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Abstract. Where U is a structure for a first-order language
L≈ with equality ≈, a standard construction associates with every
formula f of L≈ the set ‖f‖ of those assignments which fulfill f in
U . These sets make up a (cylindric like) set algebra Cs(U) that
is a homomorphic image of the algebra of formulas. If L≈ does
not have predicate symbols distinct from ≈, i.e. U is an ordinary
algebra, then Cs(U) is generated by its elements ‖s ≈ t‖; thus, the
function (s, t) 7→ ‖s ≈ t‖ comprises all information on Cs(U).

In the paper, we consider the analogues of such functions for
multi-algebras. Instead of ≈, the relation ε of singular inclusion
is accepted as the basic one (sεt is read as ‘s has a single value,
which is also a value of t’). Then every multi-algebra U can be
completely restored from the function (s, t) 7→ ‖s ε t‖. The class
of such functions is given an axiomatic description.

1. Introduction

We begin, in the first subsection, with reviewing a few standard con-
structions used in algebraic logic. Then we outline the problem which
we deal with in the paper.

1.1 Let L≈ be a first-order language with equality over the set of vari-
ables X. For the sake of definiteness, we assume that the logical primi-
tives of L≈ are ¬,∧,∨,∃. Let, furthermore, U := (U, . . .) be a structure

This research was supported by Latvian Science Council Grant No. 01.0254
2001 Mathematics Subject Classification: 08A99; 03G15, 08A62.
Key words and phrases: cylindric algebra, linear term, multi-algebra, resolvent,

singular inclusion.



Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.J. C̄ırulis 21

for L≈. For every formula f of L≈, we denote by ‖f‖ the set of those
assignments from UX which satisfy f in U . Then

‖¬f‖ = −‖f‖, ‖f ∧ g‖ = ‖f‖ ∩ ‖g‖, ‖f ∨ g‖ = ‖f‖ ∪ ‖g‖,

‖∃x f‖ = Cx‖f‖, ‖x ≈ y‖ = Dxy.

Here − is the set complementation, Cx is the cylindrification along x-axis
in the “space” UX and is defined by

Cx(A) := {ϕ ∈ UX : ϕx
u ∈ A for some u ∈ U} = {ψx

u : ψ ∈ A, u ∈ U},
(1)

where ϕx
u is the assignment that assigns u to x and ϕ(y) to every other

variable y, and the sets

Dxy := {ϕ ∈ UX : ϕ(x) = ϕ(y)}

are known as diagonal hyperplanes in UX . Put ‖F‖ := {‖f‖ : f ∈ F},
where F is the set of formulas of the language; the algebra

Cs(U) := (‖F‖,∪,∩,−, Cx, Dxy)x,y∈X

is a version of cylindric set algebra [8, 9]. More precisely, according
to Theorem 4.3.5 of [9], it is a regular and locally finite cylindric set
algebra. We shall call it the cylindric algebra of U. Two L≈-structures
have isomorphic cylindric algebras if and only if they are elementarily
equivalent—this follows from Remark 4.3.68(7) in [9].

If the alphabet of L≈ contains any operation symbols, then we may
construct even a richer derived structure. Consider the term algebra
T := (T, . . .) and set

Dst := {ϕ ∈ UX : ϕ̃(s) = ϕ̃(t)},

where ϕ̃ is the homomorphism T → U induced by ϕ. Now ‖s ≈ t‖ = Dst.
In terms of [2], the algebra

CsT (U) := (‖F‖,∪,∩,−, Cx, Dst)x∈X, s,t∈T

is a T -cylindric set algebra, and the function D : T×T → P(UX) defined
by D(s, t) := Dst is a T -diagonal on it.

1.2 In the case when ≈ is the single predicate symbol in L≈ and, cor-
respondingly, U is merely an algebra, CsT (U) is generated by the “T -
diagonal planes” Dst. Hence, the T -diagonal D carries then all informa-
tion on U available in CsT (U), and we may concentrate on T -diagonals
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rather than deal with whole T -cylindric algebras. Actually, even more
general situation was studied in [3], where T was an algebra free in some
variety K. It was shown there that every K-algebra can be restored from
its T -diagonal and that homomorphisms between K-algebras can also be
characterized in terms of T -diagonals. Moreover, the class of those func-
tions T 2 → P(UX) that are T -diagonals of algebras from K was given
an axiomatic description. Axioms of T -diagonals were used in [2] to in-
troduce the concept of an abstract cylindric algebras with terms. For
another approach to such algebras, involving substitutions along with
diagonals, see [5].

Consequently, from the point of view of algebraic logic, algebras from
K are well-presented by their T -diagonals. Some relevant information on
an algebra U may be read directly from D. For example, Dst may be
considered as the set of solutions of the equation s ≈ t in U , and the
algebra satisfies this equation iff Dst = UX . Given a relation θ ⊂ T × T ,
let Dθ be the intersection

⋂
(Dst : (s, t) ∈ θ). In the sense of universal

algebraic geometry as it is developed in [12, 13], Dθ is essentially the
algebraic variety in the space UX described by the set of T -equations θ.

1.3 Our aim in this paper is to extend the approach of [3] to multi-
algebras. A minor trouble is that, for multi-algebras, there are several
possible ways how to interpret the equality symbol ≈. Probably, the
most popular one is the reading of the equation s ≈ t as ‘s and t have
the same (sets of) values’. Such equations are discussed, for example,
in [17]; seemingly, this interpretation of ≈ is suggested by tradition of
complex, or powerset, algebras—see [7, 6]. On the other hand, the weak
commutativity or weak distributivity laws for certain ring-like multi-
algebras (see, e.g., [16]) can be written as equations, where ≈ expresses
overlapping of values sets of both terms; then s ≈ t means ‘s and t have
a common value’. A possible substituend for equality and overlapping is
inclusion. In ordinary algebras all of these concepts reduce to identity of
elements of the base set.

Following [14], instead of any of the above relations, we choose the
relation of singular inclusion ε to be the basic one: the atomic formula
s ε t is informally read as ‘the term s has a single value, and it is also
a value of t’. For partial algebras, the formula reduces to the so called
existential equation s

e
= t (see, e.g., [1]), while for ordinary algebras ε

has the same meaning as ≈. Note that the identity relation on the base
set is presented by formulas of type s ε t ∧ t ε s, and that overlapping,
inclusion and equality relations for values sets of s and t are definable
by formulas ∃x(x ε s ∧ x ε t), ∀x(x ε s → x ε t) and ∀x(x ε s ↔ x ε t),
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respectively (where x is free neither in s nor t). At last, t ε t means that
the term t is single-valued.

Since singular inclusion models some appropriate aspects of the set-
theoretical ‘element of’ relation, we consider singular inclusion as the
most natural primitive for the language of multi-algebras. Inclusion has
also been preferred to equality in some papers on logic of multi-algebras;
see, e.g., [11, 10], where equality was shown to be a concept too weak for
certain purposes. In fact, aside from inclusion, neither overlapping nor
singular inclusion can be expressed in terms of equality.

2. Multi-algebras, valuations and resolvents

In this section we recall the notion of a multi-algebra and introduce the
notion of an ε-resolvent of a multi-algebra, which is the ε-analogue of
its T -diagonal (the latter could also be termed its ≈-resolvent). Let Ω
be some signature, and let now T be an Ω-algebra relatively free on an
infinite set of variables X. We consider elements of T as “squeezed”
terms.

2.1 Let us first recall some constructions and facts from [15] concerning
algebras of squeezed terms. Given Y ⊂ X, we say that Y supports the
term t if t belongs to the subalgebra of T generated by Y , and that t is
independent of a variable x if t is supported by some Y not containing
x. According to [15, Theorem 2.1], Y supports t iff σ(t) = t for every
endomorphism σ of T that coincides with the identity map on Y .

The set △t :=
⋂

(Y : Y supports t) of all those variables t depends
on is always finite and supports t. If T is the absolutely free word algebra
(as in Sect. 1), then △t consists just of the variables occurring in t. In
any case,

△ωt1t2 . . . tm ⊂ △t1 ∪△t2 ∪ · · · ∪ △tm (2)

and, if [s/x] stands for the endomorphism of T that takes x into s and
coincides with the identity map on X \ {x}, then

△[s/x]t ⊂ △s ∪ (△t \ {x}). (3)

Note that t depends on x iff x ∈ △t, and that [s/x]t = t iff t is indepen-
dent of x.

We further isolate, for each variable x, the subset Lx of terms linear

in x. It is defined to be the smallest set containing x as well as all terms
ωt1t2 . . . tm with ti ∈ Lx for some i and x 6∈ △tj for j 6= i. An ordinary
term is linear in x if and only if x occurs in it just once; this is the
meaning in which the attribute ‘linear’ has been used, say, in [6].
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2.2 An m-ary multi-operation on U is any function o of type Um →
P(U). We shall identify singletons from P(U) with respective elements
of U ; therefore, any operation on U may be treated as a multi-operation.
The extension of o is the operation ō on P(U) defined by

ō(A1, A2, . . . , Am) :=
⋃

(o(u1, u2, . . . , um) :

u1 ∈ A1, u2 ∈ A2, . . . , um ∈ Am).

Definition 1. A multi-algebra is a system U := (U, ωU)ω∈Ω, where each
ωU is a multi-operation on U whose arity is determined by ω. A mapping
µ : T → P(U) is said to be a valuation in U if

µ(x) ∈ U, µ(ωt1t2 . . . tm) = ω̄U(µ(t1), µ(t2), . . . , µ(tm)).

for x ∈ X, ω ∈ Ω and t1, t2, . . . , tm ∈ T .

Thus every valuation in U is an extension of some assignment from
UX , and may be regarded as a kind of multihomomorphism from T to
U . In particular, valuations in an ordinary algebra U are just homomor-
phisms from T to U . Let Val(U) stand for the set of all valuations in
U . Note that Val(T ) = End(T ).

A multi-algebra U is said to be T -shaped if Val(U) is maximally rich,
i.e. if every assignment ϕ can be extended to a valuation ϕ̃ (necessarily
unique) in U . Then elements of ϕ̃(t) are thought of as values of the term
t on ϕ. According to our convention on singletons, a term t has a single
value on ϕ iff ϕ̃(t) ∈ U . We denote by V(T ) the class of all T -shaped
multi-algebras. Clearly, V(T ) includes the variety of ordinary algebras
generated by T , and contains all multi-algebras when T is absolutely
free. Furthermore, for U ∈ V(T ),

ϕ|△t = ψ|△t ⇒ ϕ̃(t) = ψ̃(t) (4)

and, if t is linear in x,

ϕ̃([s/x]t) = {v : ∃u(v ∈ ϕ̃x
u(t) and u ∈ ϕ̃(s))}. (5)

The routine proof of (5) is by induction on Lx, using (2) and (3).
It is easily seen that every T -shaped multi-algebra is completely de-

termined by its valuations. Indeed, assume that U and U
′ are two differ-

ent multi-algebras with a common carrier U . Then there is an operation
symbol ω ∈ Ω such that ωU(u1, u2, . . . , um) 6= ωU

′(u1, u2, . . . , um) for
some u1, u2, . . . , um ∈ U . For sake of definiteness, suppose that u ∈
ωU(u1, u2, . . . , um) and u /∈ ωU

′(u1, u2, . . . , um). Furthermore, choose
distinct variables x1, x2, . . . , xm and a valuation µ such that µ(xi) = ui

for all i. Now, if t is the term ωx1x2 · · ·xm, then u is a value of t on µ
in U , but not in U

′. So, the sets of valuations are also distinct.
In what follows, we shall consider only T -shaped multi-algebras.
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2.3 Let us introduce the notion of a resolvent—the multi-algebra equiv-
alent of a T -diagonal of an ordinary algebra (see Introduction). Recall
that the formula s ε t can also be considered as a kind of equation, and
then the resolvent provides us with solutions of these “ε-equations”; this
motivates the suggested term.

Definition 2. The ε-resolvent, or just resolvent of a multi-algebra U is
the function Res(U) : T × T → P(UX) defined as follows:

Res(U)(s, t) := {ϕ ∈ UX : ϕ̃(s) ∈ ϕ̃(t)}. (6)

Therefore, ‖s ε t‖ = Res(U)(s, t). Note that the set algebra

CsT (U) := (‖F‖,∪,∩,−, Cx, Rst)x∈X, s,t∈T ,

where Rst stands for Res(U)(s, t), is an ordinary algebra generated by
these elements.

A multi-algebra is completely determined even by a “half” of its re-
solvent, the first argument being a variable which the second one does not
depend on. Namely, we can restore the operation ωU of U corresponding
to an operation symbol ω ∈ Ω as follows:

v ∈ ωU(u1, u2, . . . , um) ⇔ ϕ ∈ Ryt,

where t is ωx1x2, . . . , xm and y /∈ △t for distinct variables x1, x2, . . . ,
xm, y, while ϕ is selected so that ϕ(y) = v and ϕ(xi) = ui.

Thus, different algebras from V(T ) have different resolvents.
By a support of a set A ⊂ UX we shall mean any subset Y ⊂ X such

that, for all ϕ, ψ ∈ UX ,

ϕ ∈ A, ϕ|Y = ψ|Y ⇒ ψ ∈ A.

This concept comes from the theory of polyadic algebras. By analogy
with standard cylindric algebras (see [8, 9]), the set algebra CsT could
be called regular if every its element A is regular in the sense that the
subset {x ∈ X : Cx(A) 6= A} is a support of A. However, apart from the
note just after Theorem 2 below, we shall not concern with regularity
property in this paper.

Theorem 1. If a function R : T × T → P(UX) is a resolvent of a

T -shaped multi-algebra, then it satisfies the conditions

(R0): R(x, y) = Dxy,

(R1a): R(r, s) ∩ R(s, t) ⊂ R(s, r),

(R1b): R(r, s) ∩ R(s, t) ⊂ R(r, t),

(R2): R(s, [r/x]t) = Cx(R(x, r) ∩ R(s, t)) if t ∈ Lx

and x 6∈ △r ∪△s,

(R3): every R(s, t) has a finite support.
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Proof. (R0) and (R1b) are obvious, while (R1a) is true because the left
hand side assures that the value set of s is a singleton. We shall check
only (R2) and (R3) here. By (6), (5), (4), again (6), and (1),

ϕ ∈ R(s, [r/x]t) ⇔ ϕ̃(s) ∈ ϕ̃([r/x]t)

⇔ ∃u(ϕ̃(s) ∈ (ϕ̃x
u)(t) and u ∈ ϕ̃(r))

⇔ ∃u(ϕx
u(s) ∈ (ϕ̃x

u)(t) and u ∈ ϕ̃(r))

⇔ ∃u(ϕx
u ∈ R(s, t) and ϕx

u ∈ R(x, r))

⇔ ϕ ∈ Cx(R(x, r) ∩ R(s, t)),

i.e. (R2) holds. By (2) and (4), the finite set △s ∪ △t is a support of
R(s, t), and (R3) also holds.

Note that these conditions are, in fact, properties of singular inclusion
written algebraically. Thus, (R1b) fixes transitivity of ε, while (R2) says
that sε[r/x]t holds iff xεr and sεt hold for some value of x. We shall
need only the following two particular cases of (R2):

R(s, r) = Cx(R(s, x) ∩ R(x, r)) (7)

with x /∈ △s ∪△t, and

R(y, [r/x]t) = Cx(R(x, r) ∩ R(y, t)) (8)

with t ∈ Lx and x 6= y 6∈ △s, y 6∈ △t. (In fact, (R2) is a consequence of
them.)

Definition 3. A T -resolvent on a set U is any function R : T × T →
P(UX) satisfying the conditions (R0)–(R2). The resolvent is said to be
finitary iff it satisfies also (R3).

According to the preceding theorem, the resolvent of any multi-
algebra is a finitary resolvent in this abstract sense on its base set. The
following representation theorem, which is the main result of the paper,
states the converse.

Theorem 2. Every finitary T -resolvent is a resolvent of some multi-

algebra from V(T ).

This theorem is a close analogue of Theorem 3 in [3] and Theorem
4.3 in [2] on superdiagonals of T -cylindric algebras, with the exception
that in the latter one the superdiagonal was required to be regular rather
than just finitary. This difference is not essential: as all sets △t are finite,
both conditions turn out to be equivalent in our context. The theorem
will be proved in the next section.
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We already observed just after Definition 2 that different algebras
with the same base set still have different resolvents. So we come to a
corollary which shows that, for algebraic logic, every multi-algebra U is
adequately presented by some resolvent, and conversely.

Theorem 3. The transformation Res : U 7→ Res(U) provides a one-

to-one correspondence between T -shaped multi-algebras with the base set

U and finitary T -resolvents on U .

We remind that the set algebra CsT (U), being generated by the resol-
vent of U , is completely determined by it. Hence, Theorem 2 could serve
as a basis for a representation of an appropriate class of “ε-cylindric” al-
gebras (cf. a similar situation with T -diagonals and T -cylindric algebras
in Sect. 4 of [2]) and, further, for an algebraic proof of completeness of a
logic with multivalued terms (see [14] for such a logic).

3. Proof of Theorem 2

The proof consists of a sequence of technical lemmas.

3.1 First we derive some additional properties of T -resolvents.

Lemma 4. Suppose that R is a T -resolvent on U . If a term t does not

depend on the distinct variables y and z, then, for all assignments ϕ and

elements u ∈ U

(a) ϕ ∈ R(y, t) if and only if ϕz
u ∈ R(y, t),

(b) ϕy
u ∈ R(y, t) if and only if ϕz

u ∈ R(z, t).

If, furthermore, assignments ϕ and ψ agree on △t, and R(y, t) has a

finite support, then

(c) ϕy
u ∈ R(y, t) if and only if ψy

u ∈ R(y, t)

for all u ∈ U .

Proof. Assume that t, y and z are as indicated. We first note that, by
(7),

Cz(R(y, t)) = Cz(Cz(R(y, z)∩R(z, t))) = Cz(R(y, z)∩R(z, t)) = R(y, t).
(9)

Now, if ϕ ∈ R(y, t), then ϕz
u ∈ CzR(y, t) = R(y, t), but if ϕz

u ∈ R(y, t),
then ϕ ∈ CzR(z, t) = R(y, t). Therefore, (a) holds.
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Once again referring to (7), and using (1), (R0), (a), we arrive at (b):

ϕy
u ∈ R(y, t) ⇔ ϕy

u ∈ Cz(R(y, z) ∩ R(z, t))

⇔ ∃v(ϕyz
uv ∈ R(y, z) and ϕyz

uv ∈ R(z, t))

⇔ ∃v(u = v and ϕz
v ∈ Cy(R(z, t)))

⇔ ϕz
u ∈ Cy(R(z, t)) = R(z, t).

To prove (c), assume that ϕ|△t = ψ|△t. Then also ϕy
u|{y} ∪ △t =

ψy
u|{y} ∪ △t for any u ∈ U . If Y is a finite support of R(y, t), then we

do not loss generality assuming that ϕ and ψ agree everywhere outside
Y . Hence, ϕy

u and ψy
u may differ only on the set {x1, x2, . . . , xn} :=

Y − (△t ∪ {y}); we are only interested in the case n > 0. Now let
vi := ψ(xi) for all i; then

ϕy
u ∈ R(y, t) ⇔ ϕyx1x2···xn

uv1v2···vn

∈ R(y, t) ⇔ ψy
u ∈ R(y, t)

by multiple use of (a).

Corollary 5. Let R be a T -resolvent on U , and let ϕ∗ : T → P(U) be

the extension of an assignment ϕ in U defined by the condition

ϕ∗(t) := {u ∈ U : ϕy
u ∈ R(y, t)}, (10)

where y 6∈ △t. Then ϕ∗ does not depend on the choice of y, and, if

z /∈ △t,

R(z, t) = {ϕ ∈ UX : ϕ(z) ∈ ϕ∗(t)}. (11)

Moreover, if R is finitary, then

ϕ|△t = ψ|△t ⇒ ϕ∗(t) = ψ∗(t). (12)

Proof. By (R0), ϕ∗(x) = ϕx; so the function ϕ∗ is indeed an extension
of ϕ. The fact that ϕ∗ does not depend on the choice of y immediately
follows from Lemma 4(b), and (12) is then another form of Lemma 4(c).
By (10) and Lemma 4(b),

ϕ(z) ∈ ϕ∗(t) ⇔ ϕy

ϕ(z) ∈ R(y, t) ⇔ ϕz
ϕ(z) ∈ R(z, t) ⇔ ϕ ∈ R(z, t);

so (11) also holds.

Lemma 6. If R is a finitary T -resolvent on U , then

R(s, t) = {ϕ ∈ UX : ϕ∗(s) ∈ ϕ∗(t)}. (13)
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Proof. We first prove that

z /∈ △s, ψ ∈ R(s, z) ⇒ ψ∗(s) = ψ(z). (14)

Suppose that z /∈ △s. If ψ ∈ R(s, z), then ψ ∈ R(z, s) by (R0) and
(R1a), for (11) implies that ψ ∈ R(z, s). Consequently, ψ(z) ∈ ψ∗(s) by
(11). Let, furthermore, u be any element from ψ∗(s). Choose one more
variable y /∈ △s; in view of (12), we may assume that ψ(y) = u. Then
ψ ∈ R(y, s) according to (11); so, by (R1b), ψ ∈ R(y, z), wherefrom
u = ψ(y) = ψ(z)—see (R0). So, ψ∗(s) is a singletone and must coincide
with ψ(z). Now (13) follows by (7) and (1), (14) and (10), and (12):

ϕ ∈ R(s, t) ⇔ ∃u(ϕz
u ∈ R(s, z) and ϕz

u ∈ R(z, t))

⇔ ∃u((ϕz
u)∗(s) = u and u ∈ ϕ∗(t))

⇔ ∃u(ϕ∗(s) = u and u ∈ ϕ∗(t))

⇔ ϕ∗(s) ∈ ϕ∗(t),

as needed.

In view of this lemma, it remains to show that there is a T -shaped
multi-algebra such that the set of all extensions ϕ∗ turns out to be its
set of valuations. This will be done in the next subsection. We need one
more simple lemma.

Lemma 7. Suppose that t is linear in x and that s does not depend on

x. Then

ϕ∗([s/x]t) =
⋃

((ϕx
v)∗(t) : v ∈ ϕ∗(s)). (15)

Proof. By (10), (8) and (1), Lemma 4(a), and (11),

u ∈ ϕ∗([s/x]t) ⇔ ϕy
u ∈ R(y, [s/x]t)

⇔ ∃v(ϕyx
uv ∈ R(x, s) and ϕyx

uv ∈ R(y, t))

⇔ ∃v(ϕx
v ∈ R(x, s) and ϕyx

uv ∈ R(y, t))

⇔ ∃v(v ∈ ϕ∗(s) and u ∈ (ϕx
v)∗(t))

⇔ u ∈
⋃

((ϕx
v)∗(t) : v ∈ ϕ∗(s)),

where y is appropriately chosen.

Using the lemma repeatedly, we now obtain the following equality for
every assignment ϕ, every term t := ωt1t2 · · · tm and mutually distinct
variables x1, x2, . . . , xm:

ϕ∗(t) =
⋃

(ψ∗(ωx1x2 · · ·xm) : ψ ∈ UX , ψ(xi) ∈ ϕ∗(ti)

(i = 1, 2, . . . , m)). (16)
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3.2 We now claim that, for any m-ary ω ∈ Ω, the operation ωR on U
defined by

ωR(u1, u2, . . . , um) := ϕ∗(t),

where t := ωx1x2 . . . xm (for distinct variables xi) and ϕ is an assignment
in U such that ui = ϕ(xi) for all i, does not depend on the choice of
x1, x2, . . . , xm and ϕ. Indeed, suppose that t′ = ωy1y2 . . . ym and that ψ
is an assignment such that ψ(yi) = ui for all i. If σ is any endomorphism
of T that takes every xi into yi, then ψ∗σ is an assignment that coincides
with ϕ on {x1, x2, . . . , xm}. Since the later set supports t (see (2)), we
may apply (12):

ψ∗(t′) = ψ∗(ω(σx1)(σx2) · · · (σxm)) = ψ∗(σ(t)) = ϕ∗(t).

Note that the definition of ωR may be rewritten in the form

ωR(ϕ(x1), ϕ(x2), . . . , ϕ(xm)) = ϕ∗(t), (17)

where now ϕ is arbitrary.
This way the set U can be turned into Ω-multi-algebra (U, ωR)ω∈Ω,

which we denote by Alg(R). Our next claim is that every ϕ∗ is the
valuation in Alg(R) induced by the assignment ϕ, i.e. that ϕ∗ coincides
with ϕ̃.

Given a term t := ωt1t2 . . . tm, select mutually distinct variables
x1, x2, . . . , xm outside △t. Then, by (16) and (17) (with ψ in the role of
ϕ) and the definition of an extended operation (viz., ω̄R),

ϕ∗(t) =
⋃

((ωx1xm · · ·xm) : ψ ∈ UX , ψ(xi) ∈ ϕ∗(ti))

=
⋃

(ωR(ψ(x1), ψ(x2), . . . , ψ(xm)) : ψ ∈ UX , ψ(xi) ∈ ϕ∗(ti))

= ω̄R(µ(t1), µ(t2), . . . µ(tm)),

as needed.
It now follows that Alg(R) ∈ V(T ). Thus, the proof of Theorem 2 is

completed. Note that the transformation Alg : R 7→ Alg(R) is converse
to Res mentioned in Theorem 3.
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