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ABSTRACT. The main concept of this part of the paper is
that of a reduced exponent matrix and its quiver, which is strongly
connected and simply laced. We give the description of quivers of
reduced Gorenstein exponent matrices whose number s of vertices
is at most 7. For 2 < s < 5 we have that all adjacency matrices of
such quivers are multiples of doubly stochastic matrices. We prove
that for any permutation o on n letters without fixed elements
there exists a reduced Gorenstein tiled order A with o(€) = o.
We show that for any positive integer k there exists a Gorenstein
tiled order A, with inAy = k. The adjacency matrix of any cyclic
Gorenstein order A is a linear combination of powers of a permu-
tation matrix P, with non-negative coefficients, where o = o(A).
If A is a noetherian prime semiperfect semidistributive ring of a
finite global dimension, then Q(A) be a strongly connected simply
laced quiver which has no loops.

1. Introduction

This is the second part of a work whose first part is [2]. We use termi-
nology, definitions and results given in [2]. All rings are associative with
1 # 0. The terms “artinian”, “noetherian”, etc. will refer to both sides
of a ring, in particular, an “artinian ring” means a right artinian ring
which is also left artinian.

Let O be a complete discrete valuation ring with the field of frac-
tions K, A a finite-dimensional separable K-algebra and A a completely
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decomposable order in A, i.e. each local idempotent e € A is a local
idempotent of A (see [24]). Then A is a finite direct product of tiled
orders if and only if A is the intersection of its maximal overrings.

A semiperfect semidistributive ring shall be called an SPSD-ring.
According to the “Decomposition theorem for noetherian semiprime
SPSD-rings” (see [25], [2], Theorem 3.8), the tiled orders over (non-
necessarily commutative) discrete valuation rings are exactly the noethe-
rian (but not artinian) prime SPSD-rings. Since no other orders are
considered in the paper, by a tiled order we shall always mean a tiled
order A over a discrete valuation ring O, and write A = {O, E(A)}, where
E(A) is the exponent matrix.

If £(A) is a (0, 1)-matrix, then A is a (0, 1)-order. The next condition
is often used in the theory of orders (see [10], [11], [32], [33], [40]): for a
given order A there exists a maximal order I' such that

radl’ C A CT.

It is easy to see that if a tiled order A satisfies the above condition is
tiled then A is necessarily a (0, 1)-order.

The main concept of this part of the work is that of a reduced ex-
ponent matrix and its quiver. Note that exponent matrices appeared
first in the study of completely decomposable orders (see [26], [42]) and
were used for the investigation of semimaximal rings of finite type (see
43), [44]).

In Section 2 we introduce the notion of equivalence for reduced expo-
nent matrices and show that the quivers of equivalent exponent matrices
can be obtained from each other by a renumeration of vertices. We
observe that the quiver of a reduced exponent matrix is strongly con-
nected and simply laced. A strongly connected and simply laced quiver
Q is called admissible if there exists a reduced exponent matrix £ with
QE) = Q.

We give the list of admissible quivers without loops for 2 < s < 4,
where s is the number of vertices of Q(£). The number of these quivers
for s = 21is 1; for s = 3'is 2 and for s = 4 is 11 (Section 3). It is shown
in [38] and [39] that if we remove all loops from the admissible quivers
with 2 < s < 4 then we obtain all strongly connected quivers from [16]
(Appendix 2, Digraph diagrams).

Sections 4 and 5 are devoted to the description of quivers of reduced
Gorenstein exponent matrices whose number of vertices is at most 7. For
2 < s < 5 we have that all adjacency matrices of such quivers are mul-
tiples of doubly stochastic matrices. In Section 6 we prove that for any
permutation ¢ on n letters without fixed elements there exists a reduced
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Gorenstein exponent matrix & with o(€) = 0. We also show that the
Cayley table of the elementary abelian 2-group of order 2¥ is a reduced
Gorenstein exponent matrix and its index equals k 4+ 1. Therefore, for
any positive integer k there exists a Gorenstein tiled order I'y_; such
that inl'y_1 = k (Section 7).

With respect to the results of Sections 6 and 7, it is natural to ask
the following question. Suppose that a Latin square £ [21] defined on
S ={0,1,...,n — 1} is an exponent matrix which is doubly symmetric,
that is £ is symmetric with respect to the main diagonal and is also
symmetric with respect to the secondary diagonal. Suppose also that
the first row of £ is {012 ... n — 1}.

Is it true that & is necessarily the Cayley table of an elementary
abelian 2-group?

The main result of Section 8 is Theorem 8.7. Observe the following
fact (Proposition 8.8). The adjacency matriz of any cyclic Gorenstein
order A is a linear combination of powers of a permutation matriz P,
with non-negative coefficients, where o = o(A).

The last section deals with the global dimension of tiled orders. R.B.
Tarsy conjectured in [37] that the upper bound gl.dim A < n — 1 holds
for any tiled order in M,, (D), where D is a division ring of fractions of a
discrete valuation ring O. V.A. Jategaonkar (see [19], [20]) proved Tarsy’s
conjecture for triangular orders and for n =2,3,4, E. Kirkman and J.
Kuzmanovich did it for (0, 1)-orders (see [27]). Observe also that Tarsy’s
conjecture is true for tiled orders of width 2 (see [5]). In [12] H. Fujita
proved Tarsy’s conjecture for m =5 and constructed a counterexample
to this conjecture. More precisely, he showed that there exists a tiled
order A, in M, (D) with gl.dim A, = n for n >6 (see [12], Example 2.5).
Tiled orders having large global dimension were considered in [35], [18]
and [13]. In what follows we shall often refer to a tiled order A and
its ideals, indicating only their exponent matrices. Using the approach,
proposed by K.W.Roggenkamp in [32] (see also [27], Proposition 2.4), we
prove that if a poset Py associated with a (0,1)-order A has a unique
maximal element or unique minimal element, then gl.dim A < co. If Py
is disconnected, then gl.dim A = oo (see [10]). For the order €, (see
[37]) we construct a chain of the projective idempotent ideals Iy C Iy C
... C In—1 C Qyp such that the quotient ring €, /I is quasi-hereditary
(see [4], [7], [30]).

We use the example by V. Dlab and C. Ringel ( [7], p. 283) for a
construction of a tiled order A of width 2 with gl.dim A = 4 such that
Q(A) has five vertices.

We show that all tiled orders of finite global dimension whose quiver
has at most four vertices have width 2, except the order Fj for which
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00 0O 2 3 2

1101 * * 2
E(Fy) = L1101 | Note that Pr, = AN l s

1 1 10 1
In general case Pp, = {1,2,...,n}, where 1 < for i =2,...,n and the
elements 2,3,...,n are pairwise non-comparable. It is easy to see that

gl.dim F,, = 2 for any n.

In the case s=4, using the Drozd-Kirichenko rejection lemma (see
[9], [17]), we construct the sequence of tiled orders: Q4 C & C & C
&y C Hy (see Section 3). These orders and Fy exhaust all orders A with
gl.dim A < oo for s=4 (see [12]).

In conclusion observe the following fact given in the last section: If A
is a noetherian prime semiperfect semidistributive ring of a finite global
dimension, then Q(A) is a strongly connected simply laced quiver which
has no loops (see also [41] and [6]).

2. Exponent matrices

Denote by M, (Z) the ring of all square n x n-matrices over the ring of
integers Z. Let € € M, (Z).

Definition 2.1. We call a matrizc £ = (oy;), an exponent matrix if
ity = agg fori, g,k = 1,...,n and ay; = 0 fori = 1,...,n. These
relations are called ring inequalities. An exponent matriz £ is called
reduced if o;; + a5 >0 fori,j = 1,...,n.

Definition 2.2. We shall call two exponents matrices £ = (oy;) and
© = (0;;) equivalent if they can be obtained from each other by trans-
formations of the following two types :

(1) subtracting an integer from the i-th row with simultaneous adding
it to the i-th column;

(2) simultaneous interchanging of two rows and the equally numbered
columms.

Let £ = (a;;) be a reduced exponent matrix. Set £1) = (3;;), where
Bij = ayj for i # j and B;; = 1for i =1,...,n, and EQ = (7ij), where

Yij = 1f<f}€12 (Bir. + Br;). Obviously, [Q] = €2 — £M) is a (0,1)-matrix.

By Theorem 4.11 and Corollary 5.3 [2] we have the following assertion.
Theorem A. The matriz [Q] = £? — €W is the adjacency matriz
of the strongly connected simply laced quiver Q@ = Q(E).

Definition 2.3. The quiver Q(E) shall be called the quiver of the re-
duced exponent matrix £.
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Definition 2.4. A strongly connected simply laced quiver shall be called
admissible if it is a quiver of a reduced exponent matriz.

Definition 2.5. A reduced exponent matriz € = (oy;) € My, (Z) shall be
called Gorenstein if there exists a permutation o of {1,2,...,n} such
that qig + Qpei) = Qi) for i,k =1,...,n.

The permutation o is denoted by o(€). Notice that o (&) for a reduced
Gorenstein exponent matrix £ has no cycles of length 1.

Definition 2.6. The index (in&) of a reduced exponent matrixz £ is the
mazimal real eigenvalue of the adjacency matriz [Q(E)] of Q(E).

Example 1. The Cayley table of the Klein four-group (2) x (2) can
be written in such form:

01 2 3
1 03 2
K=K#)=1, 3 (1
32 10

Then K (4) is a reduced Gorenstein exponent matrix with permutation

o=o0(K(4)) = (14)(23). Obviously,

2 2 3 3
@_|2 233
K 3 3 2 2
3 3 2 2
and
1 110
_g@_go_ | L0 g
QU =K® k= 11 1 gy
01 11
where P; is a doubly stochastic matrix, and Q(K) is

L0

O 0O

Obviously, in K = 3.
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Definition 2.7. (see [31], p. 140). A quasigroup Q which satisfies the
identity (zu)(vy) = (zv)(uy) for x,y,u,v € Q is called entropic.

Example 2. ( [31], p. 141, V. 2.2.1. Example).
Let Q(5) ={0,1,2,3,4} is the quasigroup with the following Cayley
table

0j0 1 2 3 4
0j]0 4 3 2 1
1711 0 4 3 2
212 1 0 4 3
313 2 1 0 4
414 3 2 1 0

It is clearly, that Q(5) is an entropic quasigroup. The Cayley table

043 21
1043 2
EG)=1]2 10 4 3
3210 4
43210

of Q(5) is a reduced Gorenstein exponent matrix with o(€(5)) = (12345).
Obviously,

1000 1
11000
[REB)I= 0.1 1.0 0| =2,
00110
00011

where P; is a doubly stochastic matrix, and in £(5) = 2.

Definition 2.8. A reduced Gorenstein exponent matriz £ is called cyclic
if 0(€) is a cycle.

Theorem B. Let £ be a cyclic reduced Gorenstein exponent matrix.
Then [Q(E)] = AP, where X is a positive integer and P is a doubly
stochastic matriz.

The proof follows from ( [34], Theorem 3.4).

Example 3. With any finite partially ordered set (poset) P we
relate a reduced exponent (0, 1)-matrix Ep = (A;;) by the following way:
Aij = 0 &4 < j, otherwise A\;; = 1.

It is easy to see that Ep is indeed reduced exponent matrix.

The definition for a diagram @Q(P) of a finite poset see in [15] and [2].
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Denote by Pz (resp. Ppin) the set of the maximal (resp. minimal)
elements of P and by Pz X Phmn their Cartesian product.

From ( [2], Theorem 6.12) we have

Theorem C. The quiver Q(Ep) can be obtained from the diagram
Q(P) by adding the arrows oi; for all (pi,pj) € Pmaz X Pmin.-

Recall that if X and Y are finite posets and X & Y is their ordinal
sum (see [1], pp. 198-199), then Exay = < Ex - Omxn >, where m

Un><m 5y

(resp. m) is a number of elements in X (resp. in Y); O,,xy, is the zero
m X n-matrix and U, x.,, is an n X m-matrix, whose every entry is 1. We
write U, xn = U, and 0,,%x,, = Oy,.

Proposition 2.9. Suppose that € = (y;) and © = (6;;) are exponent
matrices and © is obtained from € by a transformation of type (1). Then
Q)] = [Q(O)]. If € is a reduced Gorenstein exponent matriz with
permutation o(&), then O is also reduced Gorenstein with o(0) = o(E).

Proof. We have

Qg 1f7’7él7.77él7
0, fori=17j—=1,
ag —t, ifi=1j#1,
apt, ifitl=1,

Qij =

where ¢ is an integer. It can be directly checked that if oj; + ajp =
a;i, for some 1,7, k, then 6;; + 0, = 0;;. Since these transformations
are invertible, the converse transformations have similar form. So the
equality 6’1']' +0jk = 6, implies Q45+ Qg = Q- Therefore, 92']' +0jk = 0,
if and only if o;; + ok = .

Denote @(1) == (M”) and @(2) = (Vij)-

The equalities v;; = Bi;, Vi = pi; or inequalities v;; > 85, vij > [ij
simultaneously hold for the entries of the matrices (3;;) = &), (pij) =
OW, (yij) = €@, (;) = ©P). Therefore, £@ — £V = 02 — M) and
Q)] = [QO)].

Suppose that £ is a reduced Gorenstein exponent matrix with permu-
tation o(&), i.e; aij + Qo) = Qo). Whence, 05 + 0,5y = 0;5(;)- This
means that the matrix © is also Gorenstein with the same permutation
a(€). O

Let 7 be a permutation which determines simultaneous transpositions
of rows and columns of the reduced exponent matrix £ under transfor-
mations of the second type. Then 60;; = a,(;),(;) and © = PIOP,, where
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n
Pr = ) eir(;) is the permutation matrix, and PI' stands for the trans-
i=1

posed matrix of Pr. Since aj + @y (i) = Qi(s) and aij = 01-135),-1(5), We
have 97’*1(2')14 + gkrl(a(z‘)) = 9771(2%71(0(1-)). Hence the permutation 7 of
O satisfies 7(771(7)) = 77!(o(4)) for all i. Whence, m = 7~ lo7.

Since
Wij = Bryrys Vig = min(uis + prg) = min(Brin + Bir) = Ve ():
it follows that,
Gij = Vij — lij = Yr(i)r(j) — Br(i)r() = dr(i)r()»

where [Q] = (gi;) is the adjacency matrix of the quiver Q of ©. We
proved the following.

Proposition 2.10. Under transformations of the second type the ad-
jacency matriz [Q] of Q(©) changes according to the formula: [Q] =
PT[Q]P:, where [Q] = [Q(E)]. If € is Gorenstein then © is also Goren-
stein and for the new permutation ™ we have: = = 7~ lor, i.e., 0(©) =

T lo(E)r.

Note that the type of the permutation does not change under trans-
formations of the second type. Therefore, in order to describe the reduced
Gorenstein exponent matrices, one needs to examine matrices with dif-
ferent types of permutations. Further, to simplify calculations we can
assume that a row or a column of £ is zero. It can always be obtained
by transformations of the first type and entries of new exponent matrix
will be non-negative integers.

Indeed, let £(A) = (a;j) be an exponent matrix. Subtracting a;;
from the entries of the i-th row and adding this number to the entries of
the i-th column, we obtain the matrix

0 21 + a2 as1 + ag3 e Qg1 + Qg

0 0 Q3 + Q31 — o1 Qog g — a1
0 az+a—oa3n 0 S oss + o — a3y
0 agptag —as1 a3tz —ag - 0

Since ring inequalities hold for the entries of the matrix £ = (ayj), it
follows that, a;; + a1 —a;1 > 0, i.e., after these transformations we have
a matrix with non-negative elements.
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3. Adjacency matrices of admissible quivers without loops
(cases s = 2,3,4)

In [16] (Appendix 2, Digraph diagrams) there is a list of simply laced
digraphs without loops for s < 4 (s is the number of vertices @)). The
number of such quivers for s = 2 is 3; for s = 3 is 16; for s = 4 is 218.
Using this list, it is easy to see that the number of strongly connected
quivers among them for s = 2 is 1; for s = 3 is 5; for s =4 is 83.

We will give the list of admissible quivers without loops for 2 < s < 4.

The number of these quivers for s = 2 is 1; for s = 3 is 2 and for
s=4is 11.

We use such notations:

o 0 0 ... 0 O
1 0 0 ... 0 O
H, = 11 0 .... 0 O ,
1 1 1 0
1 1 1 1 0
0 0 O 0
1 0 1 1 1
P = 11 0 1 1 7
11 1 ... 0 1
11 1 ... 1 O

Qs = (wij), where w;; =0 for i < j and wyj = i —j for i > j; Hy, Fi,Qy, €
M(Z).

Proposition 3.1. There exists only one admissible quiver without loops
for s = 2 which is Cy = Q(H2) and the two admissible quivers without
loops C5 = Q(Hs) and Q(3) for s = 3.

In what follows we assume that exponent matrices are reduced and
their first rows are zero.

Proof. Let s = 2. Then5:<0 0>,5(1):(1 O> and £@) =
a 0 a 1

( ffi gz; ) where (a1,...,a¢) = min(ay, ..., a5). So [Q(E)] =

(1,a—1) 1 . 3
( 1 (La—1) and Q(&) is either Cy for « = 1 or Ly for
a > 2 (C, is a simple cycle with n vertices, [LC,] = [Cy] + E,, Ey, is the
identity n x n matrix).
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000 1 00
Let s=3. ThenE=| a 0 6 |, W= a 1 § | and
B v 0 gy 1
(2,0, ) (1,7) (1,0)
ED =1 (a+1,8+6) (207+0) (,d+1)

B+La+ty) By+1) (2,6,7+9)

Obviously, one can suppose 1 < a < 3. Then @ = 1. Really, if « > 2
we have a loop in the first vertex. If 3 = 1 we have either £ ~ Hj or
E ~ F3. Obviously, Q23 ~ F3. If 8 = 2, then £ ~ Q3. ]

Let s = 4. As above we obtain the admissible quivers without loops,
listed below. Notation £ ~ © means equivalence of these matrices by
transformations of the first type.

n
We put d = d(€) = > a;; for an exponent matrix £ = (ayj).
ij=1
Obviously, d(€) = d(0©) for equivalent reduced exponent matrices £ and
0.

It is convenient for us to place the first six exponent matrices in the

following sequence:

0 0 0 0 01 0 O
1 0 00 0 010
1 1.1 0 1 0 00
0 0 0O 01 00
1 0 00 0 010
21 10 01 00
01 1 1
00 0 O
and & ~ O3, where O = 0100 |
1 1 10
00 0 O 01 00
1 0 0 0 1 01 0
21 10 01 0O
0111
00 0 0
and & ~ O3, where O3 = 01001
1 1 10
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4. Quivers of reduced Gorenstein exponent matrices
(cases s = 2,3,4,5)

In Sections 4 and 5 we shall assume that the first column of a reduced
Gorenstein exponent matrix £ is zero.

Denote J; (0) = ea1 + ...+ ess—1 — the lower nilpotent Jordan block
and

0 o ... «

0 0 ... «
Toa7s: )

0 0 ... o

where « is a natural integer, Tt, s € Ms(Z). Ti, s is a reduced Gorenstein
exponent matrix with o(T,s) = (12...5).

Proposition 4.1.
[Q(T1,5)] = J; (0) + exss

(Q(Tws)] = Es + J; (0) + e,

where Eg is an identity s X s-matrix.

Proof is obviously.

Let s=2. Then any reduced exponent matrix £ € My(Z) is equivalent
to Tayg.

For s=3, 0(€) = (123) and it follows from Theorem 3.14 ( [2] that

Q13 + a2 = a9,
Qo1 + Q13 = 23,
Q32 + (i1 = Q31.

Since ag1 = g1 = 0, then ags = 0 and a9 = a3 = @93, Set a2 = .

0 a «
Then, wehave E= | 0 0 a | =Tuz3.
0 0 0

Proposition 4.2. For s=2 every reduced tiled order is cyclic Gorenstein
and for s=38 every reduced Gorenstein tiled order is cyclic.

For s=4 we have two permutations (1234) and (12)(34). If ¢ =
(1234), using Theorem 3.14 [2], we obtain the following system of equa-
tions:

013 + g2 = Qg + a2 = 012,
Q21 + 13 = Qg + 43 = 23,
Q31 + g4 = Q32 + g = 34,
Q2 + (i1 = Q43 + 31 = 41
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The conditions oo = 31 = ay1 = 0 and a2 = ayz = 0 imply that
034 = (14 = (12, (24 = (23 = (13, 32 = Q]2 — (V13.

Put a0 = a, a3 = 8. Whence, azs = a — (.

Since £ is a reduced order, we have a — 3 > 0, a >0, 8 > 0.

0 « 08 «
Hence, £, 3 = 8 o 9 3 g g . We have
0 0 0 0
(1,6-1) 0 (La=p) 1
(Q(Ens)] = 1 (1,8-1) 0 (1,0 = )

(La—pB) 1 (1,6-1) 0
0 (1704_/8) 1 (LB_l)
Then Q(&1,1) is the simple cycle Cy. Obviously, £, = Ti4 and for
a>2Q(€.q) = LCy. For f =1 we have a > 2 and

0 0 1 1
1.0 01
[Q(ga,l)] - 11 0 0
01 1 0
General case: a > 3 > 1.
1 011
1 1 01
01 1 1
If o = (12)(34), then
0 v+4d ~v 9
0 0 0 0
8(5%5) - O 5 0 5
0 ol v 0

Obviously, [Q(&1,5)] = [Q(Ey,1)] and [Q(&1,5)] = [ 32 %2 ]
Us

In general: if v > 2 and 0 > 2 we have [Q(&,5)] =

S —

Ey

Us Eo ]
Let s=5. In this case we have two permutations: o = (12345) and
o = (123)(45).

Suppose o = (12345) and take a reduced Gorenstein exponent matrix
& with o, then we come to the following system of linear equations for
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elements of &:

13 + 32 = Q4 + Qg2 = Qs + Q52 = A2,
Q21 + (113 = Q24 + Q143 = Q25 + 53 = (123,
31 + 14 = 32 + Qg4 = Q35 + Q54 = 34, .
041 + Q15 = Qg2 + Qa5 = 143 + Q35 = Qu45,
Q52 + Qo] = Q53 + Q31 = Q54 + Q41 = Q51

Hence, putting a12 = « and a3 = 3, we obtain the following expo-
nent matrix:

0 « 8 I} Q
0 0 15} 20—a f
Eap=| 0 a=p 0 5 g,
0 a—f a-—p 0 Q
0 0 0 0 0

wherea —(2>20,20—a>20,a>1, 6> 1.

(17671) 0 (170475) (1,(17,8) (172ﬂ70‘>

(1,2ﬁ—0&) (Lﬁ_l) 0 (1,0(—ﬁ) (1,&—ﬁ)

[Q(goz,ﬂ)] = (170475) (132670‘) (175* 1) 0 (Lafﬁ)
(La=p) (La=p) (L26—a) (1,6=1) 0

0 (Lafﬁ) (Lafﬂ) (1’2570‘) (17571)

If o = (123)(45) we obtain analogously:

0 3a 3a 20 2a
0 0 3a o «
Eo = 0o 0 0 0 0
0 a 20 0 2«
0 o 20 2a 0
and
1 01 11
11 011
[Q(Ea)]:<[Q(T3av3)} U3x2>: 011 1 1
Uzx3 By 11110
11101
and in &, = 4.

Proposition 4.3. An adjacency matriz of the quiver of a reduced
Gorenstein exponent matriz G for s = 2,3,4,5 has a form [Q(G)] = AS,
where S is doubly stochastic matriz.
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5. Quivers of reduced Gorenstein exponent
matrices (cases s =6,7)

Let s = 6. Then there are four types of permutations.
(a) o = (123456).

0 a+0+y B+y a+y B+y a+pB+7y
0 0 By v g/ B+
£— 0 o} 0 o+ Y o+y
0 B g 0 pB+v B+~ ’
0 e 16} ol 0 a+ B+
0 0 0 0 0 0

where 20,520, v20,84+~v2 1, a+~v2> 1.

Then
5 0 LaB) (LA (Lany) (1,9)
(1,7) Y 0 (La,3)  (1,8)  (L,a,9)
o_| e an s 0 (L) (18)
1L8) () (L) 0 (Lap) |’
Lad) (LB () (L7 6 0
0 (La,p)  (1,B) (Layy) (L) 0
where 6 = (2,8 + v,y +a) — L.
(b) o = (123)(456).
0 a+B8+y a+f+y at+y a+pB [B+7y
0 0 a+pB+y v o' Ié;
£ - 0 0 0 0 0 0
0 3 a+f 0 a+p B ’
0 ol B+ v 0 B+~
0 « o+ Y+ o 0

where a+ 82 1, 04+yv2 1, vy+a>21,a>20,82>20,v=0 Put
6= (2,a+ 3,64 7,7+ ). Then

6—1 0 (170‘7577) (175) (177) (1,0&)
(LCY,B,’Y) 671 0 (1,0() (Lﬂ) (177)
[Q] — 0 (Lav ﬁ?f}/) d—-1 (LFY) (1,0{) (175)
(LB) (1,&) (1a’7) 6-1 0 (170‘76’7)
(177) (176) (1,&) (170‘ ﬁ7’y) d-1 0

(La)  (Ly)  (LB) 0 (Lafy) -1
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(c) o = (1234)(56).

0 a+pB+y 2v a+f+y a+vy B+~
0 0 2y 2y 0% 0%
o 0 a+8—v 0 a+pB+y « I}
0 0 0 0 0 0 ’
0 p Y o Bty 0 B+y
0 Q@ v o+ o+ y 0

where v > 1, a>0,820,a+ 0= 7.

Then
1) 0 o) 1 (L,3) (1,«)
1 0 0 p (L) (1,P)
0] = p 1 o 0 (L5 (1,a)
0 P 1 ) (L) (1L,B) |’
(L) (L) (L,B) (L) 6 0
(L) (1,8) (L) (1,8) 0 J

where p = (1,a, B, a+ 3 —7),0 = (B+v7v+a) — 1.
(d) o = (12)(34)(56).

0 a+vy+&+x ~v+& at+x a+y+x—-08 [+
0 0 0 0 0 0
£ 0 a+x 0 a+x a I6)
0 v+¢ v+¢€ 0 ¥ B+E&—x |’
0 B+ 3 X 0 B+E
0 a+v+x—-0 7+x=0 a+x—-0 a+vy+x-0 0

wherea >0,320,v>20,£>20, x>0, at+x>1,8+21, a+€ 21,
aty+x—-0B2Ly+x>2Ly+{=2La+tx—-020,7v+x—-520,
B+E—x=0.

A =2, a+y+x =B v+ a+x,B+E), Ao = 2,7+ a+x,a+
E7+Xx), Az =2, a+ v+, B+ a+y+x—B).

Then [Q] = ( VW ), where

A —1 0 (Lx,a+x—0)
V = (1va7ﬁ) (1,’)/,ﬁ+€_X) A2_1
(L’Y:ﬁ‘i'g*X) (Laaﬁ) 0 ’
(1,€x) (La+x—=87+x—5) (1,8,7)

(1704+X*57’Y+X*5) (17€:X) (]ﬂavﬂ‘i‘g*X)
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(17577+X_ﬂ) (1767/8+£_X) (170577)
(LXaOH‘X—ﬁ) (170[77) (Lﬂaﬁ_"f_X)
W= 0 (Lx;v+x=06) (L,&Ga+x=0)
Ay —1 (L&a+x—8) Lx,v+x—0)
(1,0&,,8—|—£—X) A3_1 0
(LB;’Y) 0 A?)_l

Let s = 7. There exist four types of permutations.
(a) o = (1234567).

0 a+B8+y B+y v+a ~v+a B+~ a+pB+7y

0 0 B+y v aty-=p gl B+

0 «a 0 y+a a+y—=0 a+vy-0 v+«
E=10 Ié) 164 0 Y+ o vy v+ a ,

0 B 26—a B 0 B+ B+

0 «o 8 08 o 0 a+ B+

0 0 0 0 0 0 0

where 20,820,720, 6+y21,26>2a, a+y20,v+a=1

v 4 0 (1, 0) I (1,8,7) 0

0 v é 0 (1, 0) I (1,8,7)
Q=1 (1,8,7) 0 v § 0 (1,a,8) p ,

0 (1,8,7) 0 v 0 0 (1,a,8)

where § = (2, 8+7,7+a) 1, v=(1,9,a+7-p), 0 = (1,a,a+v-p),
p=(1,5,28 - a).
(b) Let o — (12345)(67).

0 29+08 3v—=0 30 2v+0 2y 2y
0 0 3y—-8 4y-38 3v-08 2v—fB 293
0 28—~ 0 =8 3-8 v Y
E=| 0 286-v 28-7 0 2y+ 8 B B ;
0 0 0 0 0 0 0
0 B o 2y - 2y 0 2y
0 p v 2y =68 2y 2y 0

where 82 1,7 > 1,282 v, 4y > 35.
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(1,4v —3p3) 1 0 (L28-v) (1,28-v) 11

Q=1 1L28-9) (L26-9) @1,4y-3p) 1 0 L1
0 (L28—7) (1,28-7) (1,4v—3p) 1 11

1 1 1 1 1 1 0

1 1 1 1 1 01

(c) o = (1234)(567).

0 4vy—a 20 4yv—a« 2y 2y 2

0 0 2a 2¢¢ o a o

0 4y—-3a 0 4dv—a 2y—a 2y—-a 2v—«
E=10 0 0 0 0 0 0 )

0 2y—a « 2y 0 2y 0%

0 2y—a « 2y v 0 2y

0 2y—a « 2y 2y v 0

wherea > 1, v > 1, 4y —3a > 0.

1 0 (1,45 — 30) 1 111

1 1 0 (LLdy—3a) 1 1 1

(1,47 — 3a) 1 1 0 111

Q] = 0 (1,47 — 3c) 1 1 111
1 1 1 1 101

1 1 1 1 110

1 1 1 1 01 1

(d) o = (123)(45)(67).

0 3a 3a 2a 2a 2c 2a

0 0 3a a « o «a

0 0 0 0 O 0 0
E=]10 a 2a 0 20 22—08 2a-—7v |,

0 @ 20 2a¢ 0 2a—7v 2a-—0

0 a 2a ~ p 0 2a

0 a 2a ([ v 2« 0

WhereOéZl,ﬁ}O,')/}O, 2@—/3207204—’)/207 205—’}’—}—/821,
200 - B+ > 1L
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1 0 1 (1,8,7) (1,8,7) w w
1 1 0 (1,8,7) (1,8,7) w w
0 1 1 (1,8,7) (1,8,7) w w
Q] = w w w 6 0 L3 @y |,
w w w 0 1) (L,v) (1,8)
(L3, LBy (1,8,7) (L,2a—7) (L,2a—=8) 6 0
(L3, LBy (1,8,7) (L,2a=8) (1,2a—~) 0 4

where 6 = (2,2 — B+ v,2a—v+ () =1, w = (1,20 — 3,200 — 7).

6. Gorenstein orders and entropic quasigroups

For the Cayley table

0 n—-—1 n-—-2 ... 2 1
1 0 n—1 3
2 1 4
£(n) = 0 3
n—-2 n—-3 n—4 ... 0 n-1
L n—1 n—-2 n-=3 ... 1 0 |

of the entropic quasigroup Q(n), we have [Q(E(n))] = E, + J,, (0) + e1n,
where J, (0) = e21 + ...+ €nn_1 is the lower nilpotent Jordan block.
The next definition is given in ( [34], Section IV).

Definition 6.1. A finite quasigroup Q defined on the set S = {0,1,...,
n — 1} is called Gorenstein if its Cayley table C(Q) = (cj) has a zero
main diagonal and there exists a permutation o : i — o(i) fori=1,...,n
such that i, + gy = Qig(s) fori=1,...,n.

If o is a cycle then G is a cyclic Gorenstein quasigroup.

Proposition 6.2. The quasigroup Q(n) is Gorenstein with permutation
o= (12...n), i.e. Q(n) is a cyclic Gorenstein quasigroup.

Proof. Tt’s obvious. O

Remark. Note, that a reduced tiled order A is Gorenstein if and only if
its exponent matriz E(A) is Gorenstein.

Theorem 6.3. For any permutation o € S, without fixed elements there
exists a Gorenstein reduced tiled order A with permutation o(A) = o.

Proof. Suppose that ¢ has no cycles of length 1 and decomposes into a
product of non-intersecting cycles o = o7 - - - o, where o; has length m;.
Denote by t the least common multiple of the numbers mi;—1,..., mp—1.
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Consider the matrix

tlg(ml) tUml Xmo tUml Xms “ee tUlemk
0 t2(€(m2) tUm2><m3 e tUszmk

5(m17~--,ms) = 0 0 t35(m3) ce tUmngk ,
0 0 0 c. tké'(mk)

_t

mj—17
i =7 if i > j;

L E(m) = (ei3), & = { i—j+m, ifi<j.

Let us remark that €;; + €j5(;) = €55y = m — 1 for all ¢, j.

Evidently, £(mq,...,ms) is the exponent matrix with permutation
F(A) = (123...m1)(m1 +1...m +m2)---(m1 +mo + -+ MmEp_1 +
1...mp+mg+--+mp_1 + mg).

Since the permutations ¢ and 7 have the same type, these permu-
tations are conjugate, i. e., there exists a permutation 7 such that
o=71"1tn(A)rT.

Consequently, by Propositions 2.9 and 2.10, the matrix P7&(my, ...,
ms) Py is the exponent matrix of a Gorenstein reduced tiled order A with
permutation o(A) = o. O

where t; = Um;xm; 18 an m; X m; - matrix whose entries equal

Example. (B.V. Novikov). The matrix

0 1 2 3 4 5 6 7 8 9 10 11
1 0 5 2 3 4 7 8 9 6 11 10
2 5 0 4 1 3 8 10 7 11 6 9
3 2 4 0 5 1 10 6 11 7 9 8
4 3 1 5 0 2 9 11 6 10 8 7
5 4 3 1 2 0 11 9 10 8 7 6
Cll)=| 6 7 8§10 9 11 0 2 1 3 4 5
7 8 10 6 11 9 2 0 5 1 3 4
8 9 7 11 6 10 1 5 0 4 2 3
9 6 11 7 10 8 3 1 4 0 5 2
1011 6 9 8 7 4 3 2 5 0 1
11 1009 8 7 6 5 4 3 2 1 0

is the Cayley table of a Gorenstein quasigroup £12 with the permutation
. 1 2 3 45 6 7 8 9 10 11 12
“\1211 109876543 2 1)

The rings inequalities do not hold:
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arr + a9 =7 < a9 = 8.

Obviously, £12 is an abelian loop of period 2 and 0 is the neutral
element of Lq5.

All subgroups in L12 are elementary abelian 2-groups. There are no
subgroups of order 8 in L15. The loop L12 contains the following Klein
subgroups: < 0,1,10,11 >; < 0,2,9,11 >; < 0,3,8,1 >; < 0,4,7,11 >
;< 0,5,6,11,>. There are no subgroups different from these in Lis.
Denote by * the binary operation in Lis.

We have: (1x2)%2=>5%2=3and 1*(2x2) =1%0=1. Then 1 # 3
and L1 is not diassociative and, consequently, it is not Moufang.

The subgroup K =< 0,1 > is normal in £15. Then the quotient loop
L12/K has the following Cayley table:

ﬁlg/K:

I = O O NI
1 OU Ol DIl
[l NI IOV AN G |

QU = I DN = DI
=Wl DI U Ol =
DO DI TU =1 Ol i

The loop £12/K is simple.

7. Cayley tables of elementary abelian 2-groups

Put Gg = {e}. Denote by I'g = {O,E(T'y)} a Gorenstein tiled order with
exponent matrix £(I'g) = (0) and 7O = Or is a unique maximal ideal of

0.

The matrix £(I'y) = < (1) (1) ) is the Cayley table of the cyclic group

G of order 2 and also the exponent matrix of a Gorenstein tiled order
I’y with permutation o(T'y) = (12).
Clearly, the Cayley table of the Klein four-group (2) x (2) can be
written as
E(T) E(T) + 20,
Iy) = .
~(2) (5(F1)+2U2 E(T)

Consider

- E(Th1) E(Tk_1) + 2 1o
E(ly) = < EMk-1) +k2k1_1U2k71 ' lg(rk—l) 2 ) '
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Proposition 7.1. £(T'y) is the exponent matriz of a tiled order I'y,, where

| T A W
Fk = ok—1 .
T g1 | T

Proof. Proof by induction on k easily yields that I'y is a tiled order. [

Let G = Hx < g > be a finite Abelian group, H = {hq,...,h,},
9> = e. We shall consider the Cayley table of H as the matrix C'(H) =
(hij) with entries in H, where h;; = h;h;j. The following proposition is
obvious.

Proposition 7.2. The Cayley table of G is

C(cw) gewm)
C(G)‘<gc<ﬂ> o )

Proposition 7.3. £(Ty) is the Cayley table of the elementary abelian
group Gy, of order 2F.

Proof. The proof goes by induction on k. The basis of induction have
been already done. If £(T'y_1) is the Cayley table of Gi_1, then, by

Proposition 7.2, £(T') is the Cayley table of Gy. O
Proposition 7.4. The tiled order 'y is Gorenstein with permutation
(Ty) = 12 3 ...2k_1 2k

OURI =\ ok ok 1 2k_o . 2 1 )

Proof. 1t is obvious for k = 1. Suppose that 'y is Gorenstein with

exponent matrix £(I'y) = (afj) (i,5 = 1,2,...,2F) and o(T}) = oy,

N ok o k k ok Co
where of(i) = 2" + 1 —i. Then o;; + W i) = Yoy for all 4,5 =
1,2,...,2%. Since
k+1 _ k+1 _ k k k+1 _ k+1 _ K
Uorjj = Vigery = Q5 20 Qorpion,; = Xy =
for all 4,5 =1,2,...,2% and
k k k - k k kK _ k k
(g +2°) + gy = (5 + o i) + 27 = g 3y + 27
we obtain that
k+1 k+1 o k+1 k+1 k+1 _ k+1
Aij T ko) T Y2kron) Y2k T Y22kt ) T Y2 tan(i)
k+1 k+1 _ k+1 k+1 k+1 k41
Qokpighig T Ok jon() = Yhtion() Y2hrig T Yorle) T Y2k tien ()

i, = 1,2,...,2F Putting op41(i) = 28 + o4 (i), opp1(2F +14) = op(i),

k+1 k+1 _ Rt _ k1
we have ap; " + o1 (p) Y1 (p) for all p,q 1,2,...,2 ie.,

k41 is Gorenstein with permutation o(I'yy1) = og41, where ox11(7) =
ok 41 — 4. O
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Theorem 7.5. [34]. The Cayley table of a finite group G is the exponent
matriz of a reduced Gorenstein tiled order if and only if G = G =
(2) x...x(2).

We calculate the adjacency matrix of the quiver Q(I'y).
Let Ry = rad I'y, be the Jacobson radical of I'y, and £(I'y) = (afj),
E(Ry) = (r¥ s E(RY) = ( ij) We have

R 72 T
Rk == 2k ’f ! k=1 9
| Ry

R2 _ R2 -1 +7T2 Fk 1 WQkile_ll_‘k_l
2k "Re_1Thy RZ .+ 2Ty )’
Since rf’j 1< 9k=1 then gF1 < 2k < 2F + ak L Therefore, Rz_l +
7'1'2 Fk—l = kal‘
The equality (radA)A = A(radA) = radA holds for any tiled order
A. Consequently, 72" Rj_1Tj_1 = 72 Rj_1. Since S(ﬂQk_le,l) -

5(7T2k_lrk71) — (2’6*1 +E(R—1) — (2’“*1 + E(Tk—1)) = E, we obtain
2 >
E(RY) — E(Ry) — < E(Ry_y) Eﬁ(kal) (R i?E(Rkl) > .
Whence,

[Q(Tk-1)] E
[Q(Fk)]z[ g [Q(TIH)]}

We compute the characteristic polynomial xx4+1(2) = X[Q(r,., (%)

B —[Q(Ty)] —E _
Xi+1(2) = 2B = [Q(T11)]| = —E ' rE —[Q(T'y)] ' a
| 2E- Q)] - E 0 ‘:
= _E B —[Q(Ty)] + E

=z - 1DE - [QTW)] - [(z + 1)E — [Q(T)]]
Therefore,
Xe+1(2) = xp(z — 1) - xp(z +1). (%)

-1 -1
Since x1(z) = .

then x2(7) = (x = 3)(x — 1)(z — 1)(z + 1) = (z — 3)(x — 1)%(x + 1),
x3(z) = (z — 4)(z — 2)%2x(z — 2)2%(x + 2) = (z — 4)(z — 2)323(z + 2).
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m i
Proposition 7.6. x,,(z) = [[(x —m — 1+ 2i)%m.

i=0
Proof. We shall prove this proposition by induction on m. The basis of
induction is clear. Suppose that the formula is true for m = k. Then, by
formula (*), we obtain

k k
Xk+1(x):H(x—k—2+2z H — k4 2j)°
i=0 =0
k k-1 ;
@—k=2)]J@—k—2+20)% [[(@—k+2/) k@ +k) =
i=1 =0
k—1 i k—1 ;
=(@-k-2) [J[w—k+2)% - [[(@—k+2)%@+k) =
i=0 =0
k—1 N
=(z—k—2) [[(@—k+2)% % (@ + k).
=0
. . k—1
Since Ci + O}t = C’,ifl, we obtain xr41(z) = (x — k —2) [[(z —
1=0
k+20)C(z + k) == (z —k—2) [T (&= k+2(j — 1))%+1(z + k) =
j=1
[[(z—(k+1)—1+42j)"k.
=0
J o

By induction on k, it is easy to prove that > ¢;;(I'yx) = k + 1,
" =1
> ¢ij(Tx) = k + 1. Thus, [Q(T'y)] = (k + 1)FP, where Py is a doubly
j=1
stochastic matrix. O

8. Exponent matrices of reduced cyclic Gorenstein orders

Lemma 8.1. Let A be a cyclic reduced Gorenstein tiled order with expo-
nent matriz E(A) = (ayj) and permutation o(A) = (12...n). If oz =0
foralli=1,...,n, then a1; = a1 p42—; for 1 <j<n

Proof. By Corollary 1 of Lemma 3.3 [34], aij + aji = Qgm(s)Qom(j) +
Qgm (j)Qgm ;) for any positive integer m. For ¢ =1, we have

a1 + a1 = Qgm (1)0lgm () + Qgm (j)0lgm (1)-
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Since o is cyclic, then there exists m such that 0™ (j) = 1. Since 0™ (j) =
j+m (mod n), we have j +m =n+ 1. Whence, m =n+1— j. Hence,
oc™(1)=1+m=n+2—jand oq; + j1 = Apt2—j1 + @1 nt2—j. Since
Qj1 = Qpt2—j51 = 0, we obtain a1j = Q] nt2—j- ]

Proposition 8.2. Let a0, 13, ...,Q1, be an arbitrary set of real num-
bers; then there exists a unique matriz (oy;) such that these numbers are
the entries of its first row, agr = ag1 = 0, and i + Qgiv1 = i1 for
allk=1,....,.n;i=1,...,n—1.

Proof. Put aj; = 0. Other entries oy, of (as) will be obtained from
the system of linear equations o + agir1 = aiiv1 k= 1,...,n;0 =
1,...,n—1.

We have, aprr1 = g1 + @111 = 141 for £ < n. It follows from
the equality ay + ars = aga that, age = @12 — aqg. Since ago + g+l =
Qkkt1 = Q1g41, We obtain aogi1 = Qipr1 — Qo = Qi1 + Qi — g2 OF
Qj = a5 + -1 — @12 for j > 1.

Also, aop + a3 = asg = a13. Whence, agz = a3 — aop, = a3+ oo —
a1 — g1 for k > 1. It follows from the equality ags+aspr1 = agrr1 =
g1 that, aspp1 = a1p41 — a3 = Qg1 + Qip + Qp—1 — @13 — a2 or
agz; = a1 + -1 + d1j—2 — 13 — Q12 for j>2.

Continuing in the same way, we successively obtain unknown entries
of (a;j). In the general case,

m m—2

Q= D_ a1 = Y g for k> m —2; (8.1)
j=2 =0
k—1 k

Oy, = Z Q1m—j — ZO{U form >k — 1. (82)
§=0 J=2

Thus we have the matrix (c;;) with the entries

0, form =1,
i =4 B0~ R ey Hh2m >y
Zj:(] Qlm—j — Zj:Q ayj, il <k <m,
Q1m, for k = 1.
Clearly, ayp + agir1 = aiq1 forall k =1,... ,n;e=1,...,n— 1. Fur-

thermore,

k k—2
OékaE alj—g ajp—j=0for k=1,...,n.
j=2 j=0
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Corollary 8.3. Let (ay;) be a matriz whose entries satisfy (3), and
ayj = aapya—j for j = 2,...,n. Then aij + ajoi) = Qg for all
i,j=1,...,n, where o0 = (12...n).

Since a1 = a1 n42—j, then

m m—2 m m
Q. = g o1j — E Qip—j = E o1j — g a1pt2-i =10
=2 j=0 =2 i=2

and o + a1 = a1 = 0 for all m. Thus, the entries of (c;) satisfy the
condition a;j + @jg(;) = Qie(;) for all 4,5 = 1,...,n, where o = (12...n).

Proposition 8.4. Let (a;;) be a matriz whose entries satisfy (3). Then,
for any three pairwise different i, j, k, there exist p, q such that o;;+ o —
il — apq.

Proof. We transform the equalities (1)-(2):

m m—2 m k

Ak = Y Q1 — > Qlf—j = Yoaiw— oy, oy, forkz=m>1,
j=2 j7=0 t=2 t=k—m+2
k—1 k m k

Ak = Z Alm—j — E a1 = Z g — Z Q1¢, for m = k> 1.
j=0 j=2 t=m—k+1 t=2

Put Sijk = Quj + Qg — Qug.
For min(, j, k) > 1, we consider 6 cases.
Case 1: If i > j > k, then

)

J
Sijk = Ealt_ E agy | +
=2

t=i—j+2

J

k k i
+ Zalt = Z age | — (Z Qg — Z alt) .
t=2 t=2

t=j—k+2 t=i—k+2

Here the third and the fifth sums are the same. In addition, the first and
the forth sums contain the same summands, the second and the sixth
sums possess identical summands, too. Simplifying, we obtain:

k41 i—kt1
Sijk = E a1y — E Qi
=2 t=iej+2

Buti—j+2 = (i—k+1)—(j—k+1)+2. Note also that i—k+1 > j—k+1.
Therefore, in this case, Sijx = j—g+1,j—k+1-
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Similarly, in the other five cases, we obtain a;; + ajp — qir = g,
where:
Case 2: p=k—j,q=i1—j+1fori>k>j;
Case 3: p=i—k+1, g=j5—k+1forj>i>k;
Cased: p=j—i, q=k—1ifor j > k>
Caseb: p=k—j,q=i—j7+1for k>1> j;
Case6: p=j—i,qg=k—iif k> j > 1.
If min(i,j,k) =1, thenp=1i, g=jfork=1; p=k—1, ¢ =1 for
j=Lp=j—1,q=k—1fori=1.
Thus we have

Ciky1,j—kt1, i min(i,j, k) =k,

Qpg =\ Qk—ji—j+1,  if min(i, 5, k) = j,

Qj—i k—i> if mln(laja k) =1
If at the least two indices are same, then S;;; = 0, S;;, = 0, Sij =
Qjj =+ Qg > 0. =

Corollary 8.5. Suppose that the entries of («;j) are non-negative, sat-
isfy equalities (3), and oj = oqpqo—j for all 2 < j < n. Then (o)
is exponent matrix of a cyclic Gorenstein order with the permutation

o(A) =(12...n).

By Proposition 8.4, the entries of («;) satisfy the ring inequalities.
Using formula (1), we obtain a; = 0 for all i. Therefore, by Corol-
lary 8.3, (a;j) is the exponent matrix of a Gorenstein tiled order A with
permutation o(A) = (12...n).

Proposition 8.6. Let (c;) be the exponent matriz of a cyclic reduced
Gorenstein tiled order A with permutation o(A) = (12...n) and a3 =0
fori=1,2,...,n. Then (a;;) is symmetric with respect to the secondary
diagonal.

Proof. Evidently, any matrix (c;;) is symmetric with respect to the sec-
ondary diagonal iff o; = ovpy1—jnt1—; for all 4, 5.

We examine the difference oy — py1—mpt+1—k- Suppose k > m,
thenn+1—-—m>n+1—k and

Apm — Apngl—mn+l—k =

m n+l1—k n+l1—k—2
E a1j — E Alk—5 | — § a1y — g Al n+l-m—j | =
j=2 j=2 7=0

n+1—k n+1l—-m

m
E a1y — E a1y — g aqy
J=2

l=k—m+2
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Ifm<n+1—k, then k <n+1—m and

n+l—k n+l—-m
Opm — Opntl—-mn+l—k = — § Q15 — § art
j=m+1 I=k+1

Since, by Lemma 8.1, aj = a1 py2—j, we see that

n+1l—k n+1l—k n+l—m
g ayj = g Al n+2—j = E Q1p
j=m+1 Jj=m+1 p=k+1

and Ukm — Qn4l-mn+l—-k = 0.
Suppose m >n+ 1 — k. Whence, Kk >n+1—m and

m k
Akm — Aptl-mn+l1—k = E Q15 — E Qaqj.
j=n+2—k j=n+2—m

The application of Lemma 8.1 again yields agm — tptr1—mp+1-k = 0.
Thus, agm = pt1—mnt+1—k for k> m.

Similarly, we obtain this equality if k < m.

For m = n + 1 — k, the equality is trivial.

Thus the matrix (ay;) is symmetric with respect to the secondary
diagonal. O

Combining this proposition with Corollaries 8.3, 8.5, we obtain the
following theorem which describes cyclic reduced Gorenstein exponent
matrices.

Theorem 8.7. Any cyclic reduced Gorenstein tiled order is isomorphic

to a reduced order A with permutation o(A) = (12 ... n) such that the

exponent matriz E(A) = (ay;) of A has the following properties:

1. All entries of (cuj) are expressed by formulas (3) with [2] positive

integral parameters aqa, . .. 70‘1,[g]+1'

2. a1j = 01 nt2—j fOT’ allj.

3. The matriz (cvj;) is symmetric with respect to the secondary diagonal.
Conversely, every non-negative integral matriz (cy;) with properties

1-8 is the exponent matriz of some cyclic reduced Gorenstein tiled order

with permutation o(A) = (12 ... n) if o5 + aj; > 0 fori # j.

Recall that the adjacency matrix of the quiver of any tiled order A
with the Jacobson radical R is calculated by the formula

[Q(A)] = E(R?) — E(R).
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If A is a cyclic Gorenstein order, then [Q(A)] = AP, where P is
a doubly stochastic matrix ( [34], Theorem 3.4.). Moreover, from the
chain equalities [34]

Qij = o (i)o(j) = = don=1(i)o™ 1))
it follows that [Q(A)] contains at the most n different entries. Therefore it
is sufficient to compute the entries of any row or column. Suppose that
an exponent matrix £(A) satisfies the properties 1-3 of Theorem 8.7.
Then
min(1l, min o), if 1 # 1,

( ki 1 it) ifi#

vir = min(Bix + B1) — P = (8.4)

in(2, ma -1, ifi=1.
min( ,7]?;711 oq) — 1, if 4
We obtain the other entries of [Q(A)] from the following chain of the
equalities

41 = do(i)2 = 9o2(i)3 = " = Qon—1(i)n- (8.5)

Since o*~1(i)k = o1 (i)o" 1= (0¥ 71(i)), we have

Q] = Z(Jﬂpanﬂ—i, (8.6)
i=1

n

where Py = ) €,,(;) is a permutation matrix, e;; are matrix units.
i=1

Proposition 8.8. The adjacency matrixz of any cyclic Gorenstein order

s a linear combination of powers of a permutation matriz P, with non-

negative coefficients.

Proof. The proof follows from the formula ( 8.6) and the equality P » =
(P)k, k=0,1,....n—1. O

As an example, we compute the exponent matrix and the adjacency
matrix of a cyclic Gorenstein order for n = 6. Taking into account condi-
tion 1 from Theorem 8.7, we see that the matrix £(A) depends on three
natural parameters. Put a0 = o, @13 = 8, a14 = . Then, by condition
2 of Theorem 8.7, a5 = a13 = 3, a16 = a12 = a. Using formula (3), we
obtain the other entries of the matrix. Thus, the exponent matrix has
the form

0 « B Y B o

0 0 B Bty-—a B+y—a B

1 0 a—-p 0 y B+y—a v
E=1 9 a—7v a—vy 0 5 8
0 a—f a—7vy a—pf 0 «

0 0 0 0 0 0
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Since the entries of £(A) are non-negative (see Section 2), then a—f >
0, a—~ =0, B+~v—a > 0. Consequently, the integral parameters o, 3, vy
satisfy the system of inequalities o, 6,y > 1,a > 8, = v, 8+7 = a. We
calculate, by (8.4), the entries of the first row of the adjacency matrix:

q11 = min(2, mm arg) — 1L =min(2,6,v) =1 =min(1,8 — 1,y —1);
qo1 = min(1, mzrg as) =min(l, B,y + B —a) =min(l,y+ § — «);
qs1 = min(1, mm Oégk) min(l,a — B,y,7v+ [ —a) =

=min(l,a— 8,7+ 8 —a);
qa1 = min(1, 272044/6) min(l,a — v, 3) = min(l,a — 7);
gs1 = min(1, mm a5k) min(l,a — B,a —v,a) =

= min(1, —7);
qe1 = min(1, m Oéﬁk) min(1,0) = 0.

Further, by (8.5), we obtain the other entries of the adjacency matrix.
Thus

qi1 961 451 g41 431 421

421 qi11 ge1r G51 g41 G31

[Q] _ g31 421 411 461 451 g41

g41 431 421 qi11 ¢ge1 gs1

g51 q41 431 421 411 9461

g61 451 G411 g31 G211 q11

where ¢;; are obtained above.
We recall that any doubly stochastic matrix is a linear combination
of permutation matrices with non-negative coefficients

P = Z t; P-, where t; > 0.
TGSn

In the general case, there are at the most n! summands.
The definition of quiver Q(B) for B € M, (R) see in ( [2], Section 5).

Proposition 8.9. Let S be a doubly stochastic matriz. Then a quiver
Q(S) is a disjoint union of strongly connected quivers.

Proof. Let S € M, (R) be a doubly stochastic matrix. Suppose that the
quiver Q(S) is connected but non-strongly connected. Then there exists

a permutational matrix P, such that PTT SP. = ( 5(;1 g( >
2
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The matrix P!'SP, is also doubly stochastic as a product of the
doubly stochastic matrices. Therefore S; and Sy are stochastic matrices.

Let ST € M,(R) and Sy € M,,_,,(R), and m > 1. Denote by X(Y)
the sum of all elements of an arbitrary matrix Y € M, (R). Obviously,
S(PI'SP,) = ¥(S1) + ¥(S2) + ©(X). For any stochastic matrix S €
M, (R) and ST, the equality 3(S) = X(ST) = n holds. This sum does
not change under a simultaneous transposition of rows and columns.
Hence, (PISP.) = n. Clearly, S; and Sy are stochastic matrices.
Consequently, n = m +n —m + 3(X). Whence, £¥(X) =0 and X = 0.
Thus, the doubly stochastic matrix S is permutationally decomposable.
This completes the proof. O

9. Global dimension of tiled orders

Let A = {O,E(A)} be a tiled order over a discrete valuation ring O and
M, (D) its classical ring of fractions being D the classical division ring of
fractions of O, £(A) = (vj). Write E(A)T = (i) and AT = {0, E(A)T}.

Proposition 9.1. AT is a tiled order and A is anti-isomorphic to AT.
Proof is obvious.
Proposition 9.2. gl.dim A = gl.dim AT .

Proof. The proof follows from the equality gl.dim AT = l.gl.dim A and
from [29], Theorem 20, which asserts that l.gl.dim A = r.gl.dim A if A is
both right and left noetherian. O

The definitions of the poset M(A) = M, (A) and of the width w(A)
of a tiled order A can be found in ( [2], Section 3).
The following two theorems are proved in [5].

Theorem 9.3. Let A be a tiled order in M,(D) and w(A) < 2. If
gl.dim A < oo then gl.dim A <n —1.

Theorem 9.4. Let A be a tiled order and w(A) < 2. If gl.dim A =k <
oo, then for any m (1 < m < k) there exists an idempotent e € A such
that gl.dimeAe = m.

Example. [37]. The tiled order A,, = {O, £(A,)}, where

o o o0 ... 0 0 O

1 0 0 ... 0 0 0

2 1 0 0O 0 O
En=E(Ay) =

2 2 2 0O 0 O

2 2 2 1 0 o0

2 2 2 2 1 0
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is the n x n-matrix, is a triangular tiled order of width two and
gl.dim A, = n — 1. This follows from [37] and [43].
The next proposition is very useful.

Proposition 9.5. ( [27], Proposition 2.4). Let A be an order, and
let e be an idempotent of A such that eMAe is a hereditary ring. Then
gl.dim (A/I) < gl.dimA < gl.dim (A/I) + 2.

We use the example ( [7], p. 283) of a serial ring A with gl.dim A =4
and the Kupisch series 4,4,3 for a construction of a tiled order A of width
2 with gl.dim A = 4 and such that Q(A) has five vertices.

Let

000
H0)={0. [ 1 0 0 |}
1 1 0
and
2 1 1
EN=12 21
2 21
Then the tiled order A5 with
0 0 0|1 O
1 0 0|1 1
EAs)=| 1 1 0]1 1
1 1 0|10 O
2 1 1|1 0

has global dimension 4. This follows from Proposition 9.5.
Indeed, let e = eq4 + e55. Then

2 1 1]1 0
2 2 1[1 1
EN)=ENseAs)=| 2 2 1]{1 1
1 1 0/0 0
2 1 1[1 0

and gl.dimAs > gl.dimA/I = 4. Tt follows from Theorem 9.3 that
gl.dim As = 4. Let f = e + e22 + es3. Then

E(J) = E(AsfAs5) =

N R = = O

0
0
1
1
1

—_ oo O O
N = = =
N = = O
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It is easy to see that gl.dimAs/J = 2. Consequently, we have
gl.dim Ay = gl.dim As/I and gl.dim As = gl.dim As/J + 2.

It follows from this example that the both equalities in Proposition 9.5
may hold.

Theorem 9.6 ([41], [6]). If A is a tiled order and gl.dim A < oo, then
Q(A) has no loops.

From [37] we have following theorem.

Theorem 9.7. If A is a tiled order and Q(A) has at most 8 vertices.
Then gl.dim A is finite if and only if Q(A) has no loops. In this case
w(A) < 2.

The list of the orders A with gl.dim A < oo and such that Q(A) has
4 vertices is given in [12]. The first six exponent matrices (1)-(6) from
Section 3 exhaust this list.

Proposition 9.8. w({y) = 2.

Proof. Proof is obvious. O
By [9], [43] €4 has a bijective module. We denote the rejection of

P by & — P. Using Drozd-Kirichenko rejection Lemma (see [9], [17]) we

have: Q4 CE4 =Wy — Py CE3=E4— Py CEy=E3—P3 C Hy =&, — Py.
Recall that

0000
110 1
EF)=1 11 o 1
1110

Obviously, w(Fy) = 3.

Note, that all tiled orders of finite global dimension, whose quivers
have at most four vertices are isomorphic to (0,1)-orders, except 4.
Now we give a list of associated posets Py, where gl.dim A < oo and A
is a (0, 1)-order.

List of posets:
n=1, P, ={e}, gl.dimAp, =1;

n:2,P2:

, gl.dimAp, =1;

n=3,P;= , gl.dimAp, =1,
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[} [ ]
P, = AN / , gl.dimAp, = 2;
[ ]
(o
|
[ ]
n=4, P;= | 7, gl.dimAp, =1;
[
|
[ )
( [ ]
|
Ps=<( o o 5, gldimAp, =2
|/
L [ ]
( [ ] [ J
AN /
\
[ ]
[} [ ]
Ps=< | N | ¢, gldimAp, =3,
[} [ ]
[} [ ] [ ]
Py = N | , gl.dimAp, = 2.
[ ]

It follows from Proposition 9.2 that if the finite posets Py, and Ph,,
which are associated with (0,1)-orders A; and Aj, are anti-isomorphic,
then gl.dim A1 = gl.dim As.

Definition and results on semilattices and commutative bands can be
seen in [3] Section 1.8.

Proposition 9.9. If gl.dim A < 2, then M(A) is a lower semilattice.

Proof. Tt is well known that gl.dim A = 1 if and only if M(A) is a
chain [44]. In this case M(A) is a lower semilattice. If M(A) is not
a chain, let P; and P; be non-comparable elements of M(A). Then
P; + P; = M and the projective cover P(M) of M is P; & Pj. Let
@ : P(M) — M. Then Ker p ~ P; N P; is projective. O
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Proposition 9.10. If a poset Py associated with a (0,1)-order A has a
unique mazimal element or unique minimal element, then gl.dim A < oco.

Proof. By Proposition 9.2 we can assume that P, has a unique minimal
element and

0[0 ... 0 0
110
*
E(A) =
*
1 0

Let ¢ = e;; and I = AeA. In this case the quotient ring A/I is,
obviously, an [-hereditary ring or a piecewise domain in sense of [14].
Thus, gl.dim A/I is finite (see, for example, [8], Ch. XI, exercise 12) and
by Proposition 9.5 gl.dim. A is finite. O

Proposition 9.11. [10]. If the poset Py associated with a (0,1)-order
A is disconnected then gl.dim A = oo.

Proposition 9.12. The chain

n—1 n-2 ... 1 0
n—1 n-2 ... 1 0
n—1 n-—-2 ... 1 0
n—1 n—2 ... 1 0
n—2 n—-3 ... 1 0
n—2 n—-3 ... 1 0
Cc &) = T I el A
n—2 n—-3 ... 1 0
n—1 n—-2 ... 1 0
1 0 0 0
1 0 0 O
= | CE(Q)
n—2 n—3 0 O
n—1 n—2 1 0

is a chain of projective idempotent ideals of €, and the quotient ring
O, /1 is quasi-hereditary.

Proof. Proof is obvious. O



82 TILED ORDERS...

Proposition 9.13. The chain

2 2 ... 1 0
2 2 ... 1

=)

ORI\
ORI\
_
o O

NN
NN
o O
o O

C&(J2) = C
2 2 0 0
2 2 1 0
1 0 0 0
10 ... 0 O
Coo. CEUn—1)=1] v v i e o | CEN)
2 2 ... 0
2 2 ... 1 0

is a chain of projective idempotent ideals of A, and the quotient ring
0,/ J1 is quasi-hereditary.

Proof is obvious.

Theorem 9.14. If A is a noetherian prime semiperfect semidistributive
ring of a finite global dimension, then Q(A) is a strongly connected simply
laced quiver which has no loops.

Proof. The proof follows from the Decomposition theorem for noetherian
semiprime SPSD-rings (see [2], Theorem 3.8 and [25]), ( [29], Theorem
16), Theorem 9.7 and ( [2], Theorem 4.10). O

Now we shall compute the quiver Q(2,) and its transition matrix
for the reduced exponent matrix Q,. We use the formula [Q(Q2),] =

0 — oV Obviously,

1 1 0 0O O

2 1 1 0O O

lez): 2 2 1 0O O
n—2 n—-3 n—4 ... 1 1

n—1 n—-2 n—-3 ... 2 1

and [Q(Q,)] = J,, (0)+J,7(0) = Y, where J; (0) = e1a+ea3+. .. +€n_1n.
We have that in Q,, = 2 cos -2~ and

n+1
- 2 -1
f = (sin T ,sin il ,...,sin(n )W,sin nr )
n—+1 n—+1 n—+1 n—+1
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Is a positive eigen-vector of ¥ with eigen-value 2 cos ;7.

Thus the transition matrix S, for the quiver Q(€2,) by Theorem 5
([28], p. 324) is:

1
:in# (1) 0 0
0 —— 0 0 0
- 1 imnz—ﬂ
S, =21z YnZ:ﬁ
COs n+1 0 0 0 - - (Jflm 0
sin T
1
0 0 e 0 sin o
0o 1 0 ... 0 O sin ;15 0 0 ... 0 0
1 0 1 ... 0 0 0 sinZm 0 ... 0 0
e (n.—l)w N
0 0 0 1 0 0 0 Sin 0
M nm
0 0 0 1 0 0 0 0 0 sin 175
sin =
0 e % 0 0 0 0
e Y R PR | 0 0
1 sin 27 sin 2
- — R -
2eos i 0 0 0 o .. S 0 0 2+l
s (71;7+1l)7r sm (7Ln+ll)7r
sin 7("”;11)7
0 0 0 0 0 e 0

The matrix S,, define a random walk on the set {1,2,...,n} C N
(see [22], pp. 26-27).
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