Algebra and Discrete Mathematics
Number 2. (2003). pp. 32–35
(c) Journal "Algebra and Discrete Mathematics"

A note on maximal ideals in ordered semigroups

N. Kehayopulu, J. Ponizovskii, M. Tsingelis

ABSTRACT. In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups -without order- also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general.

There is an important class of ideals of rings which are prime, namely, the maximal ideals. In fact, in a commutative ring with identity every maximal ideal is a prime ideal. On the other hand, there are rings possesing a nontrivial prime ideal which is not maximal (cf. e.g. [1]). Similar results for ordered semigroups, also for semigroups -without order- also hold.

If $(S, ., \leq)$ is an ordered semigroup, a non-empty subset I of S is called a left (resp. right) ideal of S if 1) $SI \subseteq I$ (resp. $IS \subseteq I$) and 2) $a \in I$, $S \ni b \leq a$ implies $b \in I$ [2]. If (S, .) is a semigroup, a left (resp. right) ideal of S is a non-empty subset I of S such that $SI \subseteq I$ (resp. $IS \subseteq I$). If S is a semigroup or an ordered semigroup and I both a left and a right ideal of S, then it is called an ideal of S. An ideal I of a semigroup (resp. ordered semigroup) S is called prime if $a, b \in S$ such that $ab \in I$ implies $a \in I$ or $b \in I$. Equivalent Definition: $A, B \subseteq S$ such that $AB \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$ [2]. An ideal M of a semigroup or an ordered semigroup S is called proper if $M \neq S$ [3]. A proper ideal M of a semigroup or an ordered semigroup S is called maximal if there exists no ideal T of S such that $M \subset T \subset S$, equivalently, if for each ideal Tof S such that $M \subseteq T$, we have T = M or T = S (cf. also [2]). If S is an ordered semigroup and $H \subseteq S$, we denote

 $(H] := \{ t \in S \mid t \le h \text{ for some } h \in H \}.$

2000 Mathematics Subject Classification: 06F05.

Key words and phrases: maximal ideal, prime ideal in ordered semigroups.

If S is an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$, we denote by $\mathcal{I}(A)$ the ideal of S generated by A i.e. the smallest -under inclusion relation- ideal of S containing A. For an ordered semigroup S, we have $\mathcal{I}(A) = (A \cup SA \cup AS \cup SAS]$ (cf. [2]). For a semigroup S, we have $\mathcal{I}(A) = A \cup SA \cup AS \cup SAS$.

Let $\{(S_i, \circ_i, \leq_i) \mid i \in I\}$ be a non-empty family of ordered semigroups. The cartesian product $\prod_{i \in I} S_i$ with the multiplication "*" and the order

is an ordered semigroup.

In the following we consider the $\prod_{i \in I} S_i$ as the ordered semigroup with the multiplication and the order defined above.

Lemma 1. Let $\{(S_i, \circ_i, \leq_i) \mid i \in I\}$ be a family of ordered semigroups. If J_i is an ideal of S_i for every $i \in I$, then the set $\prod_{i \in I} J_i$ is an ideal of

$\prod_{i\in I}S_i.$

Proof. 1) $\emptyset \neq \prod_{i \in I} J_i \subseteq \prod_{i \in I} S_i$ (since $J_i \neq \emptyset \forall i \in I$). 2) $\prod_{i \in I} S_i * \prod_{i \in I} J_i \subseteq \prod_{i \in I} J_i$. In fact: Let $(x_i)_{i \in I} \in \prod_{i \in I} S_i$ and $(y_i)_{i \in I} \in \prod_{i \in I} J_i$. Since $x_i \in S_i$ and $y_i \in J_i$ for every $i \in I$, we have $x_i \circ_i y_i \in S_i \circ_i J_i \subseteq J_i$ for every $i \in I$. Then we have

$$(x_i)_{i\in I} * (y_i)_{i\in I} := (x_i \circ_i y_i)_{i\in I} \in \prod_{i\in I} J_i$$

3) Let $(y_i)_{i \in I} \in \prod_{i \in I} J_i$ and $\prod_{i \in I} S_i \ni (x_i)_{i \in I} \preceq (y_i)_{i \in I}$. Then $(x_i)_{i \in I} \in I$

$\prod J_i$. $i \in I$

Indeed: Since $y_i \in J_i$, $S_i \ni x_i \leq y_i$ and J_i is an ideal of S_i for every $i \in I$, we have $x_i \in J_i$ for every $i \in I$. Then $(x_i)_{i \in I} \in \prod_{i \in I} J_i$. Similarly,

the set of $\prod_{i \in I} J_i$ is a right ideal of $\prod_{i \in I} S_i$. \Box

In the following, we denote by S the closed interval [0, 1] of real numbers. The set S := [0, 1] with the usual multiplication- order "." and " \leq " is an ordered semigroup.

Lemma 2. If $a \in S$, then the set $I_a := [0, a]$ is an ideal of S.

Proof. First of all $\emptyset \neq I_a \subseteq S$ (since $a \in [0, a]$). Let $x \in S, y \in I_a$. Since $0 \le x \le 1, 0 \le y \le a$, we have $0 \le xy \le 1a = a$. Then $xy \in I_a$. Let $y \in I_a$ and $S \ni x \leq y$. Since $0 \leq x, y \leq a$ and $x \leq y$, we have $0 \leq x \leq a$. Then $x \in I_a$. Similarly, the set I_a is a right ideal of S.

Theorem. Let $(S, ., \leq)$ be a commutative ordered semigroup with identity. If M is a maximal ideal of S, then M is a prime ideal of S. The converse statement does not hold, in general.

Proof. Let e be the identity of S, and M a maximal ideal of S. Let $a, b \in S$, $ab \in M$, $a \notin M$. Then $b \in M$. In fact: Since S is commutative, we have

$$\begin{split} \mathcal{I}(M \cup \{a\}) &= \quad ((M \cup \{a\}) \cup S(M \cup \{a\}) \cup (M \cup \{a\})S \cup S(M \cup \{a\})S] \\ &= \quad ((M \cup \{a\}) \cup S(M \cup \{a\}) \cup S^2(M \cup \{a\})]. \end{split}$$

Since $M \cup \{a\} = e(M \cup \{a\}) \subseteq S(M \cup \{a\})$, we have

$$S(M \cup \{a\}) \subseteq S^2(M \cup \{a\}) \subseteq S(M \cup \{a\}),$$

then $S(M \cup \{a\}) = S^2(M \cup \{a\}).$ Hence we have

$$\mathcal{I}(M \cup \{a\}) = (S(M \cup \{a\})].....(*)$$

On the other hand, $M \subset M \cup \{a\} \subseteq \mathcal{I}(M \cup \{a\})$ (since $a \notin M$). Since $\mathcal{I}(M \cup \{a\})$ is an ideal and M a maximal ideal of S, we have $\mathcal{I}(M \cup \{a\}) =$ S, and $e \in (S(M \cup \{a\})]$ by (*). Then there exist $x \in S$ and $y \in M \cup \{a\}$ such that $e \leq xy$. Then $b = eb \leq xyb$. If $y \in M$, then $xyb \in SMS \subseteq M$, and $b \in M$. If y = a, then $b \leq x(ab) \in SM \subseteq M$, and $b \in M$.

For the converse statement, we consider the ordered semigroup S := [0, 1]and the ordered semigroup $(S \times S, * \preceq)$ constructed above. The set $(S \times S, *, \preceq)$ is a commutative ordered semigroup and the element (1, 1)is the identity element of $S \times S$. Let

$$T := S \times \{0\} (= [0, 1] \times \{0\}).$$

Clearly S is an ideal of S. By Lemma 2, the set $I_0 (= \{0\})$ is an ideal of S. Then, by Lemma 1, the set $T := S \times \{0\}$ is an ideal of $S \times S$.

The set T is a prime ideal of $S \times S$. In fact:

Let $(x, y), (z, w) \in S \times S, (x, y) * (z, w) \in T$. Since $(x, y) * (z, w) := (xz, yw) \in T := S \times \{0\}$, we have yw = 0, then y = 0 or w = 0. Then $(x, y) \in S \times \{0\} := T$ or $(z, w) \in S \times \{0\} := T$.

The set T is not a maximal ideal of $S \times S$. Indeed: By Lemma 2, the set $[0, 1/2] := I_{1/2}$ is an ideal of S. By Lemma 1, the set $S \times [0, 1/2]$ is an ideal of $S \times S$. On the other hand, $T := S \times \{0\} \subset S \times [0, 1/2] \subset S \times S$. \Box

This is part of our research work supported by the Ministry of Development, General Secretariat of Research and Technology -International Cooperation Division (Greece-Russia), Grant No. 70/3/4967.

References

- [1] D. M. Burton, A First Course in Rings and Ideals, Addison-Wesley, 1970.
- [2] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, 35 (No. 6) (1990), 1051-1056.
- [3] N.Kehayopulu, Note on Green's relations in ordered semigroups, Mathematica Japonica, 36 (No. 2) (1991), 211-214.

CONTACT INFORMATION

N. Kehayopulu, M. Tsingelis

University of Athens, Department of Mathematics Section of algebra and geometry, Panepistemiopolis, Athens 157 84, GREECE

E-Mail: nkehayp@cc.uoa.gr

J. Ponizovskii

Russian State Hydrometeorological University Department of Mathematics Malookhtinsky pr. 98 195196, Saint-Petersburg, Russia

Received by the editors: 06.12.2002.