# A note on maximal ideals in ordered semigroups 

N. Kehayopulu, J. Ponizovskii, M. Tsingelis


#### Abstract

In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups -without order- also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general.


There is an important class of ideals of rings which are prime, namely, the maximal ideals. In fact, in a commutative ring with identity every maximal ideal is a prime ideal. On the other hand, there are rings possesing a nontrivial prime ideal which is not maximal (cf. e.g. [1]). Similar results for ordered semigroups, also for semigroups -without order- also hold.
If $(S, ., \leq)$ is an ordered semigroup, a non-empty subset $I$ of $S$ is called a left (resp. right) ideal of $S$ if 1) $S I \subseteq I$ (resp. $I S \subseteq I$ ) and 2) $a \in I$, $S \ni b \leq a$ implies $b \in I[2]$. If ( $S,$. ) is a semigroup, a left (resp. right) ideal of $S$ is a non-empty subset $I$ of $S$ such that $S I \subseteq I$ (resp. $I S \subseteq I$ ). If $S$ is a semigroup or an ordered semigroup and $I$ both a left and a right ideal of $S$, then it is called an ideal of $S$. An ideal $I$ of a semigroup (resp. ordered semigroup) $S$ is called prime if $a, b \in S$ such that $a b \in I$ implies $a \in I$ or $b \in I$. Equivalent Definition: $A, B \subseteq S$ such that $A B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$ [2]. An ideal $M$ of a semigroup or an ordered semigroup $S$ is called proper if $M \neq S$ [3]. A proper ideal $M$ of a semigroup or an ordered semigroup $S$ is called maximal if there exists no ideal $T$ of $S$ such that $M \subset T \subset S$, equivalently, if for each ideal $T$ of $S$ such that $M \subseteq T$, we have $T=M$ or $T=S$ (cf. also [2]). If $S$ is an ordered semigroup and $H \subseteq S$, we denote

$$
(H]:=\{t \in S \mid t \leq h \text { for some } h \in H\} .
$$

2000 Mathematics Subject Classification: 06F05.
Key words and phrases: maximal ideal, prime ideal in ordered semigroups.

If $S$ is an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$, we denote by $\mathcal{I}(A)$ the ideal of $S$ generated by $A$ i.e. the smallest -under inclusion relation- ideal of $S$ containing $A$. For an ordered semigroup $S$, we have $\mathcal{I}(A)=(A \cup S A \cup A S \cup S A S]$ (cf. [2]). For a semigroup $S$, we have $\mathcal{I}(A)=A \cup S A \cup A S \cup S A S$.

Let $\left\{\left(S_{i}, \circ_{i}, \leq_{i}\right) \mid i \in I\right\}$ be a non-empty family of ordered semigroups. The cartesian product $\prod_{i \in I} S_{i}$ with the multiplication "*" and the order " $\preceq$ " on $\prod_{i \in I} S_{i}$ defined by
$*: \prod_{i \in I} S_{i} \times \prod_{i \in I} S_{i} \rightarrow \prod_{i \in I} S_{i} \mid\left(\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I}\right) \rightarrow\left(x_{i}\right)_{i \in I} *\left(y_{i}\right)_{i \in I} \quad$ where $\left(x_{i}\right)_{i \in I} *\left(y_{i}\right)_{i \in I}:=\left(x_{i} \circ_{i} y_{i}\right)_{i \in I}$
$\preceq:=\left\{\left(\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I}\right) \in \prod_{i \in I} S_{i} \times \prod_{i \in I} S_{i} \mid x_{i} \leq_{i} y_{i} \forall i \in I\right\}$
is an ordered semigroup.
In the following we consider the $\prod_{i \in I} S_{i}$ as the ordered semigroup with the multiplication and the order defined above.

Lemma 1. Let $\left\{\left(S_{i}, \circ_{i}, \leq_{i}\right) \mid i \in I\right\}$ be a family of ordered semigroups. If $J_{i}$ is an ideal of $S_{i}$ for every $i \in I$, then the set $\prod_{i \in I} J_{i}$ is an ideal of $\prod_{i \in I} S_{i}$.

Proof. 1) $\emptyset \neq \prod_{i \in I} J_{i} \subseteq \prod_{i \in I} S_{i}\left(\right.$ since $\left.J_{i} \neq \emptyset \forall i \in I\right)$.
2) $\prod_{i \in I} S_{i} * \prod_{i \in I} J_{i} \subseteq \prod_{i \in I} J_{i}$. In fact:

Let $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$ and $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} J_{i}$. Since $x_{i} \in S_{i}$ and $y_{i} \in J_{i}$ for every $i \in I$, we have $x_{i} \circ_{i} y_{i} \in S_{i} \circ_{i} J_{i} \subseteq J_{i}$ for every $i \in I$. Then we have

$$
\left(x_{i}\right)_{i \in I} *\left(y_{i}\right)_{i \in I}:=\left(x_{i} \circ_{i} y_{i}\right)_{i \in I} \in \prod_{i \in I} J_{i}
$$

3) Let $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} J_{i}$ and $\prod_{i \in I} S_{i} \ni\left(x_{i}\right)_{i \in I} \preceq\left(y_{i}\right)_{i \in I}$. Then $\left(x_{i}\right)_{i \in I} \in$
$\prod_{i \in i}^{J_{i}}$
Indeed: Since $y_{i} \in J_{i}, S_{i} \ni x_{i} \leq_{i} y_{i}$ and $J_{i}$ is an ideal of $S_{i}$ for every $i \in I$, we have $x_{i} \in J_{i}$ for every $i \in I$. Then $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} J_{i}$. Similarly, the set of $\prod_{i \in I} J_{i}$ is a right ideal of $\prod_{i \in I} S_{i}$.

In the following, we denote by $S$ the closed interval $[0,1]$ of real numbers. The set $S:=[0,1]$ with the usual multiplication- order "." and " $\leq$ " is an ordered semigroup.

Lemma 2. If $a \in S$, then the set $I_{a}:=[0, a]$ is an ideal of $S$.
Proof. First of all $\emptyset \neq I_{a} \subseteq S$ (since $a \in[0, a]$ ). Let $x \in S, y \in I_{a}$. Since $0 \leq x \leq 1,0 \leq y \leq a$, we have $0 \leq x y \leq 1 a=a$. Then $x y \in I_{a}$. Let $y \in I_{a}$ and $S \ni x \leq y$. Since $0 \leq x, y \leq a$ and $x \leq y$, we have $0 \leq x \leq a$. Then $x \in I_{a}$. Similarly, the set $I_{a}$ is a right ideal of $S$.

Theorem. Let $(S, ., \leq)$ be a commutative ordered semigroup with identity. If $M$ is a maximal ideal of $S$, then $M$ is a prime ideal of $S$. The converse statement does not hold, in general.

Proof. Let $e$ be the identity of $S$, and $M$ a maximal ideal of $S$. Let $a, b \in S, a b \in M, a \notin M$. Then $b \in M$. In fact:
Since $S$ is commutative, we have

$$
\begin{aligned}
\mathcal{I}(M \cup\{a\}) & = & ((M \cup\{a\}) \cup S(M \cup\{a\}) \cup(M \cup\{a\}) S \cup S(M \cup\{a\}) S] \\
& = & \left((M \cup\{a\}) \cup S(M \cup\{a\}) \cup S^{2}(M \cup\{a\})\right] .
\end{aligned}
$$

Since $M \cup\{a\}=e(M \cup\{a\}) \subseteq S(M \cup\{a\})$, we have

$$
S(M \cup\{a\}) \subseteq S^{2}(M \cup\{a\}) \subseteq S(M \cup\{a\})
$$

then $S(M \cup\{a\})=S^{2}(M \cup\{a\})$.
Hence we have

$$
\mathcal{I}(M \cup\{a\})=(S(M \cup\{a\})] \ldots \ldots \ldots(*)
$$

On the other hand, $M \subset M \cup\{a\} \subseteq \mathcal{I}(M \cup\{a\})$ (since $a \notin M)$. Since $\mathcal{I}(M \cup\{a\})$ is an ideal and $M$ a maximal ideal of $S$, we have $\mathcal{I}(M \cup\{a\})=$ $S$, and $e \in(S(M \cup\{a\})]$ by $\left(^{*}\right)$. Then there exist $x \in S$ and $y \in M \cup\{a\}$ such that $e \leq x y$. Then $b=e b \leq x y b$. If $y \in M$, then $x y b \in S M S \subseteq M$, and $b \in M$. If $y=a$, then $b \leq x(a b) \in S M \subseteq M$, and $b \in M$.

For the converse statement, we consider the ordered semigroup $S:=[0,1]$ and the ordered semigroup ( $S \times S, * \preceq$ ) constructed above. The set $(S \times S, *, \preceq)$ is a commutative ordered semigroup and the element $(1,1)$ is the identity element of $S \times S$. Let

$$
T:=S \times\{0\}(=[0,1] \times\{0\})
$$

Clearly $S$ is an ideal of $S$. By Lemma 2 , the set $I_{0}(=\{0\})$ is an ideal of $S$. Then, by Lemma 1 , the set $T:=S \times\{0\}$ is an ideal of $S \times S$.
The set $T$ is a prime ideal of $S \times S$. In fact:
Let $(x, y),(z, w) \in S \times S,(x, y) *(z, w) \in T$. Since $(x, y) *(z, w):=$ $(x z, y w) \in T:=S \times\{0\}$, we have $y w=0$, then $y=0$ or $w=0$. Then $(x, y) \in S \times\{0\}:=T$ or $(z, w) \in S \times\{0\}:=T$.
The set $T$ is not a maximal ideal of $S \times S$. Indeed: By Lemma 2 , the set $[0,1 / 2]:=I_{1 / 2}$ is an ideal of $S$. By Lemma 1 , the set $S \times[0,1 / 2]$ is an ideal of $S \times S$. On the other hand, $T:=S \times\{0\} \subset S \times[0,1 / 2] \subset S \times S$.

This is part of our research work supported by the Ministry of Development, General Secretariat of Research and Technology -International Cooperation Division (Greece-Russia), Grant No. 70/3/4967.

## References

[1] D. M. Burton, A First Course in Rings and Ideals, Addison-Wesley, 1970.
[2] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, 35 (No. 6) (1990), 1051-1056.
[3] N.Kehayopulu, Note on Green's relations in ordered semigroups, Mathematica Japonica, 36 (No. 2) (1991), 211-214.

## Contact information

## N. Kehayopulu, M. Tsingelis

J. Ponizovskii


Received by the editors: 06.12.2002.

