ 1 δ (1, α) (1, β)

(1, β) (1, α) (1, β) (1, α) δ 0
(1, α) (1, β) (1, α) (1, β) 0 δ

















,

where ρ = (1, α, β, α + β − γ), δ = (β + γ, γ + α) − 1.

(d) σ = (12)(34)(56).
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E =

















0 α + γ + ξ + χ γ + ξ α + χ α + γ + χ − β β + ξ

0 0 0 0 0 0
0 α + χ 0 α + χ α β

0 γ + ξ γ + ξ 0 γ β + ξ − χ

0 β + ξ ξ χ 0 β + ξ

0 α + γ + χ − β γ + χ − β α + χ − β α + γ + χ − β 0

















,

where α > 0, β > 0, γ > 0, ξ > 0, χ > 0, α+χ > 1, β + ξ > 1, α+ ξ > 1,
α + γ + χ − β > 1, γ + χ > 1, γ + ξ > 1, α + χ − β > 0, γ + χ − β > 0,
β + ξ − χ > 0.

∆1 = (2, α + γ + χ− β, γ + ξ, α + χ, β + ξ), ∆2 = (2, γ + ξ, α + χ, α +
ξ, γ + χ), ∆3 = (2, α + ξ, γ + χ, β + ξ, α + γ + χ − β).

Then [Q] =
(

V W
)

, where
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V =

















∆1 − 1 0 (1, χ, α + χ − β)
0 ∆1 − 1 (1, ξ, γ + χ − β)

(1, α, β) (1, γ, β + ξ − χ) ∆2 − 1
(1, γ, β + ξ − χ) (1, α, β) 0

(1, ξ, χ) (1, α + χ − β, γ + χ − β) (1, β, γ)
(1, α + χ − β, γ + χ − β) (1, ξ, χ) (1, α, β + ξ − χ)

















,
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W =

















(1, ξ, γ + χ − β) (1, β, β + ξ − χ) (1, α, γ)
(1, χ, α + χ − β) (1, α, γ) (1, β, β + ξ − χ)

0 (1, χ, γ + χ − β) (1, ξ, α + χ − β)
∆2 − 1 (1, ξ, α + χ − β) 1, χ, γ + χ − β)

(1, α, β + ξ − χ) ∆3 − 1 0
(1, β, γ) 0 ∆3 − 1

















.

Let s = 7. There exist four types of permutations.

(a) σ = (1234567).
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E =





















0 α + β + γ β + γ γ + α γ + α β + γ α + β + γ

0 0 β + γ γ α + γ − β γ β + γ

0 α 0 γ + α α + γ − β α + γ − β γ + α

0 β β 0 γ + α γ γ + α

0 β 2β − α β 0 β + γ β + γ

0 α β β α 0 α + β + γ

0 0 0 0 0 0 0





















,

where α > 0, β > 0, γ > 0, β + γ > 1, 2β > α, α + γ > β, γ + α > 1.
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[Q] =





















δ 0 (1, α, β) µ (1, β, γ) θ ν

ν δ 0 (1, α, β) µ (1, β, γ) θ

θ ν δ 0 (1, α, β) µ (1, β, γ)
(1, β, γ) θ ν δ 0 (1, α, β) µ

µ (1, β, γ) θ ν δ 0 (1, α, β)
(1, α, β) µ (1, β, γ) θ ν δ 0

0 (1, α, β) µ (1, β, γ) θ ν δ





















,

where δ = (2, β +γ, γ +α)−1, ν = (1, γ, α+γ−β), θ = (1, α, α+γ−β),
µ = (1, β, 2β − α).

(b) Let σ = (12345)(67).

E =





















0 2γ + β 3γ − β 3γ − β 2γ + β 2γ 2γ
0 0 3γ − β 4γ − 3β 3γ − β 2γ − β 2γ − β
0 2β − γ 0 3γ − β 3γ − β γ γ
0 2β − γ 2β − γ 0 2γ + β β β
0 0 0 0 0 0 0
0 β γ 2γ − β 2γ 0 2γ
0 β γ 2γ − β 2γ 2γ 0





















,

where β > 1, γ > 1, 2β > γ, 4γ > 3β.
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[Q] =





















1 0 (1, 2β − γ) (1, 2β − γ) (1, 4γ − 3β) 1 1
(1, 4γ − 3β) 1 0 (1, 2β − γ) (1, 2β − γ) 1 1
(1, 2β − γ) (1, 4γ − 3β) 1 0 (1, 2β − γ) 1 1
(1, 2β − γ) (1, 2β − γ) (1, 4γ − 3β) 1 0 1 1

0 (1, 2β − γ) (1, 2β − γ) (1, 4γ − 3β) 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 0 1





















.

(c) σ = (1234)(567).

E =





















0 4γ − α 2α 4γ − α 2γ 2γ 2γ
0 0 2α 2α α α α
0 4γ − 3α 0 4γ − α 2γ − α 2γ − α 2γ − α
0 0 0 0 0 0 0
0 2γ − α α 2γ 0 2γ γ
0 2γ − α α 2γ γ 0 2γ
0 2γ − α α 2γ 2γ γ 0





















,

where α > 1, γ > 1, 4γ − 3α > 0.
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[Q] =





















1 0 (1, 4γ − 3α) 1 1 1 1
1 1 0 (1, 4γ − 3α) 1 1 1

(1, 4γ − 3α) 1 1 0 1 1 1
0 (1, 4γ − 3α) 1 1 1 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0
1 1 1 1 0 1 1





















.

(d) σ = (123)(45)(67).

E =





















0 3α 3α 2α 2α 2α 2α
0 0 3α α α α α
0 0 0 0 0 0 0
0 α 2α 0 2α 2α − β 2α − γ
0 α 2α 2α 0 2α − γ 2α − β
0 α 2α γ β 0 2α
0 α 2α β γ 2α 0





















,

where α > 1, β > 0, γ > 0, 2α − β > 0, 2α − γ > 0, 2α − γ + β > 1,
2α − β + γ > 1.
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[Q] =





















1 0 1 (1, β, γ) (1, β, γ) ω ω

1 1 0 (1, β, γ) (1, β, γ) ω ω

0 1 1 (1, β, γ) (1, β, γ) ω ω

ω ω ω δ 0 (1, β) (1, γ)
ω ω ω 0 δ (1, γ) (1, β)

(1, β, γ) (1, β, γ) (1, β, γ) (1, 2α − γ) (1, 2α − β) δ 0
(1, β, γ) (1, β, γ) (1, β, γ) (1, 2α − β) (1, 2α − γ) 0 δ





















,

where δ = (2, 2α − β + γ, 2α − γ + β) − 1, ω = (1, 2α − β, 2α − γ).

6. Gorenstein orders and entropic quasigroups

For the Cayley table

E(n) =

















0 n − 1 n − 2 . . . 2 1
1 0 n − 1 . . . 3 2
2 1 0 . . . 4 3

. . . . . . . . . . . . . . . . . .
n − 2 n − 3 n − 4 . . . 0 n − 1
n − 1 n − 2 n − 3 . . . 1 0

















of the entropic quasigroup Q(n), we have [Q(E(n))] = En + J−
n (0) + e1n,

where J−
n (0) = e21 + . . . + enn−1 is the lower nilpotent Jordan block.

The next definition is given in ( [34], Section IV).

Definition 6.1. A finite quasigroup Q defined on the set S = {0, 1, . . . ,
n − 1} is called Gorenstein if its Cayley table C(Q) = (αij) has a zero
main diagonal and there exists a permutation σ : i → σ(i) for i = 1, . . . , n
such that αik + αkσ(i) = αiσ(i) for i = 1, . . . , n.

If σ is a cycle then G is a cyclic Gorenstein quasigroup.

Proposition 6.2. The quasigroup Q(n) is Gorenstein with permutation
σ = (12 . . . n), i.e. Q(n) is a cyclic Gorenstein quasigroup.

Proof. It’s obvious.

Remark. Note, that a reduced tiled order Λ is Gorenstein if and only if
its exponent matrix E(Λ) is Gorenstein.

Theorem 6.3. For any permutation σ ∈ Sn without fixed elements there
exists a Gorenstein reduced tiled order Λ with permutation σ(Λ) = σ.

Proof. Suppose that σ has no cycles of length 1 and decomposes into a
product of non-intersecting cycles σ = σ1 · · ·σk, where σi has length mi.
Denote by t the least common multiple of the numbers m1−1, . . . , mk−1.
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Consider the matrix

E(m1, . . . , ms) =















t1E(m1) tUm1×m2 tUm1×m3 . . . tUm1×mk

0 t2E(m2) tUm2×m3 . . . tUm2×mk

0 0 t3E(m3) . . . tUm3×mk

. . . . . . . . .
. . . . . .

0 0 0 . . . tkE(mk)















,

where tj = t
mj−1 , Umi×mj

is an mi × mj - matrix whose entries equal

1; E(m) = (εij), εij =

{

i − j, if i > j;
i − j + m, if i < j.

Let us remark that εij + εjσ(i) = εiσ(i) = m − 1 for all i, j.

Evidently, E(m1, . . . , ms) is the exponent matrix with permutation
π(A) = (123 . . . m1)(m1 + 1 . . .m1 + m2) · · · (m1 + m2 + · · · + mk−1 +
1 . . .m1 + m2 + · · · + mk−1 + mk).

Since the permutations σ and π have the same type, these permu-
tations are conjugate, i. e., there exists a permutation τ such that
σ = τ−1π(A)τ .

Consequently, by Propositions 2.9 and 2.10, the matrix P T
τ E(m1, . . . ,

ms)Pτ is the exponent matrix of a Gorenstein reduced tiled order Λ with
permutation σ(Λ) = σ.

Example. (B.V. Novikov). The matrix

C(L12) =











































0 1 2 3 4 5 6 7 8 9 10 11
1 0 5 2 3 4 7 8 9 6 11 10
2 5 0 4 1 3 8 10 7 11 6 9
3 2 4 0 5 1 10 6 11 7 9 8
4 3 1 5 0 2 9 11 6 10 8 7
5 4 3 1 2 0 11 9 10 8 7 6
6 7 8 10 9 11 0 2 1 3 4 5
7 8 10 6 11 9 2 0 5 1 3 4
8 9 7 11 6 10 1 5 0 4 2 3
9 6 11 7 10 8 3 1 4 0 5 2
10 11 6 9 8 7 4 3 2 5 0 1
11 10 9 8 7 6 5 4 3 2 1 0











































is the Cayley table of a Gorenstein quasigroup L12 with the permutation

σ =

(

1 2 3 4 5 6 7 8 9 10 11 12
12 11 10 9 8 7 6 5 4 3 2 1

)

.

The rings inequalities do not hold:



Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.Zh.T. Chernousova, M.A. Dokuchaev and others 67

α17 + α79 = 7 < α19 = 8.

Obviously, L12 is an abelian loop of period 2 and 0 is the neutral
element of L12.

All subgroups in L12 are elementary abelian 2-groups. There are no
subgroups of order 8 in L12. The loop L12 contains the following Klein
subgroups: < 0, 1, 10, 11 >; < 0, 2, 9, 11 >; < 0, 3, 8, 1 >; < 0, 4, 7, 11 >
; < 0, 5, 6, 11, >. There are no subgroups different from these in L12.
Denote by * the binary operation in L12.

We have: (1 ∗ 2) ∗ 2 = 5 ∗ 2 = 3 and 1∗ (2 ∗ 2) = 1 ∗ 0 = 1. Then 1 6= 3
and L12 is not diassociative and, consequently, it is not Moufang.

The subgroup K =< 0, 1 > is normal in L12. Then the quotient loop
L12/K has the following Cayley table:

L12/K =

0̄ 1̄ 2̄ 3̄ 4̄ 5̄
1̄ 0̄ 5̄ 2̄ 3̄ 4̄
2̄ 5̄ 0̄ 4̄ 1̄ 3̄
3̄ 2̄ 4̄ 0̄ 5̄ 1̄
4̄ 3̄ 1̄ 5̄ 0̄ 2̄
5̄ 4̄ 3̄ 1̄ 2̄ 0̄

.

The loop L12/K is simple.

7. Cayley tables of elementary abelian 2-groups

Put G0 = {e}. Denote by Γ0 = {O, E(Γ0)} a Gorenstein tiled order with
exponent matrix E(Γ0) = (0) and πO = Oπ is a unique maximal ideal of
O.

The matrix E(Γ1) =

(

0 1
1 0

)

is the Cayley table of the cyclic group

G1 of order 2 and also the exponent matrix of a Gorenstein tiled order
Γ1 with permutation σ(Γ1) = (12).

Clearly, the Cayley table of the Klein four-group (2) × (2) can be
written as

E(Γ2) =

(

E(Γ1) E(Γ1) + 2U2

E(Γ1) + 2U2 E(Γ1)

)

.

Consider

E(Γk) =

(

E(Γk−1) E(Γk−1) + 2k−1U2k−1

E(Γk−1) + 2k−1U2k−1 E(Γk−1)

)

.
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Proposition 7.1. E(Γk) is the exponent matrix of a tiled order Γk, where

Γk =

(

Γk−1 π2k−1
Γk−1

π2k−1
Γk−1 Γk−1

)

.

Proof. Proof by induction on k easily yields that Γk is a tiled order.

Let G = H× < g > be a finite Abelian group, H = {h1, . . . , hn},
g2 = e. We shall consider the Cayley table of H as the matrix C(H) =
(hij) with entries in H, where hij = hihj . The following proposition is
obvious.

Proposition 7.2. The Cayley table of G is

C(G) =

(

C(H) gC(H)
gC(H) C(H)

)

.

Proposition 7.3. E(Γk) is the Cayley table of the elementary abelian
group Gk of order 2k.

Proof. The proof goes by induction on k. The basis of induction have
been already done. If E(Γk−1) is the Cayley table of Gk−1, then, by
Proposition 7.2, E(Γk) is the Cayley table of Gk.

Proposition 7.4. The tiled order Γk is Gorenstein with permutation

σ(Γk) =

(

1 2 3 . . . 2k − 1 2k

2k 2k − 1 2k − 2 . . . 2 1

)

.

Proof. It is obvious for k = 1. Suppose that Γk is Gorenstein with
exponent matrix E(Γk) = (αk

ij) ( i, j = 1, 2, . . . , 2k) and σ(Γk) = σk,

where σk(i) = 2k + 1 − i. Then αk
ij + αk

jσk(i) = αk
iσk(i) for all i, j =

1, 2, . . . , 2k. Since

αk+1
2k+i,j

= αk+1
i,2k+j

= αk
ij + 2k, αk+1

2k+i,2k+j
= αk+1

ij = αk
ij

for all i, j = 1, 2, . . . , 2k and

(αk
ij + 2k) + αk

jσk(i) = (αk
ij + αk

jσk(i)) + 2k = αk
iσk(i) + 2k,

we obtain that

αk+1
ij + αk+1

j,2k+σk(i)
= αk+1

i,2k+σk(i)
, αk+1

i,2k+j
+ αk+1

2k+j,2k+σk(i)
= αk+1

i,2k+σk(i)
,

αk+1
2k+i,2k+j

+ αk+1
2k+j,σk(i)

= αk+1
2k+i,σk(i)

, αk+1
2k+i,j

+ αk+1
jσk(i) = αk+1

2k+i,σk(i)
,

i, j = 1, 2, . . . , 2k. Putting σk+1(i) = 2k + σk(i), σk+1(2
k + i) = σk(i),

we have αk+1
pq + αk+1

qσk+1(p) = αk+1
pσk+1(p) for all p, q = 1, 2, . . . , 2k+1, i.e.,

Γk+1 is Gorenstein with permutation σ(Γk+1) = σk+1, where σk+1(i) =
2k+1 + 1 − i.
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Theorem 7.5. [34]. The Cayley table of a finite group G is the exponent
matrix of a reduced Gorenstein tiled order if and only if G = Gk =
(2) × . . . × (2).

We calculate the adjacency matrix of the quiver Q(Γk).

Let Rk = rad Γk be the Jacobson radical of Γk and E(Γk) = (αk
ij),

E(Rk) = (rk
ij), E(R2

k) = (βk
ij). We have

Rk =

(

Rk−1 π2k−1
Γk−1

π2k−1
Γk−1 Rk−1

)

,

R2
k =

(

R2
k−1 + π2k

Γk−1 π2k−1
Rk−1Γk−1

π2k−1
Rk−1Γk−1 R2

k−1 + π2k

Γk−1

)

.

Since rk−1
ij 6 2k−1, then βk−1

ij 6 2k 6 2k + αk−1
ij . Therefore, R2

k−1 +

π2k

Γk−1 = R2
k−1.

The equality (radA)A = A(radA) = radA holds for any tiled order

A. Consequently, π2k−1
Rk−1Γk−1 = π2k−1

Rk−1. Since E(π2k−1
Rk−1) −

E(π2k−1
Γk−1) = (2k−1 + E(Rk−1) − (2k−1 + E(Γk−1)) = E, we obtain

E(R2
k) − E(Rk) =

(

E(R2
k−1) − E(Rk−1) E

E E(R2
k−1) − E(Rk−1)

)

.

Whence,

[Q(Γk)] =

[

[Q(Γk−1)] E
E [Q(Γk−1)]

]

.

We compute the characteristic polynomial χk+1(x) = χ[Q(Γk+1](x).

χk+1(x) = |xE − [Q(Γk+1)]| =

∣

∣

∣

∣

xE − [Q(Γk)] −E
−E xE − [Q(Γk)]

∣

∣

∣

∣

=

=

∣

∣

∣

∣

xE − [Q(Γk)] − E 0
−E xE − [Q(Γk)] + E

∣

∣

∣

∣

=

= |(x − 1)E − [Q(Γk)]| · |(x + 1)E − [Q(Γk)]|

Therefore,

χk+1(x) = χk(x − 1) · χk(x + 1). (∗)

Since χ1(x) =

∣

∣

∣

∣

x − 1 −1
−1 x − 1

∣

∣

∣

∣

= x(x − 2),

then χ2(x) = (x − 3)(x − 1)(x − 1)(x + 1) = (x − 3)(x − 1)2(x + 1),
χ3(x) = (x − 4)(x − 2)2x(x − 2)x2(x + 2) = (x − 4)(x − 2)3x3(x + 2).
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Proposition 7.6. χm(x) =
m
∏

i=0
(x − m − 1 + 2i)Ci

m.

Proof. We shall prove this proposition by induction on m. The basis of
induction is clear. Suppose that the formula is true for m = k. Then, by
formula (*), we obtain

χk+1(x) =
k

∏

i=0

(x − k − 2 + 2i)Ci
k ·

k
∏

j=0

(x − k + 2j)C
j

k =

= (x − k − 2)
k

∏

i=1

(x − k − 2 + 2i)Ci
k ·

k−1
∏

j=0

(x − k + 2j)C
j

k(x + k) =

= (x − k − 2)
k−1
∏

i=0

(x − k + 2i)Ci+1
k ·

k−1
∏

j=0

(x − k + 2j)C
j

k(x + k) =

= (x − k − 2)
k−1
∏

i=0

(x − k + 2i)Ci
k
+Ci+1

k (x + k).

Since Ci
k + Ci+1

k = Ci+1
k+1, we obtain χk+1(x) = (x − k − 2)

k−1
∏

i=0
(x −

k + 2i)Ci+1
k+1(x + k) == (x − k − 2)

k
∏

j=1
(x − k + 2(j − 1))C

j

k+1(x + k) =

k+1
∏

j=0
(x − (k + 1) − 1 + 2j)C

j

k+1 .

By induction on k, it is easy to prove that
2k
∑

i=1
qij(Γk) = k + 1,

2k
∑

j=1
qij(Γk) = k + 1.Thus, [Q(Γk)] = (k + 1)Pk, where Pk is a doubly

stochastic matrix.

8. Exponent matrices of reduced cyclic Gorenstein orders

Lemma 8.1. Let Λ be a cyclic reduced Gorenstein tiled order with expo-
nent matrix E(Λ) = (αij) and permutation σ(Λ) = (12 . . . n). If αi1 = 0
for all i = 1, . . . , n, then α1j = α1,n+2−j for 1 < j 6 n.

Proof. By Corollary 1 of Lemma 3.3 [34], αij + αji = ασm(i)ασm(j) +
ασm(j)ασm(i) for any positive integer m. For i = 1, we have

α1j + αj1 = ασm(1)ασm(j) + ασm(j)ασm(1).
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Since σ is cyclic, then there exists m such that σm(j) = 1. Since σm(j) ≡
j + m (mod n), we have j + m = n + 1. Whence, m = n + 1− j. Hence,
σm(1) = 1 + m = n + 2 − j and α1j + αj1 = αn+2−j,1 + α1,n+2−j . Since
αj1 = αn+2−j,1 = 0, we obtain α1j = α1,n+2−j .

Proposition 8.2. Let α12, α13, . . . , α1n be an arbitrary set of real num-
bers; then there exists a unique matrix (αij) such that these numbers are
the entries of its first row, αkk = αk1 = 0, and αik + αki+1 = αii+1 for
all k = 1, . . . , n; i = 1, . . . , n − 1.

Proof. Put αk1 = 0. Other entries αkm of (αij) will be obtained from
the system of linear equations αik + αki+1 = αii+1 k = 1, . . . , n; i =
1, . . . , n − 1.

We have, αkk+1 = αk1 + α1k+1 = α1k+1 for k < n. It follows from
the equality α1k +αk2 = α12 that, αk2 = α12 −α1k. Since αk2 +α2k+1 =
αkk+1 = α1k+1, we obtain α2k+1 = α1k+1 − αk2 = α1k+1 + α1k − α12 or
α2j = α1j + α1j−1 − α12 for j > 1.

Also, α2k +αk3 = α23 = α13. Whence, αk3 = α13−α2k = α13 +α12−
α1k−α1k−1 for k > 1. It follows from the equality αk3+α3k+1 = αkk+1 =
α1k+1 that, α3k+1 = α1k+1 − αk3 = α1k+1 + α1k + α1k−1 − α13 − α12 or
α3j = α1j + α1j−1 + α1j−2 − α13 − α12 for j > 2.

Continuing in the same way, we successively obtain unknown entries
of (αij). In the general case,

αkm =

m
∑

j=2

α1j −

m−2
∑

j=0

α1k−j for k > m − 2; (8.1)

αkm =
k−1
∑

j=0

α1m−j −
k

∑

j=2

α1j for m > k − 1. (8.2)

Thus we have the matrix (αij) with the entries

αkm =



















0, for m = 1,
∑m

j=2 α1j −
∑m−2

j=0 α1k−j , if k > m > 1,
∑k−1

j=0 α1m−j −
∑k

j=2 α1j , if 1 < k < m,

α1m, for k = 1.

(8.3)

Clearly, αik + αki+1 = αii+1 for all k = 1, . . . , n; i = 1, . . . , n − 1. Fur-
thermore,

αkk =
k

∑

j=2

α1j −
k−2
∑

j=0

α1k−j = 0 for k = 1, . . . , n.
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Corollary 8.3. Let (αij) be a matrix whose entries satisfy (3), and
α1j = α1,n+2−j for j = 2, . . . , n. Then αij + αjσ(i) = αiσ(i) for all
i, j = 1, . . . , n, where σ = (12 . . . n).

Since α1j = α1,n+2−j , then

αnm =
m

∑

j=2

α1j −
m−2
∑

j=0

α1n−j =
m

∑

j=2

α1j −
m

∑

i=2

α1,n+2−i = 0

and αnm +αm1 = αn1 = 0 for all m. Thus, the entries of (αij) satisfy the
condition αij + αjσ(i) = αiσ(i) for all i, j = 1, . . . , n, where σ = (12 . . . n).

Proposition 8.4. Let (αij) be a matrix whose entries satisfy (3). Then,
for any three pairwise different i, j, k, there exist p, q such that αij +αjk−
αik = αpq.

Proof. We transform the equalities (1)-(2):

αkm =
m
∑

j=2
α1j −

m−2
∑

j=0
α1k−j =

m
∑

t=2
α1t −

k
∑

t=k−m+2

α1t, for k > m > 1,

αkm =
k−1
∑

j=0
α1m−j −

k
∑

j=2
α1j =

m
∑

t=m−k+1

α1t −
k
∑

t=2
α1t, for m > k > 1.

Put Sijk = αij + αjk − αik.
For min(i, j, k) > 1, we consider 6 cases.
Case 1: If i > j > k, then

Sijk =





j
∑

t=2

α1t −
i

∑

t=i−j+2

α1t



 +

+





k
∑

t=2

α1t −

j
∑

t=j−k+2

α1t



 −

(

k
∑

t=2

α1t −
i

∑

t=i−k+2

α1t

)

.

Here the third and the fifth sums are the same. In addition, the first and
the forth sums contain the same summands, the second and the sixth
sums possess identical summands, too. Simplifying, we obtain:

Sijk =

j−k+1
∑

t=2

α1t −

i−k+1
∑

t=i−j+2

α1t.

But i−j+2 = (i−k+1)−(j−k+1)+2. Note also that i−k+1 > j−k+1.
Therefore, in this case, Sijk = αi−k+1,j−k+1.
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Similarly, in the other five cases, we obtain αij + αjk − αik = αpq,
where:
Case 2: p = k − j, q = i − j + 1 for i > k > j;
Case 3: p = i − k + 1, q = j − k + 1 for j > i > k;
Case 4: p = j − i, q = k − i for j > k > i;
Case 5: p = k − j, q = i − j + 1 for k > i > j;
Case 6: p = j − i, q = k − i if k > j > i.

If min(i, j, k) = 1, then p = i, q = j for k = 1; p = k − 1, q = i for
j = 1; p = j − 1, q = k − 1 for i = 1.

Thus we have

αpq =







αi−k+1,j−k+1, if min(i, j, k) = k,
αk−j,i−j+1, if min(i, j, k) = j,
αj−i,k−i, if min(i, j, k) = i.

If at the least two indices are same, then Sijj = 0, Siik = 0, Siji =
αij + αji > 0.

Corollary 8.5. Suppose that the entries of (αij) are non-negative, sat-
isfy equalities (3), and α1j = α1,n+2−j for all 2 6 j 6 n. Then (αij)
is exponent matrix of a cyclic Gorenstein order with the permutation
σ(Λ) = (12 . . . n).

By Proposition 8.4, the entries of (αij) satisfy the ring inequalities.
Using formula (1), we obtain αii = 0 for all i. Therefore, by Corol-
lary 8.3, (αij) is the exponent matrix of a Gorenstein tiled order Λ with
permutation σ(Λ) = (12 . . . n).

Proposition 8.6. Let (αij) be the exponent matrix of a cyclic reduced
Gorenstein tiled order Λ with permutation σ(Λ) = (12 . . . n) and αi1 = 0
for i = 1, 2, . . . , n. Then (αij) is symmetric with respect to the secondary
diagonal.

Proof. Evidently, any matrix (αij) is symmetric with respect to the sec-
ondary diagonal iff αij = αn+1−j,n+1−i for all i, j.

We examine the difference αkm − αn+1−m,n+1−k. Suppose k > m,
then n + 1 − m > n + 1 − k and

αkm − αn+1−m,n+1−k =

=





m
∑

j=2

α1j −
m−2
∑

j=0

α1k−j



 −





n+1−k
∑

j=2

α1j −
n+1−k−2

∑

j=0

α1,n+1−m−j



 =

=





m
∑

j=2

α1j −
k

∑

t=k−m+2

α1t



 −





n+1−k
∑

j=2

α1j −
n+1−m
∑

l=k−m+2

α1l



 .
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If m < n + 1 − k, then k < n + 1 − m and

αkm − αn+1−m,n+1−k = −





n+1−k
∑

j=m+1

α1j −
n+1−m
∑

l=k+1

α1t



 .

Since, by Lemma 8.1, α1j = α1,n+2−j , we see that

n+1−k
∑

j=m+1

α1j =
n+1−k
∑

j=m+1

α1,n+2−j =
n+1−m
∑

p=k+1

α1p

and αkm − αn+1−m,n+1−k = 0.

Suppose m > n + 1 − k. Whence, k > n + 1 − m and

αkm − αn+1−m,n+1−k =
m

∑

j=n+2−k

α1j −
k

∑

j=n+2−m

α1j .

The application of Lemma 8.1 again yields αkm − αn+1−m,n+1−k = 0.
Thus, αkm = αn+1−m,n+1−k for k > m.

Similarly, we obtain this equality if k < m.

For m = n + 1 − k, the equality is trivial.

Thus the matrix (αij) is symmetric with respect to the secondary
diagonal.

Combining this proposition with Corollaries 8.3, 8.5, we obtain the
following theorem which describes cyclic reduced Gorenstein exponent
matrices.

Theorem 8.7. Any cyclic reduced Gorenstein tiled order is isomorphic
to a reduced order Λ with permutation σ(Λ) = (1 2 . . . n) such that the
exponent matrix E(Λ) = (αij) of Λ has the following properties:
1. All entries of (αij) are expressed by formulas (3) with

[

n
2

]

positive
integral parameters α12, . . . , α1,[n

2 ]+1.

2. α1j = α1,n+2−j for all j.
3. The matrix (αij) is symmetric with respect to the secondary diagonal.

Conversely, every non-negative integral matrix (αij) with properties
1-3 is the exponent matrix of some cyclic reduced Gorenstein tiled order
with permutation σ(Λ) = (1 2 . . . n) if αij + αji > 0 for i 6= j.

Recall that the adjacency matrix of the quiver of any tiled order Λ
with the Jacobson radical R is calculated by the formula

[Q(Λ)] = E(R2) − E(R).
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If Λ is a cyclic Gorenstein order, then [Q(Λ)] = λP , where P is
a doubly stochastic matrix ( [34], Theorem 3.4.). Moreover, from the
chain equalities [34]

qij = qσ(i)σ(j) = · · · = qσn−1(i)σn−1(j)

it follows that [Q(Λ)] contains at the most n different entries. Therefore it
is sufficient to compute the entries of any row or column. Suppose that
an exponent matrix E(Λ) satisfies the properties 1–3 of Theorem 8.7.
Then

γi1 = min
k

(βik + βk1) − βi1 =







min(1, min
k 6=i,1

αik), if i 6= 1,

min(2, min
k 6=1

α1k) − 1, if i = 1.
(8.4)

We obtain the other entries of [Q(Λ)] from the following chain of the
equalities

qi1 = qσ(i) 2 = qσ2(i) 3 = · · · = qσn−1(i) n. (8.5)

Since σk−1(i)k = σk−1(i)σn+1−i(σk−1(i)), we have

[Q] =

n
∑

i=1

qi1Pσn+1−i , (8.6)

where Pσ =
n
∑

i=1
eiσ(i) is a permutation matrix, eij are matrix units.

Proposition 8.8. The adjacency matrix of any cyclic Gorenstein order
is a linear combination of powers of a permutation matrix Pσ with non-
negative coefficients.

Proof. The proof follows from the formula ( 8.6) and the equality Pσk =
(Pσ)k, k = 0, 1, . . . , n − 1.

As an example, we compute the exponent matrix and the adjacency
matrix of a cyclic Gorenstein order for n = 6. Taking into account condi-
tion 1 from Theorem 8.7, we see that the matrix E(Λ) depends on three
natural parameters. Put α12 = α, α13 = β, α14 = γ. Then, by condition
2 of Theorem 8.7, α15 = α13 = β, α16 = α12 = α. Using formula (3), we
obtain the other entries of the matrix. Thus, the exponent matrix has
the form

E(Λ) =

















0 α β γ β α
0 0 β β + γ − α β + γ − α β
0 α − β 0 γ β + γ − α γ
0 α − γ α − γ 0 β β
0 α − β α − γ α − β 0 α
0 0 0 0 0 0

















.
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Since the entries of E(Λ) are non-negative (see Section 2), then α−β >

0, α−γ > 0, β+γ−α > 0. Consequently, the integral parameters α, β, γ
satisfy the system of inequalities α, β, γ > 1, α > β, α > γ, β+γ > α. We
calculate, by (8.4), the entries of the first row of the adjacency matrix:

q11 = min(2, min
k 6=1

α1k) − 1 = min(2, β, γ) − 1 = min(1, β − 1, γ − 1);

q21 = min(1, min
k 6=1,2

α2k) = min(1, β, γ + β − α) = min(1, γ + β − α);

q31 = min(1, min
k 6=1,3

α3k) = min(1, α − β, γ, γ + β − α) =

= min(1, α − β, γ + β − α);

q41 = min(1, min
k 6=1,4

α4k) = min(1, α − γ, β) = min(1, α − γ);

q51 = min(1, min
k 6=1,5

α5k) = min(1, α − β, α − γ, α) =

= min(1, α − β, α − γ);

q61 = min(1, min
k 6=1,6

α6k) = min(1, 0) = 0.

Further, by (8.5), we obtain the other entries of the adjacency matrix.
Thus

[Q] =

















q11 q61 q51 q41 q31 q21

q21 q11 q61 q51 q41 q31

q31 q21 q11 q61 q51 q41

q41 q31 q21 q11 q61 q51

q51 q41 q31 q21 q11 q61

q61 q51 q41 q31 q21 q11

















,

where qi1 are obtained above.
We recall that any doubly stochastic matrix is a linear combination

of permutation matrices with non-negative coefficients

P =
∑

τ∈Sn

tτPτ , where tτ > 0.

In the general case, there are at the most n! summands.
The definition of quiver Q(B) for B ∈ Mn(R) see in ( [2], Section 5).

Proposition 8.9. Let S be a doubly stochastic matrix. Then a quiver
Q(S) is a disjoint union of strongly connected quivers.

Proof. Let S ∈ Mn(R) be a doubly stochastic matrix. Suppose that the
quiver Q(S) is connected but non-strongly connected. Then there exists

a permutational matrix Pτ such that P T
τ SPτ =

(

S1 X
0 S2

)

.
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The matrix P T
τ SPτ is also doubly stochastic as a product of the

doubly stochastic matrices. Therefore S1 and S2 are stochastic matrices.
Let ST

1 ∈ Mn(R) and S2 ∈ Mn−m(R), and m > 1. Denote by Σ(Y )
the sum of all elements of an arbitrary matrix Y ∈ Mn(R). Obviously,
Σ(P T

τ SPτ ) = Σ(S1) + Σ(S2) + Σ(X). For any stochastic matrix S ∈
Mn(R) and ST , the equality Σ(S) = Σ(ST ) = n holds. This sum does
not change under a simultaneous transposition of rows and columns.
Hence, Σ(P T

τ SPτ ) = n. Clearly, S1 and S2 are stochastic matrices.
Consequently, n = m + n − m + Σ(X). Whence, Σ(X) = 0 and X = 0.
Thus, the doubly stochastic matrix S is permutationally decomposable.
This completes the proof.

9. Global dimension of tiled orders

Let Λ = {O, E(Λ)} be a tiled order over a discrete valuation ring O and
Mn(D) its classical ring of fractions being D the classical division ring of
fractions of O, E(Λ) = (αij). Write E(Λ)T = (αji) and ΛT = {O, E(Λ)T }.

Proposition 9.1. ΛT is a tiled order and Λ is anti-isomorphic to ΛT .

Proof is obvious.

Proposition 9.2. gl.dimΛ = gl.dimΛT .

Proof. The proof follows from the equality gl.dimΛT = l.gl.dim Λ and
from [29], Theorem 20, which asserts that l.gl.dim Λ = r.gl.dimΛ if Λ is
both right and left noetherian.

The definitions of the poset M(Λ) = Mr(Λ) and of the width w(Λ)
of a tiled order Λ can be found in ( [2], Section 3).

The following two theorems are proved in [5].

Theorem 9.3. Let Λ be a tiled order in Mn(D) and w(Λ) 6 2. If
gl.dimΛ < ∞ then gl.dimΛ 6 n − 1.

Theorem 9.4. Let Λ be a tiled order and w(Λ) 6 2. If gl.dimΛ = k <
∞, then for any m (1 6 m 6 k) there exists an idempotent e ∈ Λ such
that gl.dim eΛe = m.

Example. [37]. The tiled order Λn = {O, E(Λn)}, where

En = E(Λn) =





















0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
2 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
2 2 2 . . . 0 0 0
2 2 2 . . . 1 0 0
2 2 2 . . . 2 1 0























Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.78 Tiled orders...

is the n × n-matrix, is a triangular tiled order of width two and
gl.dimΛn = n − 1. This follows from [37] and [43].

The next proposition is very useful.

Proposition 9.5. ( [27], Proposition 2.4). Let Λ be an order, and
let e be an idempotent of Λ such that eΛe is a hereditary ring. Then
gl.dim (Λ/I) 6 gl.dimΛ 6 gl.dim (Λ/I) + 2.

We use the example ( [7], p. 283) of a serial ring A with gl.dimA = 4
and the Kupisch series 4,4,3 for a construction of a tiled order Λ of width
2 with gl.dimΛ = 4 and such that Q(Λ) has five vertices.

Let

H3(O) = {O,





0 0 0
1 0 0
1 1 0



}

and

E(I) =





2 1 1
2 2 1
2 2 1



 .

Then the tiled order ∆5 with

E(∆5) =













0 0 0 1 0
1 0 0 1 1
1 1 0 1 1

1 1 0 0 0
2 1 1 1 0













has global dimension 4. This follows from Proposition 9.5.
Indeed, let e = e44 + e55. Then

E(I) = E(∆5e∆5) =













2 1 1 1 0
2 2 1 1 1
2 2 1 1 1

1 1 0 0 0
2 1 1 1 0













and gl.dim∆5 > gl.dimΛ/I = 4. It follows from Theorem 9.3 that
gl.dim∆5 = 4. Let f = e11 + e22 + e33. Then

E(J) = E(∆5f∆5) =













0 0 0 1 0
1 0 0 1 1
1 1 0 1 1

1 1 0 1 1
2 1 1 2 2













.
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It is easy to see that gl.dim∆5/J = 2. Consequently, we have
gl.dim∆5 = gl.dim∆5/I and gl.dim∆5 = gl.dim∆5/J + 2.

It follows from this example that the both equalities in Proposition 9.5
may hold.

Theorem 9.6 ([41], [6]). If Λ is a tiled order and gl.dimΛ < ∞, then
Q(Λ) has no loops.

From [37] we have following theorem.

Theorem 9.7. If Λ is a tiled order and Q(Λ) has at most 3 vertices.
Then gl.dimΛ is finite if and only if Q(Λ) has no loops. In this case
w(Λ) 6 2.

The list of the orders Λ with gl.dimΛ < ∞ and such that Q(Λ) has
4 vertices is given in [12]. The first six exponent matrices (1)-(6) from
Section 3 exhaust this list.

Proposition 9.8. w(Ω4) = 2.

Proof. Proof is obvious.

By [9], [43] Ω4 has a bijective module. We denote the rejection of
P by E − P . Using Drozd-Kirichenko rejection Lemma (see [9], [17]) we
have: Ω4 ⊂ E4 = Ω4−P4 ⊂ E3 = E4−P4 ⊂ E2 = E3−P3 ⊂ H4 = E2−P4.

Recall that

E(F4) =









0 0 0 0
1 1 0 1
1 1 0 1
1 1 1 0









.

Obviously, w(F4) = 3.
Note, that all tiled orders of finite global dimension, whose quivers

have at most four vertices are isomorphic to (0, 1)-orders, except Ω4.
Now we give a list of associated posets PΛ, where gl.dimΛ < ∞ and Λ
is a (0, 1)-order.
List of posets:

n = 1, P1 = {•}, gl.dimΛP1 = 1;

n = 2, P2 =







•
|
•







, gl.dimΛP2 = 1;

n = 3, P3 =























•
|
•
|
•























, gl.dimΛP3 = 1;
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P4 =







• •
Â Á

•







, gl.dimΛP4 = 2;

n = 4, P5 =







































•
|
•
|
•
|
•







































, gl.dimΛP5 = 1;

P6 =























•
|
• •
| Á

•























, gl.dimΛP6 = 2;

P7 =























• •
Â Á

•
|
•























, gl.dimΛP7 = 2;

P8 =







• •
| Â |
• •







, gl.dimΛP8 = 3;

P9 =







• • •
Â | Á

•







, gl.dimΛP9 = 2.

It follows from Proposition 9.2 that if the finite posets PΛ1 and PΛ2 ,
which are associated with (0, 1)-orders Λ1 and Λ2, are anti-isomorphic,
then gl.dimΛ1 = gl.dimΛ2.

Definition and results on semilattices and commutative bands can be
seen in [3] Section 1.8.

Proposition 9.9. If gl.dimΛ 6 2, then M(Λ) is a lower semilattice.

Proof. It is well known that gl.dimΛ = 1 if and only if M(Λ) is a
chain [44]. In this caseM(Λ) is a lower semilattice. If M(Λ) is not
a chain, let Pi and Pj be non-comparable elements of M(Λ). Then
Pi + Pj = M and the projective cover P (M) of M is Pi ⊕ Pj . Let
ϕ : P (M) −→ M . Then Ker ϕ ≃ Pi ∩ Pj is projective.
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Proposition 9.10. If a poset PΛ associated with a (0, 1)-order Λ has a
unique maximal element or unique minimal element, then gl.dimΛ < ∞.

Proof. By Proposition 9.2 we can assume that PΛ has a unique minimal
element and

E(Λ) =



















0 0 . . . 0 0

1 0
∗

...
. . .

*
1 0



















.

Let e = e11 and I = ΛeΛ. In this case the quotient ring Λ/I is,
obviously, an l-hereditary ring or a piecewise domain in sense of [14].
Thus, gl.dimΛ/I is finite (see, for example, [8], Ch. XI, exercise 12) and
by Proposition 9.5 gl.dim. Λ is finite.

Proposition 9.11. [10]. If the poset PΛ associated with a (0, 1)-order
Λ is disconnected then gl.dimΛ = ∞.

Proposition 9.12. The chain

E(I1) =













n − 1 n − 2 . . . 1 0
n − 1 n − 2 . . . 1 0
. . . . . . . . . . . . . . .

n − 1 n − 2 . . . 1 0
n − 1 n − 2 . . . 1 0













⊂

⊂ E(I2) =













n − 2 n − 3 . . . 1 0
n − 2 n − 3 . . . 1 0
. . . . . . . . . . . . . . .

n − 2 n − 3 . . . 1 0
n − 1 n − 2 . . . 1 0













⊂ . . . ⊂ E(In−1) =

=













1 0 . . . 0 0
1 0 . . . 0 0

. . . . . . . . . . . . . . .
n − 2 n − 3 . . . 0 0
n − 1 n − 2 . . . 1 0













⊂ E(Ωn)

is a chain of projective idempotent ideals of Ωn and the quotient ring
Ωn/I1 is quasi-hereditary.

Proof. Proof is obvious.
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Proposition 9.13. The chain

E(J1) =













2 2 . . . 1 0
2 2 . . . 1 0

. . . . . . . . . . . . . . .
2 2 . . . 1 0
2 2 . . . 1 0













⊂

⊂ E(J2) =













2 2 . . . 0 0
2 2 . . . 0 0

. . . . . . . . . . . . . . .
2 2 . . . 0 0
2 2 . . . 1 0













⊂

⊂ . . . ⊂ E(Jn−1) =













1 0 . . . 0 0
1 0 . . . 0 0

. . . . . . . . . . . . . . .
2 2 . . . 0 0
2 2 . . . 1 0













⊂ E(Λn)

is a chain of projective idempotent ideals of Λn and the quotient ring
Ωn/J1 is quasi-hereditary.

Proof is obvious.

Theorem 9.14. If A is a noetherian prime semiperfect semidistributive
ring of a finite global dimension, then Q(Λ) is a strongly connected simply
laced quiver which has no loops.

Proof. The proof follows from the Decomposition theorem for noetherian
semiprime SPSD-rings (see [2], Theorem 3.8 and [25]), ( [29], Theorem
16), Theorem 9.7 and ( [2], Theorem 4.10).

Now we shall compute the quiver Q(Ωn) and its transition matrix
for the reduced exponent matrix Ωn. We use the formula [Q(Ω)n] =

Ω
(2)
n − Ω

(1)
n . Obviously,

Ω(2)
n =

















1 1 0 . . . 0 0
2 1 1 . . . 0 0
2 2 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
n − 2 n − 3 n − 4 . . . 1 1
n − 1 n − 2 n − 3 . . . 2 1

















and [Q(Ωn)] = J−
n (0)+J+

n (0) = Yn, where J+
n (0) = e12+e23+. . .+en−1n.

We have that in Ωn = 2 cos π
n+1 and

~f = (sin
π

n + 1
, sin

2π

n + 1
, . . . , sin

(n − 1)π

n + 1
, sin

nπ

n + 1
)
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is a positive eigen-vector of Y with eigen-value 2 cos π
n+1 .

Thus the transition matrix Sn for the quiver Q(Ωn) by Theorem 5
( [28], p. 324) is:
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h.Sn = λ−1Z−1YnZ =
1

2 cos
π

n+1



















1
sin π

n+1
0 0 · · · 0 0

0
1

sin 2π
n+1

0 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

sin
(n−1)pi

n+1

0

0 0 0 · · · 0
1

sin nπ
n+1



















·

·













0 1 0 . . . 0 0

1 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 1 0













· · ·















sin
π

n+1 0 0 . . . 0 0

0 sin
2π

n+1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . sin
(n−1)π

n+1 0

0 0 0 . . . 0 sin
nπ

n+1















=

=
1

2 cos
π

n+1

























0
sin 2π

n+1

sin π
n+1

0 0 . . . 0 0 0

sin π
n+1

sin 2π
n+1

0
sin 3π

n+1

sin 2π
n+1

0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . .
sin

(n−2)π
n+1

sin (n−1)π
n+1

0
sin nπ

n+1

sin (n−1)π
n+1

0 0 0 0 . . . 0
sin (n−1)π

n+1

sin nπ
n+1

0

























.

The matrix Sn define a random walk on the set {1, 2, . . . , n} ⊂ N

(see [22], pp. 26-27).
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