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Abstract. In this article we study check character systems
that is error detecting codes, which arise by appending a check digit
an to every word a1a2...an−1 : a1a2...an−1 → a1a2...an−1an with
the check formula (...((a1 · δa2) · δ

2a3)...) · δ
n−2an−1) · δ

n−1an = c,
where Q(·) is a quasigroup or a loop, δ is a permutation of Q, c ∈ Q.
We consider detection sets for such errors as transpositions (ab →
ba), jump transpositions (acb → bca), twin errors (aa → bb) and
jump twin errors (aca → bcb) and an automorphism equivalence
(a weak equivalence) for a check character systems over the same
quasigroup (over the same loop). Such equivalent systems detect
the same percentage (rate) of the considered error types.

1. Introduction

A check character (or digit) system with one check character is an error
detecting code over an alphabet Q which arises by appending a check
digit an to every word a1a2 . . . an−1 ∈ Qn−1:

a1a2 . . . an−1 → a1a2 . . . an−1an.

In praxis the examples used are among others the following: the Euro-
pean Article Number (EAN) Code, the Universal Product Code (UPC),
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the International Book Number (ISNB) Code, the system of the serial
numbers of German banknotes.

The control digit an+1 can calculate by different check formulas (check
equations), in particular, with the help of a quasigroup (a loop, a group)
Q(·).

The most general check formula is the following:

(. . . ((a1 · δ1a2) · δ2a3) . . .) · δn−1an = c,

where Q(·) is a quasigroup, c is a fixed element of Q, δ1, δ2, . . . , δn−1 are
some fixed permutations of Q.

Such a system is called a system over a quasigroup and always detects
all single errors (that is errors in only one component of a code word) and
can detect other errors of certain patterns arisen during transmission of
date if the quasigroup Q(·) has some properties.

The work [9] of J.Verhoeff is the first significant publication relating
to these systems with a survey the decimal codes known in the 1970s. The
statistical sampling made by J.Verhoeff shows that such errors (of human
operators) as single errors (a → b), adjacent transpositions (ab → ba),
jump transpositions (acb → bca), twin errors (aa → bb) and jump twin
errors (aca → bcb) can arise, where single errors and transpositions are
the most prevalent ones.

A.Ecker and G.Poch in [5] have given a survey of check character sys-
tems and their analysis from a mathematical point of view. In particular,
the group-theoretical background of the known systems was explained
and new codes were presented that stem from the theory quasigroups.

Studies of check character systems over groups and abelian groups
are continued by R.-H.Shulz in a number of papers. In [4] H.M.Damm
surveys the results about check character systems over groups and over
quasigroups and studies the last ones.

In the article [1] ([2]) the check character systems over arbitrary quasi-
groups (over T-quasigroups) Q(·) with the control equations

an = (. . . ((a1 · δa2) · δ
2a3) · . . .) · δ

n−2an−1 (1)

and

(. . . (((a1 · δa2) · δ
2a3) · . . .) · δ

n−2an−1) · δ
n−1an = c ∈ Q, (2)

which detect completely single errors, transpositions, jump transposi-
tions, twin errors and jump twin errors, were investigated.

In this article we continue research of check character systems with
the check formula (2) over quasigroups and loops. In particular, we con-
sider detection sets of the pointed errors and two equivalences between
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permutations δ of Q from (2) (between the related systems over the same
quasigroup). Namely, we introduce an automorphism equivalence of per-
mutations for a quasigroup and a weak equivalence of permutations for
a loop. These equivalences are generalization of the respective equiv-
alence relations considered by J.Verhoeff in [9],H.M.Damm in [4] and
R.-H. Schulz in [6,7,8] for the check character systems over groups and
characterize systems over the same quasigroup (loop) detecting the same
percentage of the considered errors.

2. Check character systems over a quasigroup

In Table 2 of [6] R.-H. Schulz gives an information about detection of er-
rors by check character systems over a group Q(·) with the check formula
(2), n > 3. Namely, he reduces detection sets and a rate (percentage) of
detection of different error types for these systems. This information we
give in Table 1, where

MT ={(a, b) ∈ Q2 | a · δb 6= b · δa, a 6= b},

MJT ={(a, b, c) ∈ Q3 | ab · δ2c 6= cb · δ2a, b 6= c},

MTE ={(a, b) ∈ Q2 | a · δa 6= b · δb, a 6= b},

MJTE ={(a, b, c) ∈ Q3 | ab · δ2a 6= cb · δ2c, a 6= c}.

Table 1. Detection of errors by check character systems
over groups of order q

Error type Detection set Percentage of detection

transpositions MT |MT |/q(q − 1)

jump transpositions MJT |MJT |/q2(q − 1)

twin errors MTE |MTE |/q(q − 1)

jump twin errors MJTE |MJTE |/q2(q − 1)

Let Q(·) be an arbitrary quasigroup. In [1] the following statement (The-
orem 3) is proved.

Theorem 1 ([1]). A check character system using a quasigroup Q(·)
and coding (2) for n > 4 is able to detect all

I. single errors;

II. transpositions iff for all a, b, c, d ∈ Q with b 6= c in the quasigroup
Q(·) the inequalities (α1) b · δc 6= c · δb and (α2) ab · δc 6= ac · δb hold;

III. jump transpositions iff Q(·) has properties (β1) bc · δ2d 6= dc · δ2b
and (β2) (ab · c) · δ2d 6= (ad · c) · δ2b for all a, b, c, d ∈ Q, b 6= d;
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IV. twin errors iff Q(·) has properties (γ1) b · δb 6= c · δc and (γ2)
ab · δb 6= ac · δc for all a, b, c ∈ Q, b 6= c;

V jump twin errors iff in Q(·) the inequalities (σ1) bc · δ2b 6= dc · δ2d
and (σ2) (ab · c) · δ2b 6= (ad · c) · δ2d hold for all a, b, c, d ∈ Q, b 6= d.

Denote the check character system over a quasigroup Q(·) with the
check formula (2), n > 4 by S(Q(·), δ). Define for it detection sets

M δ
T , M δ

JT , M δ
TE , M δ

JTE

of transpositions, jump transpositions, twin errors, jump twin errors re-
spectively in the following way

M δ
T = U δ

1 ∪ V δ
1 , where U δ

1 = {(b, c) ∈ Q2 | b · δc 6= c · δb, b 6= c}, V δ
1 =

{(a, b, c) ∈ Q3 | ab · δc 6= ac · δb, b 6= c};

M δ
JT = U δ

2 ∪ V δ
2 , where U δ

2 = {(b, c, d) ∈ Q3 | bc · δ2d 6= dc · δ2b, b 6=
d}, V δ

2 = {(a, b, c, d) ∈ Q4 | (ab · c) · δ2d 6= (ad · c) · δ2b, b 6= d};

M δ
TE = U δ

3 ∪V δ
3 , where U δ

3 = {(b, c) ∈ Q2 | b · δb 6= c · δc, b 6= c}, V δ
3 =

{(a, b, c) ∈ Q3 | ab · δb 6= ac · δc, b 6= c};

M δ
JTE = U δ

4 ∪ V δ
4 , where U δ

4 = {(b, c, d) ∈ Q3 | bc · δ2b 6= dc · δ2d, b 6=
d}, V δ

4 = {(a, b, c, d) ∈ Q4 | (ab · c) · δ2b 6= (ad · c) · δ2d, b 6= c}.

Remark 1. If Q(·) is a quasigroup, then from (b, c) ∈ U δ
1 , (b, c, d) ∈ U δ

2 ,
(b, c) ∈ U δ

3 , (b, c, d) ∈ U δ
4 it can follow respectively that (a, b, c) ∈ V δ

1 ,
(a, b, c, d) ∈ V δ

2 , (a, b, c) ∈ V δ
3 , (a, b, c, d) ∈ V δ

4 for some a ∈ Q and
conversely. For example, if (b, c) ∈ U δ

1 (∈ U δ
3 ) and the elements b, c are

such that fb = fc = a (where fbb = b, fcc = c), then (a, b, c) ∈ V δ
1 (∈ V δ

3 )
for this element a and conversely: if (a, b, c) ∈ V δ

1 and a = fb = fc,
then (b, c) ∈ U δ

1 . When (b, c, d) ∈ U δ
2 (∈ U δ

4 ) and fb = fd = a, then
(a, b, c, d) ∈ V δ

2 (∈ V δ
4 ) and conversely.

The set U δ
i , i = 1, 2, 3, 4, points out the corresponding detected errors

in the first digits of code words, while the set V δ
i , i = 1, 2, 3, 4, defines the

detected errors in the rest positions beginning with the second position.

Generally, the sets U δ
i and V δ

i are dependent, moreover, for quasi-
groups with the left identity e the set V δ

i completely defines the set U δ
i

(by a = e) i = 1, 2, 3, 4.

Now we note that

max(|U δ
i |) = q(q − 1), max(|V δ

i |) = q2(q − 1) for i = 1, 3

and

max(|U δ
i |) = q2(q − 1), max(|V δ

i |) = q3(q − 1) for i = 2, 4,
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so

max(|U δ
i | + |V δ

i |) = q(q2 − 1) for i = 1, 3

and

max(|U δ
i | + |V δ

i |) = q2(q2 − 1) for i = 2, 4.

Taking into account Remark 1 and above mentioned we can estimate
percentage (rate) rδ of detection errors for the system S(Q(·), δ) over a
quasigroup Q(·) in the following Table 2.

Table 2. Detection of errors by systems over quasigroups of order q

Error types Detection set Percentage of detection

transpositions M δ
T = U δ

1 ∪ V δ
1 rδ

1 6
(|Uδ

1
|+|V δ

1
|)

q(q2−1)

jump transpositions M δ
JT = U δ

2 ∪ V δ
2 rδ

2 6
(|Uδ

2
|+|V δ

2
|)

q2(q2−1)

twin errors M δ
TE = U δ

3 ∪ V δ
3 rδ

3 6
(|Uδ

3
|+|V δ

3
|)

q(q2−1)

jump twin errors M δ
JTE = U δ

4 ∪ V δ
4 rδ

4 6
(|Uδ

4
|+|V δ

4
|)

q2(q2−1)

Let Q(·) be a quasigroup with the left identity e (ex = x for all x ∈ Q)
or a loop with the identity e (ex = xe = x for all x ∈ Q).

In this case elements (e, b, c) from V δ
1 (from V δ

3 ), (e, b, c, d) from V δ
2

(from V δ
4 ) define the elements (b, c) of U δ

1 (of U δ
3 ), (b, c, d) of U δ

2 (of
U δ

4 ) respectively and conversely. So we obtain percentage of detection in
Table 3.

Table 3. Detection of errors by systems over quasigroups with a left
identity or over loops of order q

Error type Detection set Percentage of detection

transpositions M δ
T = V δ

1 rδ
1 = |V δ

1 |/q2(q − 1)

jump transpositions M δ
JT = V δ

2 rδ
2 = |V δ

2 |/q3(q − 1)

twin errors M δ
TE = V δ

3 rδ
3 = |V δ

3 |/q2(q − 1)

jump twin errors M δ
JTE = V δ

4 rδ
4 = |V δ

4 |/q3(q − 1)

If Q(·) is a group, then it is evident that

(b, c) ∈ U δ
1 ((b, c) ∈ U δ

3 ) iff (a, b, c) ∈ V δ
1 ((a, b, c) ∈ V δ

3 )

and

(b, c, d) ∈ U δ
2 ((b, c, d) ∈ U δ

4 ) iff (a, b, c, d) ∈ V δ
2 ((a, b, c, d) ∈ V δ

4 ),

where a is an arbitrary element of Q.
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Hence, the sets V δ
1 , V δ

2 , V δ
3 , V δ

4 define completely the sets U δ
1 , U δ

2 ,
U δ

3 , U δ
4 respectively and we have the rate of error detection in Table 1,

since
|V δ

i | = q|U δ
i |, i = 1, 2, 3, 4,

and

rδ
i = |V δ

i |/q2(q − 1) = |U δ
i |/q(q − 1), i = 1, 3,

rδ
i = |V δ

i |/q3(q − 1) = |U δ
i |/q2(q − 1), i = 2, 4.

By analogy with the check character systems over groups (see [6]) we
give the following

Definition 1. A permutation δ2 is called automorphism equivalent to a
permutation δ1 (δ2 ∼ δ1) for a quasigroup Q(·) if there exists an auto-
morphism α of Q(·) such that

δ2 = αδ1α
−1.

Let AutQ(·) denote the group of automorphisms of a quasigroup Q(·).
The following proposition for quasigroups repeats Proposition 6.6 of

[6] for groups.

Proposition 1. (i) Automorphism equivalence is an equivalence relation
(that is reflexive, symmetric and transitive).

(ii) If δ1 and δ2 are automorphism equivalent for a quasigroup Q(·),
then the systems S(Q(·), δ1) and S(Q(·), δ2) detect the same percentage
of transpositions (jump transpositions, twin errors, jump twin errors).

Proof. (i) Straight forward calculation.
(ii) Let α ∈ AutQ(·), δ2 = αδ1α

−1, (b, c) ∈ U δ1
1 , that is b·δ1c 6= c·δ1b,

then α(b · δ1c) 6= α(c · δ1b), αb · αδ1c 6= αc · αδ1b or αb · αδ1α
−1(αc) 6=

αc · αδ1α
−1(αb).

Hence, (αb, αc) ∈ U δ2
1 .

If (a, b, c) ∈ V δ1
1 , that is ab·δ1c 6= ac·δ1b, then (αa·αb)·αδ1α

−1(αc) 6=
(αa · αc) · αδ1α

−1(αb). Thus, (αa, αb, αc) ∈ V δ2
1 .

It is evident that if (b, c) ∈ U δ1
1 and (a, b, c) ∈ V δ1

1 , then (αb, αc) ∈ U δ2
1

and (αa, αb, αc) ∈ V δ2
1 and conversely, that is

|M δ1
T | = |M δ2

T |.

The other cases follow in a similar way.

Taking into account this proposition we can say that the systems
S(Q(·), δ1) and S(Q(·), δ2) with δ1 ∼ δ2 are automorphism equivalent
with respect to all considered error types.
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3. Equivalence of check character systems over loops

Consider the system S(Q(·), δ), where Q(·) is a loop with the identity e.
The detection sets and a percentage of detection for these systems are
given in Table 3.

In [6] the following equivalence between two permutations δ1 and δ2

on Q is defined for a group Q(·).
Permutations δ1 and δ2 are called weak equivalent if there exist ele-

ments a, b ∈ Q and an automorphism α ∈ AutQ(·) such that

δ2 = Raα
−1δ1αLb, a, b ∈ Q,

where Rax = xa, Lax = ax for all x ∈ Q.
We shall generalize the weak equivalence for a loop using the concept

of a nucleus of a loop.
Recall that the left, right, middle nuclei of a loop Q(·) are respectively

the sets [3]:

Nl = {a ∈ Q| ax · y = a · xy for all x, y ∈ Q},

Nr = {a ∈ Q|x · ya = xy · a for all x, y ∈ Q},

Nm = {a ∈ Q|xa · y = x · ay for all x, y ∈ Q}.

The nucleus N of a loop is intersection of the left, right and middle nuclei:

N = Nl ∩ Nr ∩ Nm.

All these nuclei are subgroups in the loop [3]. In a group Q(·) the nucleus
N coincides with Q.

Definition 2. A permutation δ2 of a set Q is called weakly equivalent to
a permutation δ1 (δ2

w
∼ δ1) for a loop Q(·) if there exist an automorphism

α of the loop and elements p, q ∈ N such that

δ2 = Rpαδ1α
−1Lq,

where Rpx = xp, Lqx = qx, N is the nucleus of the loop.

It is evident that if δ2 ∼ δ1, then δ2
w
∼ δ1 (by p = q = e). Note, that

if p ∈ N, α ∈ AutQ(·), then αN = N and R−1
p x = Rp−1x, L−1

p x = Lp−1x
for all x ∈ Q, where p−1 is the inverse element for p in the group N (that
is p · p−1 = p−1 · p = e). Indeed, (xp−1)p = x · p−1p = xe = x for all
x ∈ Q, that is

RpRp−1x = x or R−1
p = Rp−1 ;

q(q−1x) = qq−1 · x = ex = x for all x ∈ Q. Hence, L−1
q = Lq−1 . If a

permutation δ1 of Q is such that δ1N = N , then δ2N = N also for every
permutation δ2, which is weakly equivalent to δ1. Evidently, that it is
true if δ1 ∈ AutQ(·).
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Proposition 2. a) Weak equivalence is an equivalence relation for a
loop.
b) If δ1

w
∼ δ2, then systems S(Q(·), δ1) and S(Q(·), δ2) over a loop Q(·)

detect the same percentage of transpositions (twin errors).
c) If, in addition, δ1 is an automorphism of the loop Q(·), then these sys-
tems detect the same percentage of transpositions (jump transpositions,
twin errors and jump twin errors).

Proof. a) It is evident that δ
w
∼ δ by p = q = e, α = ε, where ε is the

identity permutation of Q.
If δ2 = Rpαδ1α

−1Lq, that is δ2
w
∼ δ1, then

δ1 = α−1R−1
p δ2L

−1
q α = α−1Rp−1δ2Lq−1α = Rα−1p−1α−1δ2αLα−1q−1 ,

where p−1 (q−1) is the element inverse to p (q) in the group N , since

αRax = Rαaαx, αLax = Lαaαx

for all a ∈ Q and αp ∈ N if p ∈ N . Thus, δ1
w
∼ δ2.

Let δ1
w
∼ δ2

w
∼ δ3, then δ2 = Rpαδ1α

−1Lq = Rp1
βδ3β

−1Lq1
where

α, β ∈ AutQ(·), p, q, p1, q1 ∈ N .
From these equalities it follows that

δ1 = α−1Rp−1Rp1
βδ3β

−1Lq1
Lq−1α = Rα−1(p1p−1)γδ3γ

−1Lα−1(q1q−1),

where γ = α−1β ∈ AutQ(·), since RaRbx = (xb) · a = x · ba = Rbax, ba ∈
N and LaLbx = a(bx) = ab · x = Labx if a, b ∈ N . Hence, δ1

w
∼ δ3 and

the weak equivalence is an equivalence relation.
b) Let δ1 = Rpαδα−1Lq, p, q ∈ N and (a, b, c) ∈ M δ1

T = V δ1
1 , that is

ab · δ1c 6= ac · δ1b or ab · Rpαδα−1Lqc 6= ac · Rpαδα−1Lqb.

Then, taking into account that p ∈ N and ab = aq−1 · qb for all a, b ∈ Q
if q ∈ N , we obtain

ab · (αδα−1(qc) · p) 6= ac · (αδα−1(qb) · p) ⇐⇒

ab · αδα−1(qc) 6= ac · αδα−1(qb) ⇐⇒

(aq−1 · qb) · αδα−1(qc) 6= (aq−1 · qc) · αδα−1(qb) ⇐⇒

(a−1(aq−1) · α−1(qb)) · δα−1(qc) 6= (α−1(aq−1) · α−1(qc)) · δα−1(qb) ⇐⇒

āb̄ · δc̄ 6= āc̄ · δb̄, b̄ 6= c̄,

where ā = α−1(aq−1), b̄ = α−1(qb), c̄ = α−1(qc). Thus, (ā, b̄, c̄) ∈ V δ
1 =

M δ
T .
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Now consider twin errors. Let (a, b, c) ∈ V δ1
3 = M δ1

TE , then

ab · Rpαδα−1Lqb 6= ac · Rpαδα−1Lqc,

ab · αδα−1(qb) 6= ac · αδα−1(qc),

(aq−1 · qb) · αδα−1(qb) 6= (aq−1 · qc) · αδα−1(qc),

(a−1(aq−1) · α−1(qb)) · δα−1(qb) 6= (α−1(aq−1) · α−1(qc)) · δα−1(qc),

or
āb̄ · δb̄ 6= āc̄ · δc̄, b̄ 6= c̄,

where ā = α−1(aq−1), b̄ = α−1(qb), c̄ = α−1(qc). Hence, (ā, b̄, c̄) ∈ V δ
3 =

M δ
TE . The inverse transformations are also correct.
c) The statement with respect to transpositions and twin errors fol-

lows from b).
Consider jump transpositions and jump twin errors if δ is an auto-

morphism of a loop Q(·).
Let (a, b, c, d) ∈ M δ1

JT = V δ1
2 , δ1 = Rpαδα−1Lq, that is (ab · c) · δ2

1d 6=
(ad · c) · δ2

1b or
(ab · c) · Rpαδα−1LqRpαδα−1Lqd 6= (ad · c) · Rpαδα−1LqRpαδα−1Lqb.
Then

(ab · c) · (αδα−1(q · (αδα−1(qd) · p)) · p) 6=

6= (ad · c) · (αδα−1(q · (αδα−1(qb) · p)) · p),

where p ∈ N, αδα−1 ∈ AutQ(·), αδα−1p ∈ N . So we have

(ab ·c) ·αδα−1(q ·(αδα−1(qd) ·p)) 6= (ad ·c) ·αδα−1(q ·(αδα−1(qb) ·p)),

(ab · c) · (αδα−1q · αδ2α−1(qd)) 6= (ad · c) · (αδα−1q · αδ2α−1(qb)).

But ab = aq−1 · qb and αδα−1q ∈ N , so

(((aq−1 · qb) · c) · αδα−1q) · αδ2α−1(qd) 6=

6= (((aq−1 · qd) · c) · αδα−1q) · αδ2α−1(qb),

(aq−1 · qb)(c · αδα−1q) · αδ2α−1(qd) 6=

6= (aq−1 · qd)(c · αδα−1q) · αδ2α−1(qb),

((α−1(aq−1) · α−1(qb)) · c̄) · δ2α−1(qd) 6=

6= ((α−1(aq−1) · α−1(qd)) · c̄) · δ2α−1(qb)
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or
(āb̄ · c̄) · δ2d̄ 6= (ād̄ · c̄) · δ2b̄,

where

ā = α−1(aq−1), b̄ = α−1(qb), c̄ = α−1(c · αδα−1q), d̄ = α−1(qd).

Hence, (ā, b̄, c̄, d̄) ∈ V δ
2 = M δ

JT .

It remains to consider jump twin errors. Let (a, b, c, d) ∈ V δ1
4 =

M δ1
JTE , that is (ab · c) · δ2

1b 6= (ad · c) · δ2
1d. Then

(ab · c) · Rpαδα−1LqRpαδα−1Lqb 6= (ad · c) · Rpαδα−1LqRpαδα−1Lqd.

In a similar way with jump transpositions we obtain the following
inequality

(ab · c) · αδα−1(q · αδα−1(qb)) 6= (ad · c) · αδα−1(q · αδα−1(qd)).

Carrying out the same transformations as in the case of jump transposi-
tions we get

(āb̄ · c̄) · δ2b̄ 6= (ād̄ · c̄) · δ2d̄,

where

ā = α−1(aq−1), b̄ = α−1(qb), c̄ = α−1(c · αδα−1q), d̄ = α−1(qd).

Thus, (a, b, c, d) ∈ V δ1
4 = M δ1

JTE and the proof is completed.

Note that Preposition 2 is a generalization of the analogous Proposi-
tion 6.2 of [6] proved for systems over groups.

From Proposition 2 it follows

Corollary 1. Let Q(·) be a loop (a group), N be its nucleus, p, q ∈
N (p, q ∈ Q), then
a) systems S(Q(·), ε) and S(Q(·), RpLq) detect the same percentage of
transpositions (jump transpositions, twin errors and jump twin errors);
b) systems S(Q(·), RpLq) over a loop (over a group) can not detect all
transpositions (all jump transpositions).

Proof. a) Follows from the point c) of Proposition 2 by δ1 = ε, δ2 =
RpLq.
b) According to Theorem 4 and Proposition 3 of [1] the system S(Q(·), ε)
over a loop can not detect all transpositions (all jump transpositions).
Now use a).

Remind that a loop Q(·) is called a Moufang loop if it satisfies the
identity (xy · z)y = x(y · zy).
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Corollary 2. A system S(Q(·), RpLq) over a Moufang loop of odd order
with nucleus N, p, q ∈ N detects all twin errors and all jump twin errors.

Proof. It is sufficiently to note that according to Corollary 4 of [1] the
system S(Q(·), ε) over a Mounfag loop of odd order detects all twin errors
and all jump twin errors.

Example. Now we shall illustrate the results obtained above on a
(noncommutative) loop of order 8.

Let Q(·), where Q = {1, 2, ..., 8}, be a loop of order 8 with the unity
1 which has the Cayley table given in Table 4.

Table 4.Cayley table of the loop Q(·)

(·) 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 7 8 5 6
3 3 4 1 2 6 5 8 7
4 4 3 2 1 8 7 6 5
5 5 6 7 8 2 1 4 3
6 6 5 8 7 4 3 2 1
7 7 8 5 6 1 2 3 4
8 8 7 6 5 3 4 1 2

Computer search carried out by A.Diordiev showed that this loop has
the group of automorphisms of order 4 which consists of the following
permutations:

(12345678), (13247856), (12348765), (13246857).

We do not write the first row of permutations in the natural order. The
nucleus N contains four elements:

N = {1, 2, 3, 4}.

Among permutations δ of Q such that δ1 = 1 for this loop there exist
the set P1 of 52 permutations satisfying the condition (α2) (and (α1),
since Q(·) is a loop) of Theorem 1 for all a, b, c ∈ Q, b 6= c, and the
set P2 of 16 permutations satisfying the condition (γ2) (and (γ1)) for all
a, b, c ∈ Q, b 6= c (P1 ∪ P2 = ∅). According to Theorem 1 it means that
a system S(Q(·), δ) with δ ∈ P1 (δ ∈ P2) can detect all transpositions
(all twin errors).

There exist 16 permutations which are weakly equivalent to the per-
mutation

δ0 = (13426785) ∈ P1.
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These permutations have the form Rpαδ0α
−1Lq, where α ∈ AutQ(·),

p, q ∈ N (here the permutations multiply from the right to the left) and
are given below:

(13426785), (24315876), (31248567), (42137658),

(13428567), (24317658), (31246785), (42135876),

(14237865), (23148756), (32415687), (41326578),

(14238756), (23147865), (32416578), (41325687).

By Proposition 2 each system S(Q(·), δ), where δ is one of these permu-
tations detects all transpositions also.

For the permutation

δ1 = (13564278) ∈ P2

there exist 32 permutations which are weakly equivalent to it. By Propo-
sition 2 all systems S(Q(·), δ) with δ from these permutations detect all
twin errors.

For the systems S(Q(·), δ0) and S(Q(·), δ1) by computer search the
following percentage of detection of transpositions, jump transpositions,
twin errors and jump twin errors respectively was obtained:

rδ0
1 = 100, rδ0

2 = 67, rδ0
3 = 85, rδ0

4 = 67

rδ1
1 = 78, rδ1

2 = 87, rδ1
3 = 100, rδ1

4 = 87.
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