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Abstract. Hypersubstitutions are mappings which are used
to define hyperidentities and solid varieties. In this paper we will
show that the set of all hypersubstitutions of a given type forms
a seminearring. We will give a full characterization of Green’s
relation R on a sub-seminearring of the seminearring Hyp(n) of
all hypersubstitutions of type (n).

1. Introduction

Hypersubstitutions were introduced to make precise the concept of a
hyperidentity and generalizations to M -hyperidentities. Let τ = (ni)i∈I

be a type indexed by a set I, with operation symbols fi of arity ni ∈ N.
Let X = {x1, x2, . . .} be a countably infinite set of variables and let
Xn = {x1, . . . , xn} be a finite set. We denote by Wτ (Xn) the set of all
n-ary terms of type τ over the alphabet Xn and by Wτ (X) the set of all
terms of type τ .
An identity s ≈ t, s, t ∈ Wτ (X), of type τ is called a hyperidentity of a
variety V of type τ if for every substitution of n-ary terms for the n-ary
operation symbols in s ≈ t, the resulting identity holds in V . This shows
that we are interested in mappings which associate to every operation
symbol fi of a given type τ a term σ(fi) of type τ of the same arity as
fi. Any such map is called a hypersubstitution of type τ .

2001 Mathematics Subject Classification: 08B15.
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Hypersubstitutions can be uniquely extended to mappings
σ̂ : Wτ (X) → Wτ (X) which are inductively defined by the following
steps:

(i) σ̂[x] := x if x ∈ X,

(ii) σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni
]) if t = fi(t1, . . . , tni

).

Using this extension we can define a binary operation ◦h on the set
Hyp(τ) of all hypersubstitutions of type τ by σ1 ◦h σ2 := σ̂1 ◦ σ2, where
◦ is the usual composition of operations. By σid we denote the iden-
tity hypersubstitution, mapping each operation symbol fi to the term
fi(x1, . . . xni

). This gives the monoid (Hyp(τ); ◦h, σid).
If M is any submonoid of the monoid Hyp(τ), then an identity u ≈ v

of a variety V is called an M -hyperidentity of V if for every σ ∈ M the
equation σ̂[u] ≈ σ̂[v] holds in V . A variety V is called M -solid if every
identity of V is an M -hyperidentity in V . The collection of all M -solid
varieties of type τ forms a complete sublattice of the lattice of all varieties
of type τ . Actually, there is a Galois connection between submonoids of
Hyp(τ) and complete sublattices of the lattice of all varieties of type
τ . For more background see [3]. This shows the importance of study-
ing the properties of the monoid Hyp(τ) and its submonoids. In [2] the
authors started to investigate the semigroup properties of the monoid
Hyp(2) of all hypersubstitutions of type τ = (2), especially Green’s rela-
tions on Hyp(2). We want to continue these investigations with Hyp(n),
the monoid of all hypersubstitutions of type τ = (n), and a particular
submonoid of Hyp(n), the monoid of all so-called full hypersubstitutions.

It turns out that one can define a second binary operation on Hyp(τ)
such that Hyp(τ) forms a seminearring. By

(σ1 + σ2)(fi) := σ2(fi)(σ1(fi), . . . , σ1(fi))

we define a hypersubstitution which maps the ni-ary operation symbol
fi to the ni-ary term σ2(fi)(σ1(fi), . . . , σ1(fi)) for every i ∈ I. The term
σ2(fi)(σ1(fi), . . . , σ1(fi)) is ni-ary. Therefore σ1 + σ2 is a hypersubstitu-
tion of Hyp(τ). We show that the operation + is associative. Indeed, we
have

((σ1 + σ2) + σ3)(fi) = σ3(fi)((σ1 + σ2)(fi), . . . , (σ1 + σ2)(fi)) =
= σ3(fi)(σ2(fi)(σ1(fi), . . . , σ1(fi)), . . . , σ2(fi)(σ1(fi), . . . , σ1(fi))) =

= σ3(fi)(σ2(fi), . . . , σ2(fi))(σ1(fi), . . . , σ1(fi)) =
= (σ2 + σ3)(fi)(σ1(fi), . . . , σ1(fi)) = (σ1 + (σ2 + σ3))(fi).

Here we used properties of the superposition of terms. In a similar
way we prove that σ ◦h (σ1 + σ2) = (σ ◦h σ1) + (σ ◦h σ2).
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Indeed, we have

(σ ◦h (σ1 + σ2))(fi) = σ̂[(σ1 + σ2)(fi)] =
= σ̂[σ2(fi)(σ1(fi), . . . , σ1(fi))] =

= σ̂[σ2(fi)](σ̂[σ1(fi)], . . . , σ̂[σ1(fi)]) =
= (σ ◦h σ2)(fi)((σ ◦h σ1)(fi), . . . , (σ ◦h σ1)(fi))

((σ ◦h σ1) + (σ ◦h σ2))(fi)

if we use that hypersubstitution and superposition are permutable.
This shows the left distributivity.
The following counterexample shows that the right distributive identity
is not satisfied.
Assume that τ = (2), with a binary operation symbol f , and that
σ1, σ2, σ3 are defined by σ1(f) = f(x, y), σ2(f) = f(y, x), σ3(f) =
f(x, f(y, y)). Then

(σ1 + σ2)(f) = f(f(x, y), f(x, y)),
((σ1 + σ2) ◦h σ3)(f) = (σ1 + σ2)ˆ[f(x, f(y, y))],

= f(f(x, f(f(y, y), f(y, y))), f(x, f(f(y, y), f(y, y)))),
(σ1 ◦h σ3)(f) = f(x, f(y, y)),
(σ2 ◦h σ3)(f) = f(f(y, y), x),
((σ1 ◦h σ3) + (σ2 ◦h σ3))(f) =

(σ2 ◦h σ3)(f)((σ1 ◦h σ3)(f), (σ1 ◦h σ3)(f))
= f(f(y, y), x)(f(x, f(y, y)), f(x, f(y, y)))

= f(f(f(x, f(y, y)), f(x, f(y, y))), f(x, f(y, y))).

On the set Hyp(τ) not only operations, but also relations can be
defined. Let σ1, σ2 ∈ Hyp(τ). Then we define σ1 ¹R σ2 if and only if
there is a hypersubstitution σ such that σ1 = σ2 ◦h σ. Since Hyp(τ) is a
monoid, ¹R is reflexive and transitive, i.e. a quasiorder.
Similarly, we define σ1 ¹L σ2 if and only if there is a hypersubstitution
σ such that σ1 = σ ◦h σ2. The relation ¹L is also a quasiorder. Then it
is easy to see (and well-known) that R =¹R ∩ ¹−1

R
and L =¹L ∩ ¹−1

L

are equivalence relations and are called Green’s relations R and L. The
relations ¹L and ¹R induce partial order relations on the quotient sets
Hyp(τ)/R and Hyp(τ)/L, respectively.
Green’s relations H and D are defined by H := R ∩ L and D := R ◦ L
and J is defined by

σ1J σ2 :⇔ ∃σ, σ′, γ, γ′ ∈ Hyp(τ) (σ1 = σ ◦h σ2 ◦h σ′, σ2 = γ ◦h σ1 ◦h γ′).

We recall the following properties of Green’s relations R and L:
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Proposition 1.1. ([7])

(i) R ◦ L = L ◦ R,

(ii) R is a left congruence on Hyp(τ),

(iii) L is a right congruence on Hyp(τ).

In [5] we considered special submonoids of Hyp(τ). The images of
the hypersubstitutions from these submonoids are called full terms and
strongly full terms and are inductively defined as follows:

Definition 1.2. Let fi, i ∈ I, be an ni-ary operation symbol and let
s : {1, . . . , ni} → {1, . . . , ni} be a permutation, then

(i) fi(xs(1), . . . , xs(ni)) is a full term and

(ii) if fj , j ∈ J , is an nj-ary operation symbol and if t1, . . . , tnj
are full

terms, then fj(t1, . . . , tnj
) is a full term.

Let W f
τ (X) be the set of all full terms of type τ .

Strongly full terms are defined as follows:

Definition 1.3. (i) For every ni-ary operation symbol fi, i ∈ I the
term fi(x1, . . . , xni

) is strongly full,

(ii) if t1, . . . , tni
are strongly full and if fi, i ∈ I, is an ni-ary operation

symbol, then fi(t1, . . . , tni
) is strongly full.

We denote by W sf
τ (X) the set of all strongly full terms of type τ .

Definition 1.4. A hypersubstitution σ is called full if σ(fi) ∈ W f
τ (Xni

)
for all i ∈ I and strongly full if for all i ∈ I the images of the operation
symbols fi belong to W sf

τ (Xni
). By Hypf (τ) and Hypsf (τ), respectively,

we denote the set of all full and the set of all strongly full hypersubstitu-
tions of type τ .

Then in [5] it was proved:

Lemma 1.5. The sets Hypf (τ) and Hypsf (τ) form submonoids of the
monoid Hyp(τ).
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2. Green’s Relations and the Complexity of a Hypersub-

stitutions

There are different ways to measure the complexity of a term. If vb(t)
denotes the number of variables occurring in the term t, then vb is an
example for a complexity measure of terms. The most commonly used
measurement of the complexity of terms of type τ is the usual depth of
a term which is defined inductively by the following steps:

(i) If t = x ∈ X, then

depth(t) = 0.

(ii) If t = fi(t1, . . . , tni
), then

depth(t) = max{depth(t1), . . . , depth(tni
)} + 1.

To decribe some more complexity functions we often identify a term
with the tree diagram used to represent it. For instance, the term
f(f(x1, x2), f(f(x1, x2), f(x1, x2))) can be described by the diagram:

u

u

u u

u

u u u u u u

x1 x2 x1 x2 x1 x2

f

f

f

f f

Then the depth of a term t is the length of the longest path from
the root to a vertex labelled by a variable (a leaf) in the tree. Instead
of depth(t) one can also speak of the maxdepth(t). The minimum depth
of a term t, denoted by mindepth(t), is the length of the shortest path
from the root to a leaf in the tree and is defined inductively by

(i) If t is a variable,then

mindepth(t) = 0.
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(ii) If t = fi(t1, . . . , tni
),then

mindepth(t) = min{mindepth(t1), . . . , mindepth(tni
)} + 1.

Using the depth and the mindepth we can define another kind of
terms.

Definition 2.1. Let t ∈ Wτ (Xn) be an n-ary term of type τ . Then t is
called path-regular (for short a pr-term) if mindepth(t) = depth(t). Let
W pr

τ (Xn) be the set of all n-ary pr-terms of type τ . A hypersubstitution
is called path-regular, if the terms σ(fi) are path-regular for every i ∈ I.
Let Hyppr(τ) be the set of all path-regular hypersubstitutions.

In [5] it was proved:

Proposition 2.2. Hyppr(τ) forms a submonoid of Hyp(τ).

All these complexity measures are particular cases of the following
valuation of terms:

Definition 2.3. Let Fτ (X) = (Wτ (X); (f̄i)i∈I) with f̄i : {t1, . . . , tni
} 7→

fi(t1, . . . , tni
) be the absolutely free term algebra of type τ on a countable

set X, and let Nτ = (N; (fN
i )i∈I) be an algebra of type τ defined on the set

of all natural numbers. Then a mapping v : X → Nτ is called a valuation
of terms of type τ into Nτ if the following conditions are satisfied:

(i) v(x) = a if x ∈ X and a ∈ N.

(ii) v(t) ≥ v(x) for every variable x and every term t (see [6]).

From the freeness of Fτ (X) we obtain a uniquely determined ho-
momorphism v̂ : Fτ (X) → Nτ which extends v. For short, we denote
this homomorphism also by v and will call it valuation of terms. In
the case of depth(t) the operations fN

i are defined by fN
i (a1, . . . , ani

) =
max{a1, . . . , ani

} + 1 and for mindepth(t) we have fN

i (a1, . . . , ani
) =

min{a1, . . . , ani
} + 1. Both kinds of operations are monotone with re-

spect to the usual order ≤ on N.

So, in many case the mapping v satisfies the following condition

(OC) If aj ≤ bj for 1 ≤ j ≤ ni and fi is an ni-ary opera-
tion symbol of type τ then for the corresponding operations fN

i we have
fN

i (a1, . . . , ani
) ≤ fN

i (b1, . . . , bni
) Here we denote by ≤ the usual order

on the set of natural numbers.

For more background on valuation of terms see [6].

This can be applied to hypersubstitutions as follows:
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Definition 2.4. Let σ be a hypersubstitution of type τ . Then
depth(σ) := min{depth(σ(fi)) | i ∈ I}
v(σ) := min{v(σ(fi)) | i ∈ I}.

For the type τ = (n) and for full terms in [4] it was proved:

Proposition 2.5. Let τ = (n), n ≥ 1 and let t ∈ W f
τ (X) be a full term.

Then
depth(σ̂[t]) = depth(σ(f))depth(t).

As a consequence we obtain:

Proposition 2.6. Assume that τ = (n). The mapping depth : Hypf (n) →
N

+ defined by σ 7→ depth(σ) is a homomorphism of (Hypf (n); ◦h, σid)
onto the monoid (N+; ·, 1) of all positive integers.

Proof. The mapping depth is well-defined and for every natural number
n ≥ 1 there is a full hypersubstitution σ with depth(σ) = n. Therefore
depth is surjective. Further we have

depth(σ1 ◦h σ2) = depth((σ1 ◦h σ2)(f)) = depth(σ̂1[σ2(f)])
= depth(σ1(f))depth(σ2(f)) = depth(σ1)depth(σ2)

by Proposition 2.5 and

depth(σid) = depth(σid(f)) = depth(f(x1, . . . , xn)) = 1.

By the homomorphism theorem (N+; ·, 1) is isomorphic to the quo-
tient monoid Hypf (n)/kerdepth with kerdepth = {(σ1, σ2) | σ1, σ2 ∈
Hypf (n), depth(σ1) = depth(σ2)}.

Proposition 2.5 has some consequences for Green’s relations. First of
all, if σ1 = σ2 ◦h σ3, then by Proposition 2.5 depth(σ2) divides depth(σ1)
and depth(σ3) divides depth(σ1). One more consequence of Proposition
2.5 is that the monoid (Hypf (n); ◦h, σid) is not finitely generated. The
homomorphism depth maps any generating system of Hypf (n) onto a
generating system of (N+; ·, 1). Every generating system of (N; ·, 1) con-
tains the infinite set of all prime numbers. This shows that there is no
finite generating system of (Hypf (n); ◦h, σid).
The homomorphism depth preserves also the quasiorders ¹R and ¹L on
Hyp(τ) since

σ1 ¹R σ2 ⇒ ∃ρ ∈ Hyp(τ)(σ1 = σ2 ◦h ρ) ⇒

⇒ depth(σ2)|depth(σ1) ⇒ depth(σ2) ≤ depth(σ1)

(Here ≤ denotes the usual order on N).
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Corollary 2.7. Let σ1, σ2 ∈ Hypf (n) and let K ∈ {R,L,H,D,J }, then
σ1Kσ2 implies depth(σ1) = depth(σ2).

Proof. For K = R we have
σ1Rσ2 =⇒ ∃ρ, ρ′ ∈ Hyp(τ) (σ1 = σ2 ◦h ρ ∧ σ2 = σ1 ◦h ρ′)

=⇒ depth(σ2) ≤ depth(σ1) ∧ depth(σ1) ≤ depth(σ2)
=⇒ depth(σ1) = depth(σ2).

For the relation L we conclude in a similar way.
For H we have:

σ1Hσ2 =⇒ σ1(R∩L)σ2 =⇒ σ1Rσ2 ∧ σ1Lσ2 =⇒ depth(σ1) = depth(σ2).

Considering D we obtain:

σ1Dσ2 =⇒ σ1(R ◦ L)σ2 =⇒ ∃σ ∈ Hyp(τ)(σ1Lσ ∧ σRσ2)

=⇒ depth(σ1) = depth(σ) ∧ depth(σ) = depth(σ2).

Finally, for J we get

σ1J σ2 ⇒ ∃σ, σ′, γ, γ′ ∈ Hyp(τ) (σ1 = σ ◦h σ2 ◦h σ′ ∧ σ2 = γ ◦h σ1 ◦h γ′)
⇒ depth(σ1)|depth(σ2) ∧ depth(σ2)|depth(σ1)

⇒ depth(σ1) = depth(σ2).

For the depth of the hypersubstitutions ρ, ρ′, γ, γ′ which are needed in
the definitions of R, L and J we have depth(ρ) = depth(ρ′) = depth(γ) =
depth(γ′) = 1.

Further we have

Corollary 2.8. σ ∈ Hypf (n) is invertible if and only if depth(σ) = 1
and idempotent if and only if σ = σid.

Proof. If σ is invertible, then there exists a hypersubstitution σ′ such
that σ ◦σ′ = σ′ ◦σ = σid. Now from Proposition 2.5 we obtain depth(σ) ·
depth(σ′) = 1 and then depth(σ) = 1. If conversely depth(σ) = 1,
then there is a permutation s on the set {1, . . . , n} such that σ(f) =
f(xs(1), . . . , xs(n)), but then the hypersubstitution σ′ with σ′(f) =
= f(xs−1(1), . . . , xs−1(n)) satisfies

(σ ◦h σ′)(f) = f(x(s◦s−1)(1), . . . , x(s◦s−1)(n)) = f(x1, . . . , xn) =

= σid(f) = f(x(s−1◦s)(1), . . . , x(s−1◦s)(n)) = (σ′ ◦ σ)(f).
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Therefore σ is invertible. The second proposition follows from

σ2 = σ ⇒ depth(σ2) = depth(σ) ⇒ depth(σ) = 1 ⇒

⇒ ∃s ∈ Sn(σ(f) = f(xs(1), . . . , xs(n))) ⇒ s = σid.

Clearly, the set of all invertible elements of (Hypf (n); ◦h, σid) is the
maximal subgroup of (Hypf (n); ◦h, σid) and is isomorphic to the full
symmetric group Sn of all permutations on {1, . . . , n}.

Assume that σ1, σ2 are full hypersubstitutions. In [4] it was proved
that the superposition of full terms is full. Therefore σ1 + σ2 is a full
hypersubstitution and we have:

Theorem 2.9. (Hypf (n); ◦h, +, σid) is a left-seminearring with identity
and the function depth is a homomorphism onto the semiring (N+; ·, +, 1)
of natural numbers with identity.

Proof. We proved already that all defining identities of a left-
seminearring are satisfied. By Definition 2.4 we have

depth(σ1 + σ2) = depth(σ1 + σ2)(f)
= depth(σ2(f)(σ1(f), . . . , σ1(f)))
= depth(σ1) + depth(σ2).

The rest follows from Proposition 2.5.

Seminearrings were considered in [8] and [9].
Further we have

Proposition 2.10. The structures (Hypsf (n); ◦h, +, σid) and
(Hyppr(n); ◦h, +, σid) are left-seminearrings and (Hypsf (n); ◦h, +, σid) is
a sub-left-seminearring of the left-seminearring (Hypf (n); ◦h, +, σid).

Proof. (Hypsf (n); ◦h, σid) is a submonoid of (Hypf (n); ◦h, +, σid). As-
sume that σ1, σ2 ∈ Hypf (n). Then σ2(f)(σ1(f), . . . , σ1(f)). If we sub-
stitute for x1 the strongly full term σ1(f), etc., and finally for xn the
strongly full term σ1(f), then by the inductive definition of strongly
full terms the resulting term σ2(f)(σ1(f)), . . . , σ1(f)) is strongly full and
σ1 + σ2 ∈ Hypsf (n).
Assume now that σ1, σ2 ∈ Hyppr(n), i.e.

mindepth(σ2(f)) = depth(σj(f)), j = 1, 2.

Then we have also

mindepth((σ1 + σ2)(f)) = mindepth(σ2(f)(σ1(f), . . . , σ1(f)))
= mindepth(σ1(f)) + mindepth(σ2(f))
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and thus

mindepth(σ1 + σ2) = mindepth(σ1) + mindepth(σ2) =
= depth(σ1) + depth(σ2) = depth(σ1 + σ2)

and then

σ1 + σ2 ∈ Hyppr(n).

Further we have

Proposition 2.11. (Hypsf (n); ◦h, +) ∩ (Hyppr(n); ◦h, +) is the left-
seminearring generated by σid.

Proof. The one-element set σid is closed under the multiplication. There-
fore, since the addition of hypersubstitutions is associative, every ele-
ment of the left-seminearring generated by σid can be written as nσid

for some natural number n. We show by induction on n that every hy-
persubstitution of the form nσid belongs to Hypsf (n) and to Hyppr(n)
and therefore to the intersection. This is clear for σid. Assume that
nσid ∈ Hypsf (n) ∩ Hyppr(n), then (n + 1)σid(f) = nσid + σid(f) =
σid(f)(nσid(f), . . . , nσid(f)) = f(nσid(f), . . . , nσid(f)) and by the def-
inition of strongly full and of path-regular hypersubstitutions we have
(n + 1)σid ∈ Hypsf (n) ∩ Hyppr(n).
Conversely, assume that σ ∈ Hypsf (n) ∩ Hyppr(n). Since σ is full,
there are terms t1, . . . , tn such that σ(f) = f(t1, . . . , tn). We give a
proof by depth(σ). If depth(σ) = 1, i.e. depth(σ(f)) = 1, then σ(f) =
f(x1, . . . , xn) = σid(f) and thus σ ∈ 〈σid〉. Assume that every σ with
depth(σ) = n belongs to 〈σid〉 and let σ′ be a hypersubstitution with
depth(σ′) = n + 1. Thus σ′(f) = f(t1, . . . , tn) where t1, . . . , tn are full
and path-regular terms. Consider the hypersubstitutions σ1, . . . , σn with
σi(f) = ti. Since depth(σi) = n, we have σi ∈ 〈σid〉. If there numbers ni

such that σj = niσid, ni 6= nj for i 6= j, then

min{mindepth(n1σid), . . . , mindepth(nnσid)} =

= max{depth(n1σid), . . . , depth(nnσid)}.

Therefore for every i = 1, . . . , n we have σi = nσid and therefore σ′ =
(n + 1)σid ∈ 〈σid〉. This shows that 〈σid〉 = Hypsf (n) ∩ Hyppr(n).

We remark that the set of all hypersubstitutions of arbitrary type τ
is also closed under our addition and is called a left-seminearring since
the proof of the associativity and left distributivity did not use the type
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(n). Then a consequence of Proposition 2.10 is that the left- semin-
earring (Hypf (n); ◦h, +, σid) has no finite sub-left-seminearring and that
every left-seminearring of hypersubstitutions contains the infinite left-
seminearring 〈σid〉 = Hypsf (n).

Remark further that the mapping nσid 7→ n defines an isomorphism
between 〈σid〉 and (N; +, ·, 1). This show that 〈σid〉 is a semiring with can-
cellation rules for both operations, and with commutative addition. Fur-
thermore 〈σid〉 has no zero-divisors. Now we want to generalize Corollary
2.7 to the valuation of terms of type τ into Nτ introduced in Definition
2.3.

We mention the following Fact which was proved in [6]:

Fact: Let v be a valuation of terms into Nτ which satisfies the con-
dition (OC). Then for any n-ary terms t1, . . . , tm and for an arbitrary
m-ary term t we have

v(t(t1, . . . , tm)) ≥ v(t).

Now we prove:

Proposition 2.12. Let σ1, σ2 ∈ Hypf (n). If σ1Rσ2, then for every
valuation which satisfies (OC) we have v(σ1) = v(σ2).

Proof. If σ1Rσ2, then there exist hypersubstitutions σ, σ′ ∈ Hypf (n)
such that σ1 = σ2 ◦h σ and σ2 = σ1 ◦h σ′ and therefore from σ1(f) =
(σ2 ◦h σ)(f) follows σ1(f) = σ̂2[σ(f)] and σ2(f) = σ̂1[σ

′(f)]. Since τ = n
and since σ ∈ Hypf (n), the term σ(f) has the form f(t1, . . . , tn) and then
σ̂2[σ(f)] has the form σ2(f)(σ̂2[t1], . . . , σ̂2[tn]). Applying the Fact we see
that v((σ2◦σ)(f)) ≥ v(σ2(f)) and then v(σ1) ≥ v(σ2). Using σ2 = σ1◦hσ′

we get v(σ2) ≥ v(σ1). Altogether, we have v(σ1) = v(σ2).

Clearly, if σ1Hσ2 and if v satisfies (OC) we have also v(σ1) = v(σ2).
Because of (σ1 + σ2)(f) = σ2(f)(σ1(f), . . . , σ1(f)) from the fact follows
that v(σ1 + σ2) ≤ v(σ2), while v(σ1 ◦h σ2) ≤ v(σ1).

3. A Characterization of Green’s relation R

The condition depth(σ) = depth(σ′) turns out to be necessary, but not
sufficient for σ1Rσ2. Indeed, if σ1, σ2 ∈ Hypf (2) and σ1 6= σ2 then
σ1Rσ2 implies σ1 = σ2 ◦h σx1x2

or σ2 = σ1 ◦h σx2x1
. For instance, for

type τ = (2) the hypersubstitutions σ1 with

σ1(f) = f(f(x1, x2), f(f(x1, x2), f(x2, x1)))
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and σ2 with

σ2(f) = f(f(f(x1, x2), f(x2, x1)), f(x1, x2))

satisfy depth(σ1) = depth(σ2), but σ1 and σ2 are not R-related. There-
fore we need some more conditions.

For any n-ary term t we denote by Sn,x
n (t) the term arising from t if

we substitute for each variable the variable x.
Then we get:

Proposition 3.1. Assume that σ1, σ2 ∈ Hypf (n). If σ1Rσ2, then

Sn,x
n (σ1(f)) = Sn,x

n (σ2(f)).

Proof. If σ1Rσ2 then there are hypersubstitutions σ and σ′ such that
σ1 = σ2 ◦h σ and σ2 = σ1 ◦h σ′ and then σ1 = σ1 ◦h (σ ◦h σ′). By Propo-
sition 2.5 we get depth(σ1) = depth(σ1)depth(σ)depth(σ′). From this we
obtain depth(σ) = depth(σ′) = 1. Since σ and σ′ are full hypersubstitu-
tions, we have σ(f) = f(xs(1), . . . , xs(n)), σ′(f) = f(xs′(1), . . . , xs′(n)) for
permutations s,s′ on {1, . . . , n}. From this there follows

Sn,x
n (σ1(f)) = Sn,x

n ((σ2 ◦h σ)(f))
= Sn,x

n (σ̂2[σ(f)])
= Sn,x

n (σ̂2[f(xs(1), . . . , xs(n))])

= Sn,x
n (σ̂2[f(xs′(1), . . . , xs′(n))])

= Sn,x
n (σ2(f)).

Every full term t ∈ W f
n (Xn) contains subterms of the form

f(xsj(1), . . . , xsj(n))

for permutations sj on {1, . . . , n}. Considering the tree of the term t by
P (t) we denote the sequence of all permutations on {1, . . . , n} which are
needed in t, written from the left to the right, i.e.,

P (t) := {(s1, . . . , sm) | f(xsi(1), . . . , xsi(n)) is a subterm of t for
1 ≤ i ≤ m and where these subterms are ordered in the tree of t from

the left to the right}.

Example: Consider for τ = (3) the term

t = f(f(x2, x1, x3), f(f(x1, x2, x3), f(x2, x1, x3),

f(x3, x2, x1)), f(x3, x1, x2)).

Then P (t) = ((12), (1), (12), (13), (132)) if we write the permutations

which are needed as cycles. Clearly, two terms t1, t2 ∈ W f

(n)(Xn) are

equal if and only if Sn,x
n (t1) = Sn,x

n (t2) and P (t1) = P (t2).
Now we have
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Proposition 3.2. Let σ1, σ2 ∈ Hypf (n) and assume that P (σ1(f)) =
(u1, . . . , um) and P (σ2(f)) = (v1, . . . , vl). If σ1Rσ2 then m = l and
u1v

−1
1 = · · · = umv−1

m .

Proof. Assume that σ1Rσ2. There are hypersubstitutions σ, σ′ such that
σ1 = σ2 ◦h σ and σ2 = σ1 ◦h σ′ and therefore depth(σ) = depth(σ′) = 1.
It follows that there are permutations s, s′ : {1, . . . , n} → {1, . . . , n} such
that σ1(f) = σ̂2[f(xs(1), . . . , xs(n))] and σ2(f) = σ̂1[f(xs′(1), . . . , xs′(n))].
Then

P (σ1(f)) = P (σ̂2[f(xs(1), . . . , xs(n)]) =

= P (σ2(f)(xs(1), . . . , xs(n))) = (s ◦ v1, . . . , s ◦ vl).

Similarly, we get

P (σ2(f)) = P (σ̂1[f(xs′(1), . . . , xs′(n)]) =

= P (σ1(f)(xs′(1), . . . , xs′(n))) = (s′ ◦ u1, . . . , s
′ ◦ um).

By Proposition 3.1 from σ1Rσ2 there follows Sn,x
n (σ1(f)) = Sn,x

n (σ2(f)).
Since the trees of Sn,x

n (σ1(f)) and σ1(f) differ only in the labeling of
the leaves, the structure of the tree of σ1(f) and of σ2(f) is equal and
therefore the number of permutations s occurring in σ1(f) and σ2(f) is
equal, i.e. we have m = l and then (s◦v1, . . . , s◦vm) = (s′◦u1, . . . , s

′◦um)
implies s◦vj = s′ ◦uj for every 1 ≤ j ≤ m. From this equation we obtain
uj ◦ v−1

j = s ◦ s′−1 for every 1 ≤ j ≤ m and this means u1 ◦ v−1
1 = · · · =

um ◦ v−1
m .

It turns out that both conditions, Proposition 3.1 and Proposition
3.2 together, characterize Green’s relation R.

Theorem 3.3. Let σ1, σ2 ∈ Hypf (n). Then the following conditions are
equivalent:

(i) σ1Rσ2,

(ii) Sn,x
n (σ1(f)) = Sn,x

n (σ2(f)) and u1 ◦ v−1
1 = · · · = um ◦ v−1

m where
P (σ1(f)) = (u1, . . . , um) and P (σ2(f)) = (v1, . . . , vm).

Proof. (i) ⇒ (ii) was already proved.

(ii) ⇒ (i): We form s = u1 ◦ v−1
1 , s−1 = v1 ◦ u−1

1 and consider σ, σ′ ∈
Hypf (n) defined by σ(f) = f(xs(1), . . . , xs(n)) and σ′(f) = f(xs−1(1), . . . ,
xs−1(n)). Clearly, σ′ = σ−1. Now we prove that σ1 = σ2 ◦h σ using the
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remark before Proposition 3.2 and showing that Sn,x
n (σ1(f)) = Sn,x

n ((σ2◦
σ)(f)) and P (σ1(f)) = P ((σ2 ◦h σ)(f)). Indeed, we have

Sn,x
n ((σ2 ◦ σ)(f)) = Sn,x

n (σ̂2[σ(f)]) = Sn,x
n (σ̂2[f(xs(1), . . . , xs(n))]) =

= Sn,x
n (σ2(f)(xs(1), . . . , xs(n))) = Sn,x

n (σ2(f)).

Further P ((σ2 ◦h σ)(f)) = P (σ2(f)(xs(1), . . . , xs(n))) = (s ◦ v1, . . . , s ◦
vm) = (u1, . . . , um) = P (σ1(f)). Since the inverse of σ exists, we get
σ2 = σ1 ◦ σ−1 and altogether we have σ1Rσ2.
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