On check character systems over quasigroups and loops

G. B. Belyavskaya

Communicated by Kashu A.I.

Abstract

In this article we study check character systems that is error detecting codes, which arise by appending a check digit a_{n} to every word $a_{1} a_{2} \ldots a_{n-1}: a_{1} a_{2} \ldots a_{n-1} \rightarrow a_{1} a_{2} \ldots a_{n-1} a_{n}$ with the check formula $\left.\left(\ldots\left(\left(a_{1} \cdot \delta a_{2}\right) \cdot \delta^{2} a_{3}\right) \ldots\right) \cdot \delta^{n-2} a_{n-1}\right) \cdot \delta^{n-1} a_{n}=c$, where $Q(\cdot)$ is a quasigroup or a loop, δ is a permutation of $Q, c \in Q$. We consider detection sets for such errors as transpositions $(a b \rightarrow$ $b a$), jump transpositions ($a c b \rightarrow b c a$), twin errors ($a a \rightarrow b b$) and jump twin errors ($a c a \rightarrow b c b$) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.

1. Introduction

A check character (or digit) system with one check character is an error detecting code over an alphabet Q which arises by appending a check digit a_{n} to every word $a_{1} a_{2} \ldots a_{n-1} \in Q^{n-1}$:

$$
a_{1} a_{2} \ldots a_{n-1} \rightarrow a_{1} a_{2} \ldots a_{n-1} a_{n}
$$

In praxis the examples used are among others the following: the European Article Number (EAN) Code, the Universal Product Code (UPC),

[^0]the International Book Number (ISNB) Code, the system of the serial numbers of German banknotes.

The control digit a_{n+1} can calculate by different check formulas (check equations), in particular, with the help of a quasigroup (a loop, a group) $Q(\cdot)$.

The most general check formula is the following:

$$
\left(\ldots\left(\left(a_{1} \cdot \delta_{1} a_{2}\right) \cdot \delta_{2} a_{3}\right) \ldots\right) \cdot \delta_{n-1} a_{n}=c
$$

where $Q(\cdot)$ is a quasigroup, c is a fixed element of $Q, \delta_{1}, \delta_{2}, \ldots, \delta_{n-1}$ are some fixed permutations of Q.

Such a system is called a system over a quasigroup and always detects all single errors (that is errors in only one component of a code word) and can detect other errors of certain patterns arisen during transmission of date if the quasigroup $Q(\cdot)$ has some properties.

The work [9] of J.Verhoeff is the first significant publication relating to these systems with a survey the decimal codes known in the 1970s. The statistical sampling made by J.Verhoeff shows that such errors (of human operators) as single errors $(a \rightarrow b)$, adjacent transpositions $(a b \rightarrow b a)$, jump transpositions ($a c b \rightarrow b c a$), twin errors $(a a \rightarrow b b)$ and jump twin errors $(a c a \rightarrow b c b)$ can arise, where single errors and transpositions are the most prevalent ones.
A.Ecker and G.Poch in [5] have given a survey of check character systems and their analysis from a mathematical point of view. In particular, the group-theoretical background of the known systems was explained and new codes were presented that stem from the theory quasigroups.

Studies of check character systems over groups and abelian groups are continued by R.-H.Shulz in a number of papers. In [4] H.M.Damm surveys the results about check character systems over groups and over quasigroups and studies the last ones.

In the article [1] ([2]) the check character systems over arbitrary quasigroups (over T-quasigroups) $Q(\cdot)$ with the control equations

$$
\begin{equation*}
a_{n}=\left(\ldots\left(\left(a_{1} \cdot \delta a_{2}\right) \cdot \delta^{2} a_{3}\right) \cdot \ldots\right) \cdot \delta^{n-2} a_{n-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\ldots\left(\left(\left(a_{1} \cdot \delta a_{2}\right) \cdot \delta^{2} a_{3}\right) \cdot \ldots\right) \cdot \delta^{n-2} a_{n-1}\right) \cdot \delta^{n-1} a_{n}=c \in Q \tag{2}
\end{equation*}
$$

which detect completely single errors, transpositions, jump transpositions, twin errors and jump twin errors, were investigated.

In this article we continue research of check character systems with the check formula (2) over quasigroups and loops. In particular, we consider detection sets of the pointed errors and two equivalences between
permutations δ of Q from (2) (between the related systems over the same quasigroup). Namely, we introduce an automorphism equivalence of permutations for a quasigroup and a weak equivalence of permutations for a loop. These equivalences are generalization of the respective equivalence relations considered by J.Verhoeff in [9],H.M.Damm in [4] and R.-H. Schulz in $[6,7,8]$ for the check character systems over groups and characterize systems over the same quasigroup (loop) detecting the same percentage of the considered errors.

2. Check character systems over a quasigroup

In Table 2 of [6] R.-H. Schulz gives an information about detection of errors by check character systems over a group $Q(\cdot)$ with the check formula (2), $n \geqslant 3$. Namely, he reduces detection sets and a rate (percentage) of detection of different error types for these systems. This information we give in Table 1, where

$$
\begin{aligned}
M_{T} & =\left\{(a, b) \in Q^{2} \mid a \cdot \delta b \neq b \cdot \delta a, a \neq b\right\}, \\
M_{J T} & =\left\{(a, b, c) \in Q^{3} \mid a b \cdot \delta^{2} c \neq c b \cdot \delta^{2} a, b \neq c\right\}, \\
M_{T E} & =\left\{(a, b) \in Q^{2} \mid a \cdot \delta a \neq b \cdot \delta b, a \neq b\right\}, \\
M_{J T E} & =\left\{(a, b, c) \in Q^{3} \mid a b \cdot \delta^{2} a \neq c b \cdot \delta^{2} c, a \neq c\right\} .
\end{aligned}
$$

Table 1. Detection of errors by check character systems over groups of order q

Error type	Detection set	Percentage of detection
transpositions	M_{T}	$\left\|M_{T}\right\| / q(q-1)$
jump transpositions	$M_{J T}$	$\left\|M_{J T}\right\| / q^{2}(q-1)$
twin errors	$M_{T E}$	$\left\|M_{T E}\right\| / q(q-1)$
jump twin errors	$M_{J T E}$	$\left\|M_{J T E}\right\| / q^{2}(q-1)$

Let $Q(\cdot)$ be an arbitrary quasigroup. In [1] the following statement (Theorem 3) is proved.

Theorem 1 ([1]). A check character system using a quasigroup $Q(\cdot)$ and coding (2) for $n>4$ is able to detect all
I. single errors;
II. transpositions iff for all $a, b, c, d \in Q$ with $b \neq c$ in the quasigroup $Q(\cdot)$ the inequalities $\left(\alpha_{1}\right) b \cdot \delta c \neq c \cdot \delta b$ and $\left(\alpha_{2}\right) a b \cdot \delta c \neq a c \cdot \delta b$ hold;
III. jump transpositions iff $Q(\cdot)$ has properties $\left(\beta_{1}\right) b c \cdot \delta^{2} d \neq d c \cdot \delta^{2} b$ and $\left(\beta_{2}\right)(a b \cdot c) \cdot \delta^{2} d \neq(a d \cdot c) \cdot \delta^{2} b$ for all $a, b, c, d \in Q, b \neq d$;
IV. twin errors iff $Q(\cdot)$ has properties $\left(\gamma_{1}\right) b \cdot \delta b \neq c \cdot \delta c$ and $\left(\gamma_{2}\right)$ $a b \cdot \delta b \neq a c \cdot \delta c$ for all $a, b, c \in Q, b \neq c$;
V jump twin errors iff in $Q(\cdot)$ the inequalities $\left(\sigma_{1}\right) b c \cdot \delta^{2} b \neq d c \cdot \delta^{2} d$ and $\left(\sigma_{2}\right)(a b \cdot c) \cdot \delta^{2} b \neq(a d \cdot c) \cdot \delta^{2} d$ hold for all $a, b, c, d \in Q, b \neq d$.

Denote the check character system over a quasigroup $Q(\cdot)$ with the check formula (2), $n>4$ by $S(Q(\cdot), \delta)$. Define for it detection sets

$$
M_{T}^{\delta}, M_{J T}^{\delta}, M_{T E}^{\delta}, M_{J T E}^{\delta}
$$

of transpositions, jump transpositions, twin errors, jump twin errors respectively in the following way
$M_{T}^{\delta}=U_{1}^{\delta} \cup V_{1}^{\delta}$, where $U_{1}^{\delta}=\left\{(b, c) \in Q^{2} \mid b \cdot \delta c \neq c \cdot \delta b, b \neq c\right\}, V_{1}^{\delta}=$ $\left\{(a, b, c) \in Q^{3} \mid a b \cdot \delta c \neq a c \cdot \delta b, b \neq c\right\} ;$
$M_{J T}^{\delta}=U_{2}^{\delta} \cup V_{2}^{\delta}$, where $U_{2}^{\delta}=\left\{(b, c, d) \in Q^{3} \mid b c \cdot \delta^{2} d \neq d c \cdot \delta^{2} b, b \neq\right.$ $d\}, V_{2}^{\delta}=\left\{(a, b, c, d) \in Q^{4} \mid(a b \cdot c) \cdot \delta^{2} d \neq(a d \cdot c) \cdot \delta^{2} b, b \neq d\right\} ;$
$M_{T E}^{\delta}=U_{3}^{\delta} \cup V_{3}^{\delta}$, where $U_{3}^{\delta}=\left\{(b, c) \in Q^{2} \mid b \cdot \delta b \neq c \cdot \delta c, b \neq c\right\}, V_{3}^{\delta}=$ $\left\{(a, b, c) \in Q^{3} \mid a b \cdot \delta b \neq a c \cdot \delta c, b \neq c\right\} ;$
$M_{J T E}^{\delta}=U_{4}^{\delta} \cup V_{4}^{\delta}$, where $U_{4}^{\delta}=\left\{(b, c, d) \in Q^{3} \mid b c \cdot \delta^{2} b \neq d c \cdot \delta^{2} d, b \neq\right.$ $d\}, V_{4}^{\delta}=\left\{(a, b, c, d) \in Q^{4} \mid(a b \cdot c) \cdot \delta^{2} b \neq(a d \cdot c) \cdot \delta^{2} d, b \neq c\right\}$.

Remark 1. If $Q(\cdot)$ is a quasigroup, then from $(b, c) \in U_{1}^{\delta},(b, c, d) \in U_{2}^{\delta}$, $(b, c) \in U_{3}^{\delta},(b, c, d) \in U_{4}^{\delta}$ it can follow respectively that $(a, b, c) \in V_{1}^{\delta}$, $(a, b, c, d) \in V_{2}^{\delta},(a, b, c) \in V_{3}^{\delta},(a, b, c, d) \in V_{4}^{\delta}$ for some $a \in Q$ and conversely. For example, if $(b, c) \in U_{1}^{\delta}\left(\in U_{3}^{\delta}\right)$ and the elements b, c are such that $f_{b}=f_{c}=a$ (where $f_{b} b=b, f_{c} c=c$), then $(a, b, c) \in V_{1}^{\delta}\left(\in V_{3}^{\delta}\right)$ for this element a and conversely: if $(a, b, c) \in V_{1}^{\delta}$ and $a=f_{b}=f_{c}$, then $(b, c) \in U_{1}^{\delta}$. When $(b, c, d) \in U_{2}^{\delta}\left(\in U_{4}^{\delta}\right)$ and $f_{b}=f_{d}=a$, then $(a, b, c, d) \in V_{2}^{\delta}\left(\in V_{4}^{\delta}\right)$ and conversely.

The set $U_{i}^{\delta}, i=1,2,3,4$, points out the corresponding detected errors in the first digits of code words, while the set $V_{i}^{\delta}, i=1,2,3,4$, defines the detected errors in the rest positions beginning with the second position.

Generally, the sets U_{i}^{δ} and V_{i}^{δ} are dependent, moreover, for quasigroups with the left identity e the set V_{i}^{δ} completely defines the set U_{i}^{δ} (by $a=e$) $i=1,2,3,4$.

Now we note that

$$
\max \left(\left|U_{i}^{\delta}\right|\right)=q(q-1), \quad \max \left(\left|V_{i}^{\delta}\right|\right)=q^{2}(q-1) \text { for } i=1,3
$$

and

$$
\max \left(\left|U_{i}^{\delta}\right|\right)=q^{2}(q-1), \quad \max \left(\left|V_{i}^{\delta}\right|\right)=q^{3}(q-1) \text { for } i=2,4
$$

so

$$
\max \left(\left|U_{i}^{\delta}\right|+\left|V_{i}^{\delta}\right|\right)=q\left(q^{2}-1\right) \text { for } i=1,3
$$

and

$$
\max \left(\left|U_{i}^{\delta}\right|+\left|V_{i}^{\delta}\right|\right)=q^{2}\left(q^{2}-1\right) \text { for } i=2,4
$$

Taking into account Remark 1 and above mentioned we can estimate percentage (rate) r^{δ} of detection errors for the system $S(Q(\cdot), \delta)$ over a quasigroup $Q(\cdot)$ in the following Table 2.

Table 2. Detection of errors by systems over quasigroups of order q

Error types	Detection set	Percentage of detection
transpositions	$M_{T}^{\delta}=U_{1}^{\delta} \cup V_{1}^{\delta}$	$r_{1}^{\delta} \leqslant \frac{\left(\left\|U_{1}^{\delta}\right\|+\left\|V_{1}^{\delta}\right\|\right)}{q\left(q^{2}-1\right)}$
jump transpositions	$M_{J T}^{\delta}=U_{2}^{\delta} \cup V_{2}^{\delta}$	$r_{2}^{\delta} \leqslant \frac{\left(\left\|U_{2}^{\delta}\right\|+\left\|V_{2}^{\delta}\right\|\right)}{\left.q^{2} q^{2}-1\right)}$
twin errors	$M_{T E}^{\delta}=U_{3}^{\delta} \cup V_{3}^{\delta}$	$r_{3}^{\delta} \leqslant \frac{\left(\left\|U_{3}^{\delta}\right\|+\left\|V_{3}^{\delta}\right\|\right)}{q\left(q^{2}-1\right)}$
jump twin errors	$M_{J T E}^{\delta}=U_{4}^{\delta} \cup V_{4}^{\delta}$	$r_{4}^{\delta} \leqslant \frac{\left(\left\|U_{4}^{\delta}\right\|+\left\|V_{4}^{\delta}\right\|\right)}{q^{2}\left(q^{2}-1\right)}$

Let $Q(\cdot)$ be a quasigroup with the left identity $e(e x=x$ for all $x \in Q)$ or a loop with the identity $e(e x=x e=x$ for all $x \in Q)$.

In this case elements (e, b, c) from V_{1}^{δ} (from $\left.V_{3}^{\delta}\right),(e, b, c, d)$ from V_{2}^{δ} (from V_{4}^{δ}) define the elements (b, c) of U_{1}^{δ} (of U_{3}^{δ}), (b, c, d) of U_{2}^{δ} (of $\left.U_{4}^{\delta}\right)$ respectively and conversely. So we obtain percentage of detection in Table 3.

Table 3. Detection of errors by systems over quasigroups with a left identity or over loops of order q

Error type	Detection set	Percentage of detection
transpositions	$M_{T}^{\delta}=V_{1}^{\delta}$	$r_{1}^{\delta}=\left\|V_{1}^{\delta}\right\| / q^{2}(q-1)$
jump transpositions	$M_{J T}^{\delta}=V_{2}^{\delta}$	$r_{2}^{\delta}=\left\|V_{2}^{\delta}\right\| / q^{3}(q-1)$
twin errors	$M_{T E}^{\delta}=V_{3}^{\delta}$	$r_{3}^{\delta}=\left\|V_{3}^{\delta}\right\| / q^{2}(q-1)$
jump twin errors	$M_{J T E}^{\delta}=V_{4}^{\delta}$	$r_{4}^{\delta}=\left\|V_{4}^{\delta}\right\| / q^{3}(q-1)$

If $Q(\cdot)$ is a group, then it is evident that

$$
(b, c) \in U_{1}^{\delta}\left((b, c) \in U_{3}^{\delta}\right) \text { iff }(a, b, c) \in V_{1}^{\delta}\left((a, b, c) \in V_{3}^{\delta}\right)
$$

and

$$
(b, c, d) \in U_{2}^{\delta}\left((b, c, d) \in U_{4}^{\delta}\right) \text { iff }(a, b, c, d) \in V_{2}^{\delta}\left((a, b, c, d) \in V_{4}^{\delta}\right)
$$

where a is an arbitrary element of Q.

Hence, the sets $V_{1}^{\delta}, V_{2}^{\delta}, V_{3}^{\delta}, V_{4}^{\delta}$ define completely the sets $U_{1}^{\delta}, U_{2}^{\delta}$, $U_{3}^{\delta}, U_{4}^{\delta}$ respectively and we have the rate of error detection in Table 1, since

$$
\left|V_{i}^{\delta}\right|=q\left|U_{i}^{\delta}\right|, \quad i=1,2,3,4
$$

and

$$
\begin{gathered}
r_{i}^{\delta}=\left|V_{i}^{\delta}\right| / q^{2}(q-1)=\left|U_{i}^{\delta}\right| / q(q-1), i=1,3 \\
r_{i}^{\delta}=\left|V_{i}^{\delta}\right| / q^{3}(q-1)=\left|U_{i}^{\delta}\right| / q^{2}(q-1), i=2,4
\end{gathered}
$$

By analogy with the check character systems over groups (see [6]) we give the following

Definition 1. A permutation δ_{2} is called automorphism equivalent to a permutation $\delta_{1}\left(\delta_{2} \sim \delta_{1}\right)$ for a quasigroup $Q(\cdot)$ if there exists an automorphism α of $Q(\cdot)$ such that

$$
\delta_{2}=\alpha \delta_{1} \alpha^{-1}
$$

Let $\operatorname{Aut} Q(\cdot)$ denote the group of automorphisms of a quasigroup $Q(\cdot)$.
The following proposition for quasigroups repeats Proposition 6.6 of [6] for groups.

Proposition 1. (i) Automorphism equivalence is an equivalence relation (that is reflexive, symmetric and transitive).
(ii) If δ_{1} and δ_{2} are automorphism equivalent for a quasigroup $Q(\cdot)$, then the systems $S\left(Q(\cdot), \delta_{1}\right)$ and $S\left(Q(\cdot), \delta_{2}\right)$ detect the same percentage of transpositions (jump transpositions, twin errors, jump twin errors).

Proof. (i) Straight forward calculation.
(ii) Let $\alpha \in \operatorname{Aut} Q(\cdot), \delta_{2}=\alpha \delta_{1} \alpha^{-1},(b, c) \in U_{1}^{\delta_{1}}$, that is $b \cdot \delta_{1} c \neq c \cdot \delta_{1} b$, then $\alpha\left(b \cdot \delta_{1} c\right) \neq \alpha\left(c \cdot \delta_{1} b\right), \alpha b \cdot \alpha \delta_{1} c \neq \alpha c \cdot \alpha \delta_{1} b$ or $\alpha b \cdot \alpha \delta_{1} \alpha^{-1}(\alpha c) \neq$ $\alpha c \cdot \alpha \delta_{1} \alpha^{-1}(\alpha b)$.

Hence, $(\alpha b, \alpha c) \in U_{1}^{\delta_{2}}$.
If $(a, b, c) \in V_{1}^{\delta_{1}}$, that is $a b \cdot \delta_{1} c \neq a c \cdot \delta_{1} b$, then $(\alpha a \cdot \alpha b) \cdot \alpha \delta_{1} \alpha^{-1}(\alpha c) \neq$ $(\alpha a \cdot \alpha c) \cdot \alpha \delta_{1} \alpha^{-1}(\alpha b)$. Thus, $(\alpha a, \alpha b, \alpha c) \in V_{1}^{\delta_{2}}$.

It is evident that if $(b, c) \in U_{1}^{\delta_{1}}$ and $(a, b, c) \in V_{1}^{\delta_{1}}$, then $(\alpha b, \alpha c) \in U_{1}^{\delta_{2}}$ and $(\alpha a, \alpha b, \alpha c) \in V_{1}^{\delta_{2}}$ and conversely, that is

$$
\left|M_{T}^{\delta_{1}}\right|=\left|M_{T}^{\delta_{2}}\right|
$$

The other cases follow in a similar way.
Taking into account this proposition we can say that the systems $S\left(Q(\cdot), \delta_{1}\right)$ and $S\left(Q(\cdot), \delta_{2}\right)$ with $\delta_{1} \sim \delta_{2}$ are automorphism equivalent with respect to all considered error types.

3. Equivalence of check character systems over loops

Consider the system $S(Q(\cdot), \delta)$, where $Q(\cdot)$ is a loop with the identity e. The detection sets and a percentage of detection for these systems are given in Table 3.

In [6] the following equivalence between two permutations δ_{1} and δ_{2} on Q is defined for a group $Q(\cdot)$.

Permutations δ_{1} and δ_{2} are called weak equivalent if there exist elements $a, b \in Q$ and an automorphism $\alpha \in A u t Q(\cdot)$ such that

$$
\delta_{2}=R_{a} \alpha^{-1} \delta_{1} \alpha L_{b}, a, b \in Q,
$$

where $R_{a} x=x a, L_{a} x=a x$ for all $x \in Q$.
We shall generalize the weak equivalence for a loop using the concept of a nucleus of a loop.

Recall that the left, right, middle nuclei of a loop $Q(\cdot)$ are respectively the sets [3]:

$$
\begin{aligned}
N_{l} & =\{a \in Q \mid a x \cdot y=a \cdot x y \text { for all } x, y \in Q\}, \\
N_{r} & =\{a \in Q \mid x \cdot y a=x y \cdot a \text { for all } x, y \in Q\} \\
N_{m} & =\{a \in Q \mid x a \cdot y=x \cdot a y \text { for all } x, y \in Q\} .
\end{aligned}
$$

The nucleus N of a loop is intersection of the left, right and middle nuclei:

$$
N=N_{l} \cap N_{r} \cap N_{m}
$$

All these nuclei are subgroups in the loop [3]. In a group $Q(\cdot)$ the nucleus N coincides with Q.

Definition 2. A permutation δ_{2} of a set Q is called weakly equivalent to a permutation $\delta_{1}\left(\delta_{2} \stackrel{w}{\sim} \delta_{1}\right)$ for a loop $Q(\cdot)$ if there exist an automorphism α of the loop and elements $p, q \in N$ such that

$$
\delta_{2}=R_{p} \alpha \delta_{1} \alpha^{-1} L_{q}
$$

where $R_{p} x=x p, L_{q} x=q x, N$ is the nucleus of the loop.
It is evident that if $\delta_{2} \sim \delta_{1}$, then $\delta_{2} \stackrel{w}{\sim} \delta_{1}$ (by $p=q=e$). Note, that if $p \in N, \alpha \in \operatorname{Aut} Q(\cdot)$, then $\alpha N=N$ and $R_{p}^{-1} x=R_{p-1} x, L_{p}^{-1} x=L_{p-1} x$ for all $x \in Q$, where p^{-1} is the inverse element for p in the group N (that is $p \cdot p^{-1}=p^{-1} \cdot p=e$). Indeed, $\left(x p^{-1}\right) p=x \cdot p^{-1} p=x e=x$ for all $x \in Q$, that is

$$
R_{p} R_{p-1} x=x \quad \text { or } \quad R_{p}^{-1}=R_{p^{-1}}
$$

$q\left(q^{-1} x\right)=q q^{-1} \cdot x=e x=x$ for all $x \in Q$. Hence, $L_{q}^{-1}=L_{q^{-1}}$. If a permutation δ_{1} of Q is such that $\delta_{1} N=N$, then $\delta_{2} N=N$ also for every permutation δ_{2}, which is weakly equivalent to δ_{1}. Evidently, that it is true if $\delta_{1} \in \operatorname{Aut} Q(\cdot)$.

Proposition 2. a) Weak equivalence is an equivalence relation for a loop.
b) If $\delta_{1} \stackrel{w}{\sim} \delta_{2}$, then systems $S\left(Q(\cdot), \delta_{1}\right)$ and $S\left(Q(\cdot), \delta_{2}\right)$ over a loop $Q(\cdot)$ detect the same percentage of transpositions (twin errors).
c) If, in addition, δ_{1} is an automorphism of the loop $Q(\cdot)$, then these systems detect the same percentage of transpositions (jump transpositions, twin errors and jump twin errors).

Proof. a) It is evident that $\delta \stackrel{w}{\sim} \delta$ by $p=q=e, \alpha=\varepsilon$, where ε is the identity permutation of Q.

If $\delta_{2}=R_{p} \alpha \delta_{1} \alpha^{-1} L_{q}$, that is $\delta_{2} \stackrel{w}{\sim} \delta_{1}$, then

$$
\left.\delta_{1}=\alpha^{-1} R_{p}^{-1} \delta_{2} L_{q}^{-1} \alpha=\alpha^{-1} R_{p^{-1}} \delta_{2} L_{q^{-1}} \alpha=R_{\alpha^{-1} p-1} \alpha\right)^{-1} \delta_{2} \alpha L_{\alpha^{-1} q^{-1}}
$$

where $p^{-1}\left(q^{-1}\right)$ is the element inverse to $p(q)$ in the group N, since

$$
\alpha R_{a} x=R_{\alpha a} \alpha x, \alpha L_{a} x=L_{\alpha a} \alpha x
$$

for all $a \in Q$ and $\alpha p \in N$ if $p \in N$. Thus, $\delta_{1} \stackrel{w}{\sim} \delta_{2}$.
Let $\delta_{1} \stackrel{w}{\sim} \delta_{2} \stackrel{w}{\sim} \delta_{3}$, then $\delta_{2}=R_{p} \alpha \delta_{1} \alpha^{-1} L_{q}=R_{p_{1}} \beta \delta_{3} \beta^{-1} L_{q_{1}}$ where $\alpha, \beta \in \operatorname{Aut} Q(\cdot), p, q, p_{1}, q_{1} \in N$.

From these equalities it follows that

$$
\delta_{1}=\alpha^{-1} R_{p^{-1}} R_{p_{1}} \beta \delta_{3} \beta^{-1} L_{q_{1}} L_{q^{-1}} \alpha=R_{\alpha^{-1}\left(p_{1} p^{-1}\right)} \gamma \delta_{3} \gamma^{-1} L_{\alpha^{-1}\left(q_{1} q^{-1}\right)}
$$

where $\gamma=\alpha^{-1} \beta \in \operatorname{Aut} Q(\cdot)$, since $R_{a} R_{b} x=(x b) \cdot a=x \cdot b a=R_{b a} x, b a \in$ N and $L_{a} L_{b} x=a(b x)=a b \cdot x=L_{a b} x$ if $a, b \in N$. Hence, $\delta_{1} \stackrel{w}{\sim} \delta_{3}$ and the weak equivalence is an equivalence relation.
b) Let $\delta_{1}=R_{p} \alpha \delta \alpha^{-1} L_{q}, p, q \in N$ and $(a, b, c) \in M_{T}^{\delta_{1}}=V_{1}^{\delta_{1}}$, that is

$$
a b \cdot \delta_{1} c \neq a c \cdot \delta_{1} b \quad \text { or } \quad a b \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} c \neq a c \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} b .
$$

Then, taking into account that $p \in N$ and $a b=a q^{-1} \cdot q b$ for all $a, b \in Q$ if $q \in N$, we obtain

$$
\begin{aligned}
& a b \cdot\left(\alpha \delta \alpha^{-1}(q c) \cdot p\right) \neq a c \cdot\left(\alpha \delta \alpha^{-1}(q b) \cdot p\right) \Longleftrightarrow \\
& a b \cdot \alpha \delta \alpha^{-1}(q c) \neq a c \cdot \alpha \delta \alpha^{-1}(q b) \Longleftrightarrow \\
&\left(a q^{-1} \cdot q b\right) \cdot \alpha \delta \alpha^{-1}(q c) \neq\left(a q^{-1} \cdot q c\right) \cdot \alpha \delta \alpha^{-1}(q b) \Longleftrightarrow \\
&\left(a^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q b)\right) \cdot \delta \alpha^{-1}(q c) \neq\left(\alpha^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q c)\right) \cdot \delta \alpha^{-1}(q b) \Longleftrightarrow \\
& \bar{a} \bar{b} \cdot \delta \bar{c} \neq \bar{a} \bar{c} \cdot \delta \bar{b}, \bar{b} \neq \bar{c},
\end{aligned}
$$

where $\bar{a}=\alpha^{-1}\left(a q^{-1}\right), \bar{b}=\alpha^{-1}(q b), \bar{c}=\alpha^{-1}(q c)$. Thus, $(\bar{a}, \bar{b}, \bar{c}) \in V_{1}^{\delta}=$ M_{T}^{δ}.

Now consider twin errors. Let $(a, b, c) \in V_{3}^{\delta_{1}}=M_{T E}^{\delta_{1}}$, then

$$
\begin{aligned}
a b \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} b & \neq a c \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} c, \\
a b \cdot \alpha \delta \alpha^{-1}(q b) & \neq a c \cdot \alpha \delta \alpha^{-1}(q c), \\
\left(a q^{-1} \cdot q b\right) \cdot \alpha \delta \alpha^{-1}(q b) & \neq\left(a q^{-1} \cdot q c\right) \cdot \alpha \delta \alpha^{-1}(q c), \\
\left(a^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q b)\right) \cdot \delta \alpha^{-1}(q b) & \neq\left(\alpha^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q c)\right) \cdot \delta \alpha^{-1}(q c),
\end{aligned}
$$

or

$$
\bar{a} \bar{b} \cdot \delta \bar{b} \neq \bar{a} \bar{c} \cdot \delta \bar{c}, \bar{b} \neq \bar{c}
$$

where $\bar{a}=\alpha^{-1}\left(a q^{-1}\right), \bar{b}=\alpha^{-1}(q b), \bar{c}=\alpha^{-1}(q c)$. Hence, $(\bar{a}, \bar{b}, \bar{c}) \in V_{3}^{\delta}=$ $M_{T E}^{\delta}$. The inverse transformations are also correct.
c) The statement with respect to transpositions and twin errors follows from b).

Consider jump transpositions and jump twin errors if δ is an automorphism of a loop $Q(\cdot)$.

Let $(a, b, c, d) \in M_{J T}^{\delta_{1}}=V_{2}^{\delta_{1}}, \delta_{1}=R_{p} \alpha \delta \alpha^{-1} L_{q}$, that is $(a b \cdot c) \cdot \delta_{1}^{2} d \neq$ $(a d \cdot c) \cdot \delta_{1}^{2} b \quad$ or
$(a b \cdot c) \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} R_{p} \alpha \delta \alpha^{-1} L_{q} d \neq(a d \cdot c) \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} R_{p} \alpha \delta \alpha^{-1} L_{q} b$.
Then

$$
\begin{aligned}
& (a b \cdot c) \cdot\left(\alpha \delta \alpha^{-1}\left(q \cdot\left(\alpha \delta \alpha^{-1}(q d) \cdot p\right)\right) \cdot p\right) \neq \\
& \quad \neq(a d \cdot c) \cdot\left(\alpha \delta \alpha^{-1}\left(q \cdot\left(\alpha \delta \alpha^{-1}(q b) \cdot p\right)\right) \cdot p\right)
\end{aligned}
$$

where $p \in N, \alpha \delta \alpha^{-1} \in \operatorname{Aut} Q(\cdot), \alpha \delta \alpha^{-1} p \in N$. So we have

$$
\begin{gathered}
(a b \cdot c) \cdot \alpha \delta \alpha^{-1}\left(q \cdot\left(\alpha \delta \alpha^{-1}(q d) \cdot p\right)\right) \neq(a d \cdot c) \cdot \alpha \delta \alpha^{-1}\left(q \cdot\left(\alpha \delta \alpha^{-1}(q b) \cdot p\right)\right) \\
(a b \cdot c) \cdot\left(\alpha \delta \alpha^{-1} q \cdot \alpha \delta^{2} \alpha^{-1}(q d)\right) \neq(a d \cdot c) \cdot\left(\alpha \delta \alpha^{-1} q \cdot \alpha \delta^{2} \alpha^{-1}(q b)\right) \\
\text { But } a b=a q^{-1} \cdot q b \text { and } \alpha \delta \alpha^{-1} q \in N, \text { so } \\
\begin{array}{c}
\left(\left(\left(a q^{-1} \cdot q b\right) \cdot c\right) \cdot \alpha \delta \alpha^{-1} q\right) \cdot \alpha \delta^{2} \alpha^{-1}(q d) \neq \\
\neq \\
\left(\left(\left(a q^{-1} \cdot q d\right) \cdot c\right) \cdot \alpha \delta \alpha^{-1} q\right) \cdot \alpha \delta^{2} \alpha^{-1}(q b), \\
\left(a q^{-1} \cdot q b\right)\left(c \cdot \alpha \delta \alpha^{-1} q\right) \cdot \alpha \delta^{2} \alpha^{-1}(q d) \neq \\
\\
\neq\left(a q^{-1} \cdot q d\right)\left(c \cdot \alpha \delta \alpha^{-1} q\right) \cdot \alpha \delta^{2} \alpha^{-1}(q b) \\
\\
\left(\left(\alpha^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q b)\right) \cdot \bar{c}\right) \cdot \delta^{2} \alpha^{-1}(q d) \neq \\
\quad \neq\left(\left(\alpha^{-1}\left(a q^{-1}\right) \cdot \alpha^{-1}(q d)\right) \cdot \bar{c}\right) \cdot \delta^{2} \alpha^{-1}(q b)
\end{array}
\end{gathered}
$$

or

$$
(\bar{a} \bar{b} \cdot \bar{c}) \cdot \delta^{2} \bar{d} \neq(\bar{a} \bar{d} \cdot \bar{c}) \cdot \delta^{2} \bar{b}
$$

where

$$
\bar{a}=\alpha^{-1}\left(a q^{-1}\right), \bar{b}=\alpha^{-1}(q b), \bar{c}=\alpha^{-1}\left(c \cdot \alpha \delta \alpha^{-1} q\right), \bar{d}=\alpha^{-1}(q d)
$$

Hence, $(\bar{a}, \bar{b}, \bar{c}, \bar{d}) \in V_{2}^{\delta}=M_{J T}^{\delta}$.
It remains to consider jump twin errors. Let $(a, b, c, d) \in V_{4}^{\delta_{1}}=$ $M_{J T E}^{\delta_{1}}$, that is $(a b \cdot c) \cdot \delta_{1}^{2} b \neq(a d \cdot c) \cdot \delta_{1}^{2} d$. Then

$$
(a b \cdot c) \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} R_{p} \alpha \delta \alpha^{-1} L_{q} b \neq(a d \cdot c) \cdot R_{p} \alpha \delta \alpha^{-1} L_{q} R_{p} \alpha \delta \alpha^{-1} L_{q} d
$$

In a similar way with jump transpositions we obtain the following inequality

$$
(a b \cdot c) \cdot \alpha \delta \alpha^{-1}\left(q \cdot \alpha \delta \alpha^{-1}(q b)\right) \neq(a d \cdot c) \cdot \alpha \delta \alpha^{-1}\left(q \cdot \alpha \delta \alpha^{-1}(q d)\right)
$$

Carrying out the same transformations as in the case of jump transpositions we get

$$
(\bar{a} \bar{b} \cdot \bar{c}) \cdot \delta^{2} \bar{b} \neq(\bar{a} \bar{d} \cdot \bar{c}) \cdot \delta^{2} \bar{d}
$$

where

$$
\bar{a}=\alpha^{-1}\left(a q^{-1}\right), \bar{b}=\alpha^{-1}(q b), \bar{c}=\alpha^{-1}\left(c \cdot \alpha \delta \alpha^{-1} q\right), \bar{d}=\alpha^{-1}(q d)
$$

Thus, $(a, b, c, d) \in V_{4}^{\delta_{1}}=M_{J T E}^{\delta_{1}}$ and the proof is completed.
Note that Preposition 2 is a generalization of the analogous Proposition 6.2 of [6] proved for systems over groups.

From Proposition 2 it follows
Corollary 1. Let $Q(\cdot)$ be a loop (a group), N be its nucleus, $p, q \in$ $N(p, q \in Q)$, then
a) systems $S(Q(\cdot), \varepsilon)$ and $S\left(Q(\cdot), R_{p} L_{q}\right)$ detect the same percentage of transpositions (jump transpositions, twin errors and jump twin errors); b) systems $S\left(Q(\cdot), R_{p} L_{q}\right)$ over a loop (over a group) can not detect all transpositions (all jump transpositions).

Proof. a) Follows from the point c) of Proposition 2 by $\delta_{1}=\varepsilon, \delta_{2}=$ $R_{p} L_{q}$.
b) According to Theorem 4 and Proposition 3 of [1] the system $S(Q(\cdot), \varepsilon)$ over a loop can not detect all transpositions (all jump transpositions). Now use a).

Remind that a loop $Q(\cdot)$ is called a Moufang loop if it satisfies the identity $(x y \cdot z) y=x(y \cdot z y)$.

Corollary 2. A system $S\left(Q(\cdot), R_{p} L_{q}\right)$ over a Moufang loop of odd order with nucleus $N, p, q \in N$ detects all twin errors and all jump twin errors.

Proof. It is sufficiently to note that according to Corollary 4 of [1] the system $S(Q(\cdot), \varepsilon)$ over a Mounfag loop of odd order detects all twin errors and all jump twin errors.

Example. Now we shall illustrate the results obtained above on a (noncommutative) loop of order 8.

Let $Q(\cdot)$, where $Q=\{1,2, \ldots, 8\}$, be a loop of order 8 with the unity 1 which has the Cayley table given in Table 4.

Table 4.Cayley table of the loop $Q(\cdot)$

(\cdot)	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	7	8	5	6
3	3	4	1	2	6	5	8	7
4	4	3	2	1	8	7	6	5
5	5	6	7	8	2	1	4	3
6	6	5	8	7	4	3	2	1
7	7	8	5	6	1	2	3	4
8	8	7	6	5	3	4	1	2

Computer search carried out by A.Diordiev showed that this loop has the group of automorphisms of order 4 which consists of the following permutations:

$$
(12345678),(13247856),(12348765),(13246857) .
$$

We do not write the first row of permutations in the natural order. The nucleus N contains four elements:

$$
N=\{1,2,3,4\}
$$

Among permutations δ of Q such that $\delta 1=1$ for this loop there exist the set P_{1} of 52 permutations satisfying the condition $\left(\alpha_{2}\right)$ (and $\left(\alpha_{1}\right)$, since $Q(\cdot)$ is a loop) of Theorem 1 for all $a, b, c \in Q, b \neq c$, and the set P_{2} of 16 permutations satisfying the condition $\left(\gamma_{2}\right)$ (and $\left(\gamma_{1}\right)$) for all $a, b, c \in Q, b \neq c\left(P_{1} \cup P_{2}=\varnothing\right)$. According to Theorem 1 it means that a system $S(Q(\cdot), \delta)$ with $\delta \in P_{1}\left(\delta \in P_{2}\right)$ can detect all transpositions (all twin errors).

There exist 16 permutations which are weakly equivalent to the permutation

$$
\delta_{0}=(13426785) \in P_{1}
$$

These permutations have the form $R_{p} \alpha \delta_{0} \alpha^{-1} L_{q}$, where $\alpha \in \operatorname{Aut} Q(\cdot)$, $p, q \in N$ (here the permutations multiply from the right to the left) and are given below:

$$
\begin{aligned}
& (13426785),(24315876),(31248567),(42137658), \\
& (13428567),(24317658),(31246785),(42135876), \\
& (14237865),(23148756),(32415687),(41326578), \\
& (14238756),(23147865),(32416578),(41325687) .
\end{aligned}
$$

By Proposition 2 each system $S(Q(\cdot), \delta)$, where δ is one of these permutations detects all transpositions also.

For the permutation

$$
\delta_{1}=(13564278) \in P_{2}
$$

there exist 32 permutations which are weakly equivalent to it. By Proposition 2 all systems $S(Q(\cdot), \delta)$ with δ from these permutations detect all twin errors.

For the systems $S\left(Q(\cdot), \delta_{0}\right)$ and $S\left(Q(\cdot), \delta_{1}\right)$ by computer search the following percentage of detection of transpositions, jump transpositions, twin errors and jump twin errors respectively was obtained:

$$
\begin{array}{ccc}
r_{1}^{\delta_{0}}=100, \quad r_{2}^{\delta_{0}}=67, \quad r_{3}^{\delta_{0}}=85, \quad r_{4}^{\delta_{0}}=67 \\
r_{1}^{\delta_{1}}=78, \quad r_{2}^{\delta_{1}}=87, \quad r_{3}^{\delta_{1}}=100, \quad r_{4}^{\delta_{1}}=87
\end{array}
$$

References

[1] G.B.Belyavskaya, V.I.Izbash, G.L.Mullen, Check character systems using quasigroups: I (to appear).
[2] G.B.Belyavskaya, V.I.Izbash, G.L.Mullen, Check character systems using quasigroups: II (to appear).
[3] V.D.Belousov, Foundation of the Theory of Quasigroups and Loops. (Russian), Nauka, Moscow, 1967.
[4] H.M.Damm, Prufziffersysteme uber Quasigruppen, Diplomarbeit Universitat Marburg, Marz, 1998.
[5] A.Ecker and G.Poch, Check character systems, Computing 37/4 (1986), pp. 277301.
[6] R.-H. Schulz, On check digit systems using anti-symmetric mappings, In J.Althofer et al. editors. Numbers, Information and Complexity, Kluwer Acad. Publ. Boston (2000), pp. 295-310.
[7] R.-H. Schulz, Equivalence of check digit systems over the dicyclic groups of order 8 and 12, In J.Blankenagel \& W.Spiegel, editors, Mathematikdidaktik aus Begeisterung fur die Mathematik, Klett Verlag, Stuttgart (2000), pp 227-237.
[8] R.-H. Schulz, Check Character Systems and Anti-symmetric mappings, H.Alt (Ed): Computational Discrete Mathematics, LNCS 2122 (2001), pp 136-147.
[9] J.Verhoeff, Error detecting decimal codes, Math. Center Tracts 29, Amsterdam, 1969.

CONTACT INFORMATION

G. B. Belyavskaya Institute of Mathematics and Computer

Science, Academy of Sciences of Moldova, str. Academiei, 5, MD-2028, Chishinau, Moldova
E-Mail: gbel@math.md

Received by the editors: 23.04.2003 and final form in 11.07.2003.

[^0]: The research described in this publication was made possible in part by Award No. MM2-3017 of the Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research \mathcal{G} Development Foundation for the Independent States of the Former Soviet Union (CRDF).

 2001 Mathematics Subject Classification: 20N05, 20N15, 94B60, $94 B 65$.
 Key words and phrases: quasigroup, loop, group, automorphism, check character system, code.

